
Currently we start transaction for mapping every extent for writing using direct IO. This is unnecessary when we know we are overwriting already allocated blocks and the overhead of starting a transaction can be significant especially for multithreaded workloads doing small writes. Use iomap operations that avoid starting a transaction for direct IO overwrites. This improves throughput of 4k random writes - fio jobfile: [global] rw=randrw norandommap=1 invalidate=0 bs=4k numjobs=16 time_based=1 ramp_time=30 runtime=120 group_reporting=1 ioengine=psync direct=1 size=16G filename=file1.0.0:file1.0.1:file1.0.2:file1.0.3:file1.0.4:file1.0.5:file1.0.6:file1.0.7:file1.0.8:file1.0.9:file1.0.10:file1.0.11:file1.0.12:file1.0.13:file1.0.14:file1.0.15:file1.0.16:file1.0.17:file1.0.18:file1.0.19:file1.0.20:file1.0.21:file1.0.22:file1.0.23:file1.0.24:file1.0.25:file1.0.26:file1.0.27:file1.0.28:file1.0.29:file1.0.30:file1.0.31 file_service_type=random nrfiles=32 from 3018MB/s to 4059MB/s in my test VM running test against simulated pmem device (note that before iomap conversion, this workload was able to achieve 3708MB/s because old direct IO path avoided transaction start for overwrites as well). For dax, the win is even larger improving throughput from 3042MB/s to 4311MB/s. Reported-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Jan Kara <jack@suse.cz> Link: https://lore.kernel.org/r/20191218174433.19380-1-jack@suse.cz Signed-off-by: Theodore Ts'o <tytso@mit.edu>
22 KiB
22 KiB