The i.MX GPT timer driver binding doc is out of date,
update it according to current GPT timer driver.
Signed-off-by: Anson Huang <Anson.Huang@nxp.com>
Reviewed-by: Rob Herring <robh@kernel.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
The driver does not use sched.h and platform_device.h.
Signed-off-by: Krzysztof Kozlowski <krzk@kernel.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Update the binding for MT7629 SoC, which uses fallback compatible to
MT6765 SYST, so add more descriptions to distinguish it from the other
SoCs that use GPT.
Signed-off-by: Ryder Lee <ryder.lee@mediatek.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
While freeing interrupt handlers in error path, don't assume that all
requested interrupts are per-processor interrupts and properly release
standard interrupts too.
Reported-by: Krzysztof Kozlowski <krzk@kernel.org>
Fixes: 56a94f1391 ("clocksource: exynos_mct: Avoid blocking calls in the cpu hotplug notifier")
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Krzysztof Kozlowski <krzk@kernel.org>
Reviewed-by: Chanwoo Choi <cw00.choi@samsung.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Exynos Multi-Core Timer driver is used only on device-tree based
systems, so remove non-dt related code. In case of !CONFIG_OF
the code is anyway equal because of_irq_count() has a stub
returning 0. Device node pointer is always provided when driver
has been probed from device tree.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Krzysztof Kozlowski <krzk@kernel.org>
Reviewed-by: Chanwoo Choi <cw00.choi@samsung.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Currently, clocksource registration happens for an invalid cpu for
non-smp kernels. This lead to kernel panic as cpu hotplug registration
will fail for those cpus. Moreover, riscv_hartid_to_cpuid can return
errors now.
Do not proceed if hartid or cpuid is invalid. Take this opportunity to
print appropriate error strings for different failure cases.
Signed-off-by: Atish Patra <atish.patra@wdc.com>
Reviewed-by: Anup Patel <anup@brainfault.org>
Reviewed-by: Palmer Dabbelt <palmer@sifive.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
When shutting down the timer, ensure that after we have stopped the
timer any pending interrupts are cleared. This fixes a problem when
suspending, as interrupts are disabled before the timer is stopped,
so the timer interrupt may still be asserted, preventing the system
entering a low power state when the wfi is executed.
Signed-off-by: Stuart Menefy <stuart.menefy@mathembedded.com>
Reviewed-by: Krzysztof Kozlowski <krzk@kernel.org>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: <stable@vger.kernel.org> # v4.3+
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
When a timer tick occurs and the clock is in one-shot mode, the timer
needs to be stopped to prevent it triggering subsequent interrupts.
Currently this code is in exynos4_mct_tick_clear(), but as it is
only needed when an ISR occurs move it into exynos4_mct_tick_isr(),
leaving exynos4_mct_tick_clear() just doing what its name suggests it
should.
Signed-off-by: Stuart Menefy <stuart.menefy@mathembedded.com>
Reviewed-by: Krzysztof Kozlowski <krzk@kernel.org>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: stable@vger.kernel.org # v4.3+
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
The Allwinner A64 SoC is known[1] to have an unstable architectural
timer, which manifests itself most obviously in the time jumping forward
a multiple of 95 years[2][3]. This coincides with 2^56 cycles at a
timer frequency of 24 MHz, implying that the time went slightly backward
(and this was interpreted by the kernel as it jumping forward and
wrapping around past the epoch).
Investigation revealed instability in the low bits of CNTVCT at the
point a high bit rolls over. This leads to power-of-two cycle forward
and backward jumps. (Testing shows that forward jumps are about twice as
likely as backward jumps.) Since the counter value returns to normal
after an indeterminate read, each "jump" really consists of both a
forward and backward jump from the software perspective.
Unless the kernel is trapping CNTVCT reads, a userspace program is able
to read the register in a loop faster than it changes. A test program
running on all 4 CPU cores that reported jumps larger than 100 ms was
run for 13.6 hours and reported the following:
Count | Event
-------+---------------------------
9940 | jumped backward 699ms
268 | jumped backward 1398ms
1 | jumped backward 2097ms
16020 | jumped forward 175ms
6443 | jumped forward 699ms
2976 | jumped forward 1398ms
9 | jumped forward 356516ms
9 | jumped forward 357215ms
4 | jumped forward 714430ms
1 | jumped forward 3578440ms
This works out to a jump larger than 100 ms about every 5.5 seconds on
each CPU core.
The largest jump (almost an hour!) was the following sequence of reads:
0x0000007fffffffff → 0x00000093feffffff → 0x0000008000000000
Note that the middle bits don't necessarily all read as all zeroes or
all ones during the anomalous behavior; however the low 10 bits checked
by the function in this patch have never been observed with any other
value.
Also note that smaller jumps are much more common, with backward jumps
of 2048 (2^11) cycles observed over 400 times per second on each core.
(Of course, this is partially explained by lower bits rolling over more
frequently.) Any one of these could have caused the 95 year time skip.
Similar anomalies were observed while reading CNTPCT (after patching the
kernel to allow reads from userspace). However, the CNTPCT jumps are
much less frequent, and only small jumps were observed. The same program
as before (except now reading CNTPCT) observed after 72 hours:
Count | Event
-------+---------------------------
17 | jumped backward 699ms
52 | jumped forward 175ms
2831 | jumped forward 699ms
5 | jumped forward 1398ms
Further investigation showed that the instability in CNTPCT/CNTVCT also
affected the respective timer's TVAL register. The following values were
observed immediately after writing CNVT_TVAL to 0x10000000:
CNTVCT | CNTV_TVAL | CNTV_CVAL | CNTV_TVAL Error
--------------------+------------+--------------------+-----------------
0x000000d4a2d8bfff | 0x10003fff | 0x000000d4b2d8bfff | +0x00004000
0x000000d4a2d94000 | 0x0fffffff | 0x000000d4b2d97fff | -0x00004000
0x000000d4a2d97fff | 0x10003fff | 0x000000d4b2d97fff | +0x00004000
0x000000d4a2d9c000 | 0x0fffffff | 0x000000d4b2d9ffff | -0x00004000
The pattern of errors in CNTV_TVAL seemed to depend on exactly which
value was written to it. For example, after writing 0x10101010:
CNTVCT | CNTV_TVAL | CNTV_CVAL | CNTV_TVAL Error
--------------------+------------+--------------------+-----------------
0x000001ac3effffff | 0x1110100f | 0x000001ac4f10100f | +0x1000000
0x000001ac40000000 | 0x1010100f | 0x000001ac5110100f | -0x1000000
0x000001ac58ffffff | 0x1110100f | 0x000001ac6910100f | +0x1000000
0x000001ac66000000 | 0x1010100f | 0x000001ac7710100f | -0x1000000
0x000001ac6affffff | 0x1110100f | 0x000001ac7b10100f | +0x1000000
0x000001ac6e000000 | 0x1010100f | 0x000001ac7f10100f | -0x1000000
I was also twice able to reproduce the issue covered by Allwinner's
workaround[4], that writing to TVAL sometimes fails, and both CVAL and
TVAL are left with entirely bogus values. One was the following values:
CNTVCT | CNTV_TVAL | CNTV_CVAL
--------------------+------------+--------------------------------------
0x000000d4a2d6014c | 0x8fbd5721 | 0x000000d132935fff (615s in the past)
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
========================================================================
Because the CPU can read the CNTPCT/CNTVCT registers faster than they
change, performing two reads of the register and comparing the high bits
(like other workarounds) is not a workable solution. And because the
timer can jump both forward and backward, no pair of reads can
distinguish a good value from a bad one. The only way to guarantee a
good value from consecutive reads would be to read _three_ times, and
take the middle value only if the three values are 1) each unique and
2) increasing. This takes at minimum 3 counter cycles (125 ns), or more
if an anomaly is detected.
However, since there is a distinct pattern to the bad values, we can
optimize the common case (1022/1024 of the time) to a single read by
simply ignoring values that match the error pattern. This still takes no
more than 3 cycles in the worst case, and requires much less code. As an
additional safety check, we still limit the loop iteration to the number
of max-frequency (1.2 GHz) CPU cycles in three 24 MHz counter periods.
For the TVAL registers, the simple solution is to not use them. Instead,
read or write the CVAL and calculate the TVAL value in software.
Although the manufacturer is aware of at least part of the erratum[4],
there is no official name for it. For now, use the kernel-internal name
"UNKNOWN1".
[1]: https://github.com/armbian/build/commit/a08cd6fe7ae9
[2]: https://forum.armbian.com/topic/3458-a64-datetime-clock-issue/
[3]: https://irclog.whitequark.org/linux-sunxi/2018-01-26
[4]: https://github.com/Allwinner-Homlet/H6-BSP4.9-linux/blob/master/drivers/clocksource/arm_arch_timer.c#L272
Acked-by: Maxime Ripard <maxime.ripard@bootlin.com>
Tested-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Samuel Holland <samuel@sholland.org>
Cc: stable@vger.kernel.org
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
If the clock tree is not fully populated when the timer-sun5i init code
is called, attempts to get the clock rate for the timer would fail and
return 0.
Make the init code for both clock events and clocksource check the
returned clock rate and fail gracefully if the result is 0, instead of
causing a divide by 0 exception later on.
Fixes: 4a59058f0b ("clocksource/drivers/sun5i: Refactor the current code")
Signed-off-by: Chen-Yu Tsai <wens@csie.org>
Acked-by: Maxime Ripard <maxime.ripard@bootlin.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
On most Intel Bay- and Cherry-Trail systems the PMIC is connected over I2C
and the PMIC is accessed through various means by the _PS0 and _PS3 ACPI
methods (power on / off methods) of various devices.
This leads to suspend/resume ordering problems where a device may be
resumed and get its _PS0 method executed before the I2C controller is
resumed. On Cherry Trail this leads to errors like these:
i2c_designware 808622C1:06: controller timed out
ACPI Error: AE_ERROR, Returned by Handler for [UserDefinedRegion]
ACPI Error: Method parse/execution failed \_SB.P18W._ON, AE_ERROR
video LNXVIDEO:00: Failed to change power state to D0
But on Bay Trail this caused I2C reads to seem to succeed, but they end
up returning wrong data, which ends up getting written back by the typical
read-modify-write cycle done to turn on various power-resources.
Debugging the problems caused by this silent data corruption is quite
nasty. This commit adds a check which disallows i2c_dw_xfer() calls to
happen until the controller's resume method has completed.
Which turns the silent data corruption into getting these errors in
dmesg instead:
i2c_designware 80860F41:04: Error i2c_dw_xfer call while suspended
ACPI Error: AE_ERROR, Returned by Handler for [UserDefinedRegion]
ACPI Error: Method parse/execution failed \_SB.PCI0.GFX0._PS0, AE_ERROR
Which is much better.
Note the above errors are an example of issues which this patch will
help to debug, the actual fix requires fixing the suspend order and
this has been fixed by a different commit.
Note the setting / clearing of the suspended flag in the suspend / resume
methods is NOT protected by i2c_lock_bus(). This is intentional as these
methods get called from i2c_dw_xfer() (through pm_runtime_get/put) a nd
i2c_dw_xfer() is called with the i2c_bus_lock held, so otherwise we would
deadlock. This means that there is a theoretical race between a non runtime
suspend and the suspended check in i2c_dw_xfer(), this is not a problem
since normally we should not hit the race and this check is primarily a
debugging tool so hitting the check if there are suspend/resume ordering
problems does not need to be 100% reliable.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
Commit 86c92b9965 ("i2c: tegra: Add DMA support") added DMA support
to the Tegra I2C driver for Tegra devices that support the APB DMA
controller. One side-effect of this change is that even for Tegra
devices that do not have an APB DMA controller and hence, cannot
support DMA tranfers for I2C transactions, the following error messages
are still displayed ...
ERR KERN tegra-i2c 31c0000.i2c: cannot use DMA: -19
ERR KERN tegra-i2c 31c0000.i2c: falling back to PIO
There is no point displaying the above messages for devices that do not
have an APB DMA controller and so fix this by returning from the
tegra_i2c_init_dma() function if 'has_apb_dma' is not true.
Furthermore, if CONFIG_TEGRA20_APB_DMA is not set, then rather than
printing an error message, print an debug message as for whatever reason
this could be intentional.
Fixes: 86c92b9965 ("i2c: tegra: Add DMA support")
Signed-off-by: Jonathan Hunter <jonathanh@nvidia.com>
Reviewed-by: Dmitry Osipenko <digetx@gmail.com>
Acked-by: Thierry Reding <treding@nvidia.com>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
kcov provides kernel coverage data that's useful for fuzzing tools like
syzkaller.
Wire up kcov support on powerpc. Disable kcov instrumentation on the same
files where we currently disable gcov and UBSan instrumentation, plus some
additional exclusions which appear necessary to boot on book3e machines.
Signed-off-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Daniel Axtens <dja@axtens.net> # e6500
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On 8xx, large pages (512kb or 8M) are used to map kernel linear
memory. Aligning to 8M reduces TLB misses as only 8M pages are used
in that case. We make 8M the default for data.
This patchs allows the user to do it via Kconfig.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch implements handling of STRICT_KERNEL_RWX with
large TLBs directly in the TLB miss handlers.
To do so, etext and sinittext are aligned on 512kB boundaries
and the miss handlers use 512kB pages instead of 8Mb pages for
addresses close to the boundaries.
It sets RO PP flags for addresses under sinittext.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Depending on the number of available BATs for mapping the different
kernel areas, it might be needed to increase the alignment of _etext
and/or of data areas.
This patchs allows the user to do it via Kconfig.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Today, STRICT_KERNEL_RWX is based on the use of regular pages
to map kernel pages.
On Book3s 32, it has three consequences:
- Using pages instead of BAT for mapping kernel linear memory severely
impacts performance.
- Exec protection is not effective because no-execute cannot be set at
page level (except on 603 which doesn't have hash tables)
- Write protection is not effective because PP bits do not provide RO
mode for kernel-only pages (except on 603 which handles it in software
via PAGE_DIRTY)
On the 603+, we have:
- Independent IBAT and DBAT allowing limitation of exec parts.
- NX bit can be set in segment registers to forbit execution on memory
mapped by pages.
- RO mode on DBATs even for kernel-only blocks.
On the 601, there is nothing much we can do other than warn the user
about it, because:
- BATs are common to instructions and data.
- BAT do not provide RO mode for kernel-only blocks.
- segment registers don't have the NX bit.
In order to use IBAT for exec protection, this patch:
- Aligns _etext to BAT block sizes (128kb)
- Set NX bit in kernel segment register (Except on vmalloc area when
CONFIG_MODULES is selected)
- Maps kernel text with IBATs.
In order to use DBAT for exec protection, this patch:
- Aligns RW DATA to BAT block sizes (4M)
- Maps kernel RO area with write prohibited DBATs
- Maps remaining memory with remaining DBATs
Here is what we get with this patch on a 832x when activating
STRICT_KERNEL_RWX:
Symbols:
c0000000 T _stext
c0680000 R __start_rodata
c0680000 R _etext
c0800000 T __init_begin
c0800000 T _sinittext
~# cat /sys/kernel/debug/block_address_translation
---[ Instruction Block Address Translation ]---
0: 0xc0000000-0xc03fffff 0x00000000 Kernel EXEC coherent
1: 0xc0400000-0xc05fffff 0x00400000 Kernel EXEC coherent
2: 0xc0600000-0xc067ffff 0x00600000 Kernel EXEC coherent
3: -
4: -
5: -
6: -
7: -
---[ Data Block Address Translation ]---
0: 0xc0000000-0xc07fffff 0x00000000 Kernel RO coherent
1: 0xc0800000-0xc0ffffff 0x00800000 Kernel RW coherent
2: 0xc1000000-0xc1ffffff 0x01000000 Kernel RW coherent
3: 0xc2000000-0xc3ffffff 0x02000000 Kernel RW coherent
4: 0xc4000000-0xc7ffffff 0x04000000 Kernel RW coherent
5: 0xc8000000-0xcfffffff 0x08000000 Kernel RW coherent
6: 0xd0000000-0xdfffffff 0x10000000 Kernel RW coherent
7: -
~# cat /sys/kernel/debug/segment_registers
---[ User Segments ]---
0x00000000-0x0fffffff Kern key 1 User key 1 VSID 0xa085d0
0x10000000-0x1fffffff Kern key 1 User key 1 VSID 0xa086e1
0x20000000-0x2fffffff Kern key 1 User key 1 VSID 0xa087f2
0x30000000-0x3fffffff Kern key 1 User key 1 VSID 0xa08903
0x40000000-0x4fffffff Kern key 1 User key 1 VSID 0xa08a14
0x50000000-0x5fffffff Kern key 1 User key 1 VSID 0xa08b25
0x60000000-0x6fffffff Kern key 1 User key 1 VSID 0xa08c36
0x70000000-0x7fffffff Kern key 1 User key 1 VSID 0xa08d47
0x80000000-0x8fffffff Kern key 1 User key 1 VSID 0xa08e58
0x90000000-0x9fffffff Kern key 1 User key 1 VSID 0xa08f69
0xa0000000-0xafffffff Kern key 1 User key 1 VSID 0xa0907a
0xb0000000-0xbfffffff Kern key 1 User key 1 VSID 0xa0918b
---[ Kernel Segments ]---
0xc0000000-0xcfffffff Kern key 0 User key 1 No Exec VSID 0x000ccc
0xd0000000-0xdfffffff Kern key 0 User key 1 No Exec VSID 0x000ddd
0xe0000000-0xefffffff Kern key 0 User key 1 No Exec VSID 0x000eee
0xf0000000-0xffffffff Kern key 0 User key 1 No Exec VSID 0x000fff
Aligning _etext to 128kb allows to map up to 32Mb text with 8 IBATs:
16Mb + 8Mb + 4Mb + 2Mb + 1Mb + 512kb + 256kb + 128kb (+ 128kb) = 32Mb
(A 9th IBAT is unneeded as 32Mb would need only a single 32Mb block)
Aligning data to 4M allows to map up to 512Mb data with 8 DBATs:
16Mb + 8Mb + 4Mb + 4Mb + 32Mb + 64Mb + 128Mb + 256Mb = 512Mb
Because some processors only have 4 BATs and because some targets need
DBATs for mapping other areas, the following patch will allow to
modify _etext and data alignment.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
setibat() and clearibat() allows to manipulate IBATs independently
of DBATs.
update_bats() allows to update bats after init. This is done
with MMU off.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
CONFIG_STRICT_KERNEL_RWX requires a special alignment
for DATA for some subarches. Today it is just defined
as an #ifdef in vmlinux.lds.S
In order to get more flexibility, this patch moves the
definition of this alignment in Kconfig
On some subarches, CONFIG_STRICT_KERNEL_RWX will
require a special alignment of _etext.
This patch also adds a configuration item for it in Kconfig
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch defined CONFIG_PPC_PAGE_SHIFT in order
to be able to use PAGE_SHIFT value inside Kconfig.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Add a helper to know whether STRICT_KERNEL_RWX is enabled.
This is based on rodata_enabled flag which is defined only
when CONFIG_STRICT_KERNEL_RWX is selected.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch add an helper which wraps 'mtsrin' instruction
to write into segment registers.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Do not set IBAT when setbat() is called without _PAGE_EXEC
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When CONFIG_BDI_SWITCH is set, the page tables have to be populated
allthough large TLBs are used, because the BDI switch knows nothing
about those large TLBs which are handled directly in TLB miss logic.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Now that mmu_mapin_ram() is able to handle other blocks
than the one starting at 0, the WII can use it for all
its blocks.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch reworks mmu_mapin_ram() to be more generic and map as much
blocks as possible. It now supports blocks not starting at address 0.
It scans DBATs array to find free ones instead of forcing the use of
BAT2 and BAT3.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
At the time being, mmu_mapin_ram() always maps RAM from the beginning.
But some platforms like the WII have to map a second block of RAM.
This patch adds to mmu_mapin_ram() the base address of the block.
At the moment, only base address 0 is supported.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
'nobats' kernel parameter or some options like CONFIG_DEBUG_PAGEALLOC
deny the use of BATS for mapping memory.
This patch makes sure that the specific wii RAM mapping function
takes it into account as well.
Fixes: de32400dd2 ("wii: use both mem1 and mem2 as ram")
Cc: stable@vger.kernel.org
Reviewed-by: Jonathan Neuschafer <j.neuschaefer@gmx.net>
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
At the time being, initial MMU setup allows 24 Mbytes
of DATA and 8 Mbytes of code.
Some debug setup like CONFIG_KASAN generate huge
kernels with text size over the 8M limit and data over the
24 Mbytes limit.
Here is an 8xx kernel compiled with CONFIG_KASAN_INLINE for
one of my boards:
[root@po16846vm linux-powerpc]# size -x vmlinux
text data bss dec hex filename
0x111019c 0x41b0d4 0x490de0 26984528 19bc050 vmlinux
This patch maps up to 32 Mbytes code based on _einittext symbol
and allows 32 Mbytes of memory instead of 24.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch replaces most #ifdef mess by IS_ENABLED() in 8xx_mmu.c
This has the advantage of allowing syntax verification at compile
time regardless of selected options.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This enhances the current selftest framework for validating
the in-kernel instruction emulation infrastructure by adding
support for compute type instructions i.e. integer ALU-based
instructions. Originally, this framework was limited to only
testing load and store instructions.
While most of the GPRs can be validated, support for SPRs is
limited to LR, CR and XER for now.
When writing the test cases, one must ensure that the Stack
Pointer (GPR1) or the Thread Pointer (GPR13) are not touched
by any means as these are vital non-volatile registers.
Signed-off-by: Sandipan Das <sandipan@linux.ibm.com>
[mpe: Use patch_site for the code patching]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Pull irqchip updates from Marc Zyngier
- Core pseudo-NMI handling code
- Allow the default irq domain to be retrieved
- A new interrupt controller for the Loongson LS1X platform
- Affinity support for the SiFive PLIC
- Better support for the iMX irqsteer driver
- NUMA aware memory allocations for GICv3
- A handful of other fixes (i8259, GICv3, PLIC)
Add a fault injector simulating a Kernel panic happening after starting
a transfer. Read the docs for its usage.
Signed-off-by: Wolfram Sang <wsa+renesas@sang-engineering.com>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
Add a fault injector simulating 'arbitration lost' from multi-master
setups. Read the docs for its usage.
A helper function for future fault injectors using SCL interrupts is
created to achieve this.
Signed-off-by: Wolfram Sang <wsa+renesas@sang-engineering.com>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
Multi-master support is defeatured on Tegra210 and Tegra186 due to
known bugs.
This patch removes multi-master support for Tegra210 and Tegra186
I2C HW feature.
Acked-by: Thierry Reding <treding@nvidia.com>
Signed-off-by: Sowjanya Komatineni <skomatineni@nvidia.com>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
Tegra186 does not have master FIFO control register and instead
uses FIFO control register like prior Tegra chipset.
This patch fixes this and prevents crashing during boot when
accessing FIFO control registers.
Acked-by: Thierry Reding <treding@nvidia.com>
Signed-off-by: Sowjanya Komatineni <skomatineni@nvidia.com>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
The driver uses the DMA_BUF module which is built only if
DMA_SHARED_BUFFER is selected. DMA_SHARED_BUFFER doesn't have any
dependencies so it is ok to select it (as done by many other components).
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
send_cpu_message() doesn't update the result parameter when an error
occurs in its code. Therefore, callers of send_cpu_message() shouldn't use
the result value when the return code indicates error.
This patch fixes a static checker warning in goya_test_cpu_queue(), where
that function did print the result even though the return code from
send_cpu_message() indicated error.
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Change the monitor_pages index in server_monitor_pending_show() to '0'.
'0' is the correct monitor_pages index for the server. A comment for the
monitor_pages field in the vmbus_connection struct definition indicates
that the 1st page is for parent->child notifications. In addition, the
server_monitor_latency_show() and server_monitor_conn_id_show()
functions use monitor_pages index '0'.
Signed-off-by: Kimberly Brown <kimbrownkd@gmail.com>
Acked-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Daniel Borkmann says:
====================
pull-request: bpf 2019-02-23
The following pull-request contains BPF updates for your *net* tree.
The main changes are:
1) Fix a bug in BPF's LPM deletion logic to match correct prefix
length, from Alban.
2) Fix AF_XDP teardown by not destroying umem prematurely as it
is still needed till all outstanding skbs are freed, from Björn.
3) Fix unkillable BPF_PROG_TEST_RUN under preempt kernel by checking
signal_pending() outside need_resched() condition which is never
triggered there, from Stanislav.
4) Fix two nfp JIT bugs, one in code emission for K-based xor, and
another one to explicitly clear upper bits in alu32, from Jiong.
5) Add bpf list address to maintainers file, from Daniel.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull keys fixes from James Morris:
"Two fixes from Eric Biggers"
* 'fixes-v5.0-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security:
KEYS: always initialize keyring_index_key::desc_len
KEYS: user: Align the payload buffer
Pull power management fixes from Rafael Wysocki:
"These fix a regression in the PM-runtime framework introduced by the
recent switch-over of it to using hrtimers and a use-after-free
introduced by one of the recent changes in the scmi-cpufreq driver.
Specifics:
- Use hrtimer_try_to_cancel() instead of hrtimer_cancel() in the
PM-runtime framework to avoid a possible timer-related deadlock
introduced recently (Vincent Guittot).
- Reorder the scmi-cpufreq driver code to avoid accessing memory that
has just been freed (Yangtao Li)"
* tag 'pm-5.0' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
PM-runtime: Fix deadlock when canceling hrtimer
cpufreq: scmi: Fix use-after-free in scmi_cpufreq_exit()
Pull ARM SoC fixes from Arnd Bergmann:
"Only a handful of device tree fixes, all simple enough:
NVIDIA Tegra:
- Fix a regression for booting on chromebooks
TI OMAP:
- Two fixes PHY mode on am335x reference boards
Marvell mvebu:
- A regression fix for Armada XP NAND flash controllers
- An incorrect reset signal on the clearfog board"
* tag 'armsoc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc:
ARM: tegra: Restore DT ABI on Tegra124 Chromebooks
ARM: dts: am335x-evm: Fix PHY mode for ethernet
ARM: dts: am335x-evmsk: Fix PHY mode for ethernet
arm64: dts: clearfog-gt-8k: fix SGMII PHY reset signal
ARM: dts: armada-xp: fix Armada XP boards NAND description