123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263 |
- // SPDX-License-Identifier: GPL-2.0-only
- /*
- * sl28cpld PWM driver
- *
- * Copyright (c) 2020 Michael Walle <[email protected]>
- *
- * There is no public datasheet available for this PWM core. But it is easy
- * enough to be briefly explained. It consists of one 8-bit counter. The PWM
- * supports four distinct frequencies by selecting when to reset the counter.
- * With the prescaler setting you can select which bit of the counter is used
- * to reset it. This implies that the higher the frequency the less remaining
- * bits are available for the actual counter.
- *
- * Let cnt[7:0] be the counter, clocked at 32kHz:
- * +-----------+--------+--------------+-----------+---------------+
- * | prescaler | reset | counter bits | frequency | period length |
- * +-----------+--------+--------------+-----------+---------------+
- * | 0 | cnt[7] | cnt[6:0] | 250 Hz | 4000000 ns |
- * | 1 | cnt[6] | cnt[5:0] | 500 Hz | 2000000 ns |
- * | 2 | cnt[5] | cnt[4:0] | 1 kHz | 1000000 ns |
- * | 3 | cnt[4] | cnt[3:0] | 2 kHz | 500000 ns |
- * +-----------+--------+--------------+-----------+---------------+
- *
- * Limitations:
- * - The hardware cannot generate a 100% duty cycle if the prescaler is 0.
- * - The hardware cannot atomically set the prescaler and the counter value,
- * which might lead to glitches and inconsistent states if a write fails.
- * - The counter is not reset if you switch the prescaler which leads
- * to glitches, too.
- * - The duty cycle will switch immediately and not after a complete cycle.
- * - Depending on the actual implementation, disabling the PWM might have
- * side effects. For example, if the output pin is shared with a GPIO pin
- * it will automatically switch back to GPIO mode.
- */
- #include <linux/bitfield.h>
- #include <linux/kernel.h>
- #include <linux/mod_devicetable.h>
- #include <linux/module.h>
- #include <linux/platform_device.h>
- #include <linux/pwm.h>
- #include <linux/regmap.h>
- /*
- * PWM timer block registers.
- */
- #define SL28CPLD_PWM_CTRL 0x00
- #define SL28CPLD_PWM_CTRL_ENABLE BIT(7)
- #define SL28CPLD_PWM_CTRL_PRESCALER_MASK GENMASK(1, 0)
- #define SL28CPLD_PWM_CYCLE 0x01
- #define SL28CPLD_PWM_CYCLE_MAX GENMASK(6, 0)
- #define SL28CPLD_PWM_CLK 32000 /* 32 kHz */
- #define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler) (1 << (7 - (prescaler)))
- #define SL28CPLD_PWM_PERIOD(prescaler) \
- (NSEC_PER_SEC / SL28CPLD_PWM_CLK * SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler))
- /*
- * We calculate the duty cycle like this:
- * duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle
- *
- * With
- * max_period_ns = 1 << (7 - prescaler) / SL28CPLD_PWM_CLK * NSEC_PER_SEC
- * max_duty_cycle = 1 << (7 - prescaler)
- * this then simplifies to:
- * duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC
- * = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg
- *
- * NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK, therefore we're not losing
- * precision by doing the divison first.
- */
- #define SL28CPLD_PWM_TO_DUTY_CYCLE(reg) \
- (NSEC_PER_SEC / SL28CPLD_PWM_CLK * (reg))
- #define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle) \
- (DIV_ROUND_DOWN_ULL((duty_cycle), NSEC_PER_SEC / SL28CPLD_PWM_CLK))
- #define sl28cpld_pwm_read(priv, reg, val) \
- regmap_read((priv)->regmap, (priv)->offset + (reg), (val))
- #define sl28cpld_pwm_write(priv, reg, val) \
- regmap_write((priv)->regmap, (priv)->offset + (reg), (val))
- struct sl28cpld_pwm {
- struct pwm_chip pwm_chip;
- struct regmap *regmap;
- u32 offset;
- };
- #define sl28cpld_pwm_from_chip(_chip) \
- container_of(_chip, struct sl28cpld_pwm, pwm_chip)
- static int sl28cpld_pwm_get_state(struct pwm_chip *chip,
- struct pwm_device *pwm,
- struct pwm_state *state)
- {
- struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip);
- unsigned int reg;
- int prescaler;
- sl28cpld_pwm_read(priv, SL28CPLD_PWM_CTRL, ®);
- state->enabled = reg & SL28CPLD_PWM_CTRL_ENABLE;
- prescaler = FIELD_GET(SL28CPLD_PWM_CTRL_PRESCALER_MASK, reg);
- state->period = SL28CPLD_PWM_PERIOD(prescaler);
- sl28cpld_pwm_read(priv, SL28CPLD_PWM_CYCLE, ®);
- state->duty_cycle = SL28CPLD_PWM_TO_DUTY_CYCLE(reg);
- state->polarity = PWM_POLARITY_NORMAL;
- /*
- * Sanitize values for the PWM core. Depending on the prescaler it
- * might happen that we calculate a duty_cycle greater than the actual
- * period. This might happen if someone (e.g. the bootloader) sets an
- * invalid combination of values. The behavior of the hardware is
- * undefined in this case. But we need to report sane values back to
- * the PWM core.
- */
- state->duty_cycle = min(state->duty_cycle, state->period);
- return 0;
- }
- static int sl28cpld_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
- const struct pwm_state *state)
- {
- struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip);
- unsigned int cycle, prescaler;
- bool write_duty_cycle_first;
- int ret;
- u8 ctrl;
- /* Polarity inversion is not supported */
- if (state->polarity != PWM_POLARITY_NORMAL)
- return -EINVAL;
- /*
- * Calculate the prescaler. Pick the biggest period that isn't
- * bigger than the requested period.
- */
- prescaler = DIV_ROUND_UP_ULL(SL28CPLD_PWM_PERIOD(0), state->period);
- prescaler = order_base_2(prescaler);
- if (prescaler > field_max(SL28CPLD_PWM_CTRL_PRESCALER_MASK))
- return -ERANGE;
- ctrl = FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, prescaler);
- if (state->enabled)
- ctrl |= SL28CPLD_PWM_CTRL_ENABLE;
- cycle = SL28CPLD_PWM_FROM_DUTY_CYCLE(state->duty_cycle);
- cycle = min_t(unsigned int, cycle, SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler));
- /*
- * Work around the hardware limitation. See also above. Trap 100% duty
- * cycle if the prescaler is 0. Set prescaler to 1 instead. We don't
- * care about the frequency because its "all-one" in either case.
- *
- * We don't need to check the actual prescaler setting, because only
- * if the prescaler is 0 we can have this particular value.
- */
- if (cycle == SL28CPLD_PWM_MAX_DUTY_CYCLE(0)) {
- ctrl &= ~SL28CPLD_PWM_CTRL_PRESCALER_MASK;
- ctrl |= FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, 1);
- cycle = SL28CPLD_PWM_MAX_DUTY_CYCLE(1);
- }
- /*
- * To avoid glitches when we switch the prescaler, we have to make sure
- * we have a valid duty cycle for the new mode.
- *
- * Take the current prescaler (or the current period length) into
- * account to decide whether we have to write the duty cycle or the new
- * prescaler first. If the period length is decreasing we have to
- * write the duty cycle first.
- */
- write_duty_cycle_first = pwm->state.period > state->period;
- if (write_duty_cycle_first) {
- ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
- if (ret)
- return ret;
- }
- ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CTRL, ctrl);
- if (ret)
- return ret;
- if (!write_duty_cycle_first) {
- ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
- if (ret)
- return ret;
- }
- return 0;
- }
- static const struct pwm_ops sl28cpld_pwm_ops = {
- .apply = sl28cpld_pwm_apply,
- .get_state = sl28cpld_pwm_get_state,
- .owner = THIS_MODULE,
- };
- static int sl28cpld_pwm_probe(struct platform_device *pdev)
- {
- struct sl28cpld_pwm *priv;
- struct pwm_chip *chip;
- int ret;
- if (!pdev->dev.parent) {
- dev_err(&pdev->dev, "no parent device\n");
- return -ENODEV;
- }
- priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
- if (!priv)
- return -ENOMEM;
- priv->regmap = dev_get_regmap(pdev->dev.parent, NULL);
- if (!priv->regmap) {
- dev_err(&pdev->dev, "could not get parent regmap\n");
- return -ENODEV;
- }
- ret = device_property_read_u32(&pdev->dev, "reg", &priv->offset);
- if (ret) {
- dev_err(&pdev->dev, "no 'reg' property found (%pe)\n",
- ERR_PTR(ret));
- return -EINVAL;
- }
- /* Initialize the pwm_chip structure */
- chip = &priv->pwm_chip;
- chip->dev = &pdev->dev;
- chip->ops = &sl28cpld_pwm_ops;
- chip->npwm = 1;
- ret = devm_pwmchip_add(&pdev->dev, &priv->pwm_chip);
- if (ret) {
- dev_err(&pdev->dev, "failed to add PWM chip (%pe)",
- ERR_PTR(ret));
- return ret;
- }
- return 0;
- }
- static const struct of_device_id sl28cpld_pwm_of_match[] = {
- { .compatible = "kontron,sl28cpld-pwm" },
- {}
- };
- MODULE_DEVICE_TABLE(of, sl28cpld_pwm_of_match);
- static struct platform_driver sl28cpld_pwm_driver = {
- .probe = sl28cpld_pwm_probe,
- .driver = {
- .name = "sl28cpld-pwm",
- .of_match_table = sl28cpld_pwm_of_match,
- },
- };
- module_platform_driver(sl28cpld_pwm_driver);
- MODULE_DESCRIPTION("sl28cpld PWM Driver");
- MODULE_AUTHOR("Michael Walle <[email protected]>");
- MODULE_LICENSE("GPL");
|