
remove IP from code Change-Id: If119a4af213b10aadb9f1344e50b0342e72405c2 CRs-Fixed: 3073864
3043 lines
84 KiB
C
3043 lines
84 KiB
C
/*
|
||
* Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
|
||
* Copyright (c) 2021 Qualcomm Innovation Center, Inc. All rights reserved.
|
||
*
|
||
* Permission to use, copy, modify, and/or distribute this software for
|
||
* any purpose with or without fee is hereby granted, provided that the
|
||
* above copyright notice and this permission notice appear in all
|
||
* copies.
|
||
*
|
||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
|
||
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
|
||
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
|
||
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
|
||
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
|
||
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
|
||
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
|
||
* PERFORMANCE OF THIS SOFTWARE.
|
||
*/
|
||
|
||
#ifndef _HAL_API_H_
|
||
#define _HAL_API_H_
|
||
|
||
#include "qdf_types.h"
|
||
#include "qdf_util.h"
|
||
#include "qdf_atomic.h"
|
||
#include "hal_internal.h"
|
||
#include "hif.h"
|
||
#include "hif_io32.h"
|
||
#include "qdf_platform.h"
|
||
|
||
#ifdef DUMP_REO_QUEUE_INFO_IN_DDR
|
||
#include "hal_hw_headers.h"
|
||
#endif
|
||
|
||
/* Ring index for WBM2SW2 release ring */
|
||
#define HAL_IPA_TX_COMP_RING_IDX 2
|
||
|
||
/* calculate the register address offset from bar0 of shadow register x */
|
||
#if defined(QCA_WIFI_QCA6390) || defined(QCA_WIFI_QCA6490) || \
|
||
defined(QCA_WIFI_KIWI)
|
||
#define SHADOW_REGISTER_START_ADDRESS_OFFSET 0x000008FC
|
||
#define SHADOW_REGISTER_END_ADDRESS_OFFSET \
|
||
((SHADOW_REGISTER_START_ADDRESS_OFFSET) + (4 * (MAX_SHADOW_REGISTERS)))
|
||
#define SHADOW_REGISTER(x) ((SHADOW_REGISTER_START_ADDRESS_OFFSET) + (4 * (x)))
|
||
#elif defined(QCA_WIFI_QCA6290) || defined(QCA_WIFI_QCN9000)
|
||
#define SHADOW_REGISTER_START_ADDRESS_OFFSET 0x00003024
|
||
#define SHADOW_REGISTER_END_ADDRESS_OFFSET \
|
||
((SHADOW_REGISTER_START_ADDRESS_OFFSET) + (4 * (MAX_SHADOW_REGISTERS)))
|
||
#define SHADOW_REGISTER(x) ((SHADOW_REGISTER_START_ADDRESS_OFFSET) + (4 * (x)))
|
||
#elif defined(QCA_WIFI_QCA6750)
|
||
#define SHADOW_REGISTER_START_ADDRESS_OFFSET 0x00000504
|
||
#define SHADOW_REGISTER_END_ADDRESS_OFFSET \
|
||
((SHADOW_REGISTER_START_ADDRESS_OFFSET) + (4 * (MAX_SHADOW_REGISTERS)))
|
||
#define SHADOW_REGISTER(x) ((SHADOW_REGISTER_START_ADDRESS_OFFSET) + (4 * (x)))
|
||
#else
|
||
#define SHADOW_REGISTER(x) 0
|
||
#endif /* QCA_WIFI_QCA6390 || QCA_WIFI_QCA6490 || QCA_WIFI_QCA6750 */
|
||
|
||
/*
|
||
* BAR + 4K is always accessible, any access outside this
|
||
* space requires force wake procedure.
|
||
* OFFSET = 4K - 32 bytes = 0xFE0
|
||
*/
|
||
#define MAPPED_REF_OFF 0xFE0
|
||
|
||
#define HAL_OFFSET(block, field) block ## _ ## field ## _OFFSET
|
||
|
||
#ifdef ENABLE_VERBOSE_DEBUG
|
||
static inline void
|
||
hal_set_verbose_debug(bool flag)
|
||
{
|
||
is_hal_verbose_debug_enabled = flag;
|
||
}
|
||
#endif
|
||
|
||
#ifdef ENABLE_HAL_SOC_STATS
|
||
#define HAL_STATS_INC(_handle, _field, _delta) \
|
||
{ \
|
||
if (likely(_handle)) \
|
||
_handle->stats._field += _delta; \
|
||
}
|
||
#else
|
||
#define HAL_STATS_INC(_handle, _field, _delta)
|
||
#endif
|
||
|
||
#ifdef ENABLE_HAL_REG_WR_HISTORY
|
||
#define HAL_REG_WRITE_FAIL_HIST_ADD(hal_soc, offset, wr_val, rd_val) \
|
||
hal_reg_wr_fail_history_add(hal_soc, offset, wr_val, rd_val)
|
||
|
||
void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
|
||
uint32_t offset,
|
||
uint32_t wr_val,
|
||
uint32_t rd_val);
|
||
|
||
static inline int hal_history_get_next_index(qdf_atomic_t *table_index,
|
||
int array_size)
|
||
{
|
||
int record_index = qdf_atomic_inc_return(table_index);
|
||
|
||
return record_index & (array_size - 1);
|
||
}
|
||
#else
|
||
#define HAL_REG_WRITE_FAIL_HIST_ADD(hal_soc, offset, wr_val, rd_val) \
|
||
hal_err("write failed at reg offset 0x%x, write 0x%x read 0x%x\n", \
|
||
offset, \
|
||
wr_val, \
|
||
rd_val)
|
||
#endif
|
||
|
||
/**
|
||
* hal_reg_write_result_check() - check register writing result
|
||
* @hal_soc: HAL soc handle
|
||
* @offset: register offset to read
|
||
* @exp_val: the expected value of register
|
||
* @ret_confirm: result confirm flag
|
||
*
|
||
* Return: none
|
||
*/
|
||
static inline void hal_reg_write_result_check(struct hal_soc *hal_soc,
|
||
uint32_t offset,
|
||
uint32_t exp_val)
|
||
{
|
||
uint32_t value;
|
||
|
||
value = qdf_ioread32(hal_soc->dev_base_addr + offset);
|
||
if (exp_val != value) {
|
||
HAL_REG_WRITE_FAIL_HIST_ADD(hal_soc, offset, exp_val, value);
|
||
HAL_STATS_INC(hal_soc, reg_write_fail, 1);
|
||
}
|
||
}
|
||
|
||
#if !defined(QCA_WIFI_QCA6390) && !defined(QCA_WIFI_QCA6490) && \
|
||
!defined(QCA_WIFI_KIWI)
|
||
static inline void hal_lock_reg_access(struct hal_soc *soc,
|
||
unsigned long *flags)
|
||
{
|
||
qdf_spin_lock_irqsave(&soc->register_access_lock);
|
||
}
|
||
|
||
static inline void hal_unlock_reg_access(struct hal_soc *soc,
|
||
unsigned long *flags)
|
||
{
|
||
qdf_spin_unlock_irqrestore(&soc->register_access_lock);
|
||
}
|
||
#else
|
||
static inline void hal_lock_reg_access(struct hal_soc *soc,
|
||
unsigned long *flags)
|
||
{
|
||
pld_lock_reg_window(soc->qdf_dev->dev, flags);
|
||
}
|
||
|
||
static inline void hal_unlock_reg_access(struct hal_soc *soc,
|
||
unsigned long *flags)
|
||
{
|
||
pld_unlock_reg_window(soc->qdf_dev->dev, flags);
|
||
}
|
||
#endif
|
||
|
||
#ifdef PCIE_REG_WINDOW_LOCAL_NO_CACHE
|
||
/**
|
||
* hal_select_window_confirm() - write remap window register and
|
||
check writing result
|
||
*
|
||
*/
|
||
static inline void hal_select_window_confirm(struct hal_soc *hal_soc,
|
||
uint32_t offset)
|
||
{
|
||
uint32_t window = (offset >> WINDOW_SHIFT) & WINDOW_VALUE_MASK;
|
||
|
||
qdf_iowrite32(hal_soc->dev_base_addr + WINDOW_REG_ADDRESS,
|
||
WINDOW_ENABLE_BIT | window);
|
||
hal_soc->register_window = window;
|
||
|
||
hal_reg_write_result_check(hal_soc, WINDOW_REG_ADDRESS,
|
||
WINDOW_ENABLE_BIT | window);
|
||
}
|
||
#else
|
||
static inline void hal_select_window_confirm(struct hal_soc *hal_soc,
|
||
uint32_t offset)
|
||
{
|
||
uint32_t window = (offset >> WINDOW_SHIFT) & WINDOW_VALUE_MASK;
|
||
|
||
if (window != hal_soc->register_window) {
|
||
qdf_iowrite32(hal_soc->dev_base_addr + WINDOW_REG_ADDRESS,
|
||
WINDOW_ENABLE_BIT | window);
|
||
hal_soc->register_window = window;
|
||
|
||
hal_reg_write_result_check(
|
||
hal_soc,
|
||
WINDOW_REG_ADDRESS,
|
||
WINDOW_ENABLE_BIT | window);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
static inline qdf_iomem_t hal_get_window_address(struct hal_soc *hal_soc,
|
||
qdf_iomem_t addr)
|
||
{
|
||
return hal_soc->ops->hal_get_window_address(hal_soc, addr);
|
||
}
|
||
|
||
static inline void hal_tx_init_cmd_credit_ring(hal_soc_handle_t hal_soc_hdl,
|
||
hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
|
||
|
||
return hal_soc->ops->hal_tx_init_cmd_credit_ring(hal_soc_hdl,
|
||
hal_ring_hdl);
|
||
}
|
||
|
||
/**
|
||
* hal_write32_mb() - Access registers to update configuration
|
||
* @hal_soc: hal soc handle
|
||
* @offset: offset address from the BAR
|
||
* @value: value to write
|
||
*
|
||
* Return: None
|
||
*
|
||
* Description: Register address space is split below:
|
||
* SHADOW REGION UNWINDOWED REGION WINDOWED REGION
|
||
* |--------------------|-------------------|------------------|
|
||
* BAR NO FORCE WAKE BAR+4K FORCE WAKE BAR+512K FORCE WAKE
|
||
*
|
||
* 1. Any access to the shadow region, doesn't need force wake
|
||
* and windowing logic to access.
|
||
* 2. Any access beyond BAR + 4K:
|
||
* If init_phase enabled, no force wake is needed and access
|
||
* should be based on windowed or unwindowed access.
|
||
* If init_phase disabled, force wake is needed and access
|
||
* should be based on windowed or unwindowed access.
|
||
*
|
||
* note1: WINDOW_RANGE_MASK = (1 << WINDOW_SHIFT) -1
|
||
* note2: 1 << WINDOW_SHIFT = MAX_UNWINDOWED_ADDRESS
|
||
* note3: WINDOW_VALUE_MASK = big enough that trying to write past
|
||
* that window would be a bug
|
||
*/
|
||
#if !defined(QCA_WIFI_QCA6390) && !defined(QCA_WIFI_QCA6490) && \
|
||
!defined(QCA_WIFI_QCA6750) && !defined(QCA_WIFI_KIWI)
|
||
static inline void hal_write32_mb(struct hal_soc *hal_soc, uint32_t offset,
|
||
uint32_t value)
|
||
{
|
||
unsigned long flags;
|
||
qdf_iomem_t new_addr;
|
||
|
||
if (!hal_soc->use_register_windowing ||
|
||
offset < MAX_UNWINDOWED_ADDRESS) {
|
||
qdf_iowrite32(hal_soc->dev_base_addr + offset, value);
|
||
} else if (hal_soc->static_window_map) {
|
||
new_addr = hal_get_window_address(hal_soc,
|
||
hal_soc->dev_base_addr + offset);
|
||
qdf_iowrite32(new_addr, value);
|
||
} else {
|
||
hal_lock_reg_access(hal_soc, &flags);
|
||
hal_select_window_confirm(hal_soc, offset);
|
||
qdf_iowrite32(hal_soc->dev_base_addr + WINDOW_START +
|
||
(offset & WINDOW_RANGE_MASK), value);
|
||
hal_unlock_reg_access(hal_soc, &flags);
|
||
}
|
||
}
|
||
|
||
#define hal_write32_mb_confirm(_hal_soc, _offset, _value) \
|
||
hal_write32_mb(_hal_soc, _offset, _value)
|
||
|
||
#define hal_write32_mb_cmem(_hal_soc, _offset, _value)
|
||
#else
|
||
static inline void hal_write32_mb(struct hal_soc *hal_soc, uint32_t offset,
|
||
uint32_t value)
|
||
{
|
||
int ret;
|
||
unsigned long flags;
|
||
qdf_iomem_t new_addr;
|
||
|
||
if (!TARGET_ACCESS_ALLOWED(HIF_GET_SOFTC(
|
||
hal_soc->hif_handle))) {
|
||
hal_err_rl("target access is not allowed");
|
||
return;
|
||
}
|
||
|
||
/* Region < BAR + 4K can be directly accessed */
|
||
if (offset < MAPPED_REF_OFF) {
|
||
qdf_iowrite32(hal_soc->dev_base_addr + offset, value);
|
||
return;
|
||
}
|
||
|
||
/* Region greater than BAR + 4K */
|
||
if (!hal_soc->init_phase) {
|
||
ret = hif_force_wake_request(hal_soc->hif_handle);
|
||
if (ret) {
|
||
hal_err_rl("Wake up request failed");
|
||
qdf_check_state_before_panic(__func__, __LINE__);
|
||
return;
|
||
}
|
||
}
|
||
|
||
if (!hal_soc->use_register_windowing ||
|
||
offset < MAX_UNWINDOWED_ADDRESS) {
|
||
qdf_iowrite32(hal_soc->dev_base_addr + offset, value);
|
||
} else if (hal_soc->static_window_map) {
|
||
new_addr = hal_get_window_address(
|
||
hal_soc,
|
||
hal_soc->dev_base_addr + offset);
|
||
qdf_iowrite32(new_addr, value);
|
||
} else {
|
||
hal_lock_reg_access(hal_soc, &flags);
|
||
hal_select_window_confirm(hal_soc, offset);
|
||
qdf_iowrite32(hal_soc->dev_base_addr + WINDOW_START +
|
||
(offset & WINDOW_RANGE_MASK), value);
|
||
hal_unlock_reg_access(hal_soc, &flags);
|
||
}
|
||
|
||
if (!hal_soc->init_phase) {
|
||
ret = hif_force_wake_release(hal_soc->hif_handle);
|
||
if (ret) {
|
||
hal_err("Wake up release failed");
|
||
qdf_check_state_before_panic(__func__, __LINE__);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
/**
|
||
* hal_write32_mb_confirm() - write register and check wirting result
|
||
*
|
||
*/
|
||
static inline void hal_write32_mb_confirm(struct hal_soc *hal_soc,
|
||
uint32_t offset,
|
||
uint32_t value)
|
||
{
|
||
int ret;
|
||
unsigned long flags;
|
||
qdf_iomem_t new_addr;
|
||
|
||
if (!TARGET_ACCESS_ALLOWED(HIF_GET_SOFTC(
|
||
hal_soc->hif_handle))) {
|
||
hal_err_rl("target access is not allowed");
|
||
return;
|
||
}
|
||
|
||
/* Region < BAR + 4K can be directly accessed */
|
||
if (offset < MAPPED_REF_OFF) {
|
||
qdf_iowrite32(hal_soc->dev_base_addr + offset, value);
|
||
return;
|
||
}
|
||
|
||
/* Region greater than BAR + 4K */
|
||
if (!hal_soc->init_phase) {
|
||
ret = hif_force_wake_request(hal_soc->hif_handle);
|
||
if (ret) {
|
||
hal_err("Wake up request failed");
|
||
qdf_check_state_before_panic(__func__, __LINE__);
|
||
return;
|
||
}
|
||
}
|
||
|
||
if (!hal_soc->use_register_windowing ||
|
||
offset < MAX_UNWINDOWED_ADDRESS) {
|
||
qdf_iowrite32(hal_soc->dev_base_addr + offset, value);
|
||
hal_reg_write_result_check(hal_soc, offset,
|
||
value);
|
||
} else if (hal_soc->static_window_map) {
|
||
new_addr = hal_get_window_address(
|
||
hal_soc,
|
||
hal_soc->dev_base_addr + offset);
|
||
qdf_iowrite32(new_addr, value);
|
||
hal_reg_write_result_check(hal_soc,
|
||
new_addr - hal_soc->dev_base_addr,
|
||
value);
|
||
} else {
|
||
hal_lock_reg_access(hal_soc, &flags);
|
||
hal_select_window_confirm(hal_soc, offset);
|
||
qdf_iowrite32(hal_soc->dev_base_addr + WINDOW_START +
|
||
(offset & WINDOW_RANGE_MASK), value);
|
||
|
||
hal_reg_write_result_check(
|
||
hal_soc,
|
||
WINDOW_START + (offset & WINDOW_RANGE_MASK),
|
||
value);
|
||
hal_unlock_reg_access(hal_soc, &flags);
|
||
}
|
||
|
||
if (!hal_soc->init_phase) {
|
||
ret = hif_force_wake_release(hal_soc->hif_handle);
|
||
if (ret) {
|
||
hal_err("Wake up release failed");
|
||
qdf_check_state_before_panic(__func__, __LINE__);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
static inline void hal_write32_mb_cmem(struct hal_soc *hal_soc, uint32_t offset,
|
||
uint32_t value)
|
||
{
|
||
unsigned long flags;
|
||
qdf_iomem_t new_addr;
|
||
|
||
if (!TARGET_ACCESS_ALLOWED(HIF_GET_SOFTC(
|
||
hal_soc->hif_handle))) {
|
||
hal_err_rl("%s: target access is not allowed", __func__);
|
||
return;
|
||
}
|
||
|
||
if (!hal_soc->use_register_windowing ||
|
||
offset < MAX_UNWINDOWED_ADDRESS) {
|
||
qdf_iowrite32(hal_soc->dev_base_addr + offset, value);
|
||
} else if (hal_soc->static_window_map) {
|
||
new_addr = hal_get_window_address(
|
||
hal_soc,
|
||
hal_soc->dev_base_addr + offset);
|
||
qdf_iowrite32(new_addr, value);
|
||
} else {
|
||
hal_lock_reg_access(hal_soc, &flags);
|
||
hal_select_window_confirm(hal_soc, offset);
|
||
qdf_iowrite32(hal_soc->dev_base_addr + WINDOW_START +
|
||
(offset & WINDOW_RANGE_MASK), value);
|
||
hal_unlock_reg_access(hal_soc, &flags);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/**
|
||
* hal_write_address_32_mb - write a value to a register
|
||
*
|
||
*/
|
||
static inline
|
||
void hal_write_address_32_mb(struct hal_soc *hal_soc,
|
||
qdf_iomem_t addr, uint32_t value, bool wr_confirm)
|
||
{
|
||
uint32_t offset;
|
||
|
||
if (!hal_soc->use_register_windowing)
|
||
return qdf_iowrite32(addr, value);
|
||
|
||
offset = addr - hal_soc->dev_base_addr;
|
||
|
||
if (qdf_unlikely(wr_confirm))
|
||
hal_write32_mb_confirm(hal_soc, offset, value);
|
||
else
|
||
hal_write32_mb(hal_soc, offset, value);
|
||
}
|
||
|
||
|
||
#ifdef DP_HAL_MULTIWINDOW_DIRECT_ACCESS
|
||
static inline void hal_srng_write_address_32_mb(struct hal_soc *hal_soc,
|
||
struct hal_srng *srng,
|
||
void __iomem *addr,
|
||
uint32_t value)
|
||
{
|
||
qdf_iowrite32(addr, value);
|
||
}
|
||
#elif defined(FEATURE_HAL_DELAYED_REG_WRITE)
|
||
static inline void hal_srng_write_address_32_mb(struct hal_soc *hal_soc,
|
||
struct hal_srng *srng,
|
||
void __iomem *addr,
|
||
uint32_t value)
|
||
{
|
||
hal_delayed_reg_write(hal_soc, srng, addr, value);
|
||
}
|
||
#else
|
||
static inline void hal_srng_write_address_32_mb(struct hal_soc *hal_soc,
|
||
struct hal_srng *srng,
|
||
void __iomem *addr,
|
||
uint32_t value)
|
||
{
|
||
hal_write_address_32_mb(hal_soc, addr, value, false);
|
||
}
|
||
#endif
|
||
|
||
#if !defined(QCA_WIFI_QCA6390) && !defined(QCA_WIFI_QCA6490) && \
|
||
!defined(QCA_WIFI_QCA6750) && !defined(QCA_WIFI_KIWI)
|
||
/**
|
||
* hal_read32_mb() - Access registers to read configuration
|
||
* @hal_soc: hal soc handle
|
||
* @offset: offset address from the BAR
|
||
* @value: value to write
|
||
*
|
||
* Description: Register address space is split below:
|
||
* SHADOW REGION UNWINDOWED REGION WINDOWED REGION
|
||
* |--------------------|-------------------|------------------|
|
||
* BAR NO FORCE WAKE BAR+4K FORCE WAKE BAR+512K FORCE WAKE
|
||
*
|
||
* 1. Any access to the shadow region, doesn't need force wake
|
||
* and windowing logic to access.
|
||
* 2. Any access beyond BAR + 4K:
|
||
* If init_phase enabled, no force wake is needed and access
|
||
* should be based on windowed or unwindowed access.
|
||
* If init_phase disabled, force wake is needed and access
|
||
* should be based on windowed or unwindowed access.
|
||
*
|
||
* Return: < 0 for failure/>= 0 for success
|
||
*/
|
||
static inline uint32_t hal_read32_mb(struct hal_soc *hal_soc, uint32_t offset)
|
||
{
|
||
uint32_t ret;
|
||
unsigned long flags;
|
||
qdf_iomem_t new_addr;
|
||
|
||
if (!hal_soc->use_register_windowing ||
|
||
offset < MAX_UNWINDOWED_ADDRESS) {
|
||
return qdf_ioread32(hal_soc->dev_base_addr + offset);
|
||
} else if (hal_soc->static_window_map) {
|
||
new_addr = hal_get_window_address(hal_soc, hal_soc->dev_base_addr + offset);
|
||
return qdf_ioread32(new_addr);
|
||
}
|
||
|
||
hal_lock_reg_access(hal_soc, &flags);
|
||
hal_select_window_confirm(hal_soc, offset);
|
||
ret = qdf_ioread32(hal_soc->dev_base_addr + WINDOW_START +
|
||
(offset & WINDOW_RANGE_MASK));
|
||
hal_unlock_reg_access(hal_soc, &flags);
|
||
|
||
return ret;
|
||
}
|
||
|
||
#define hal_read32_mb_cmem(_hal_soc, _offset)
|
||
#else
|
||
static
|
||
uint32_t hal_read32_mb(struct hal_soc *hal_soc, uint32_t offset)
|
||
{
|
||
uint32_t ret;
|
||
unsigned long flags;
|
||
qdf_iomem_t new_addr;
|
||
|
||
if (!TARGET_ACCESS_ALLOWED(HIF_GET_SOFTC(
|
||
hal_soc->hif_handle))) {
|
||
hal_err_rl("target access is not allowed");
|
||
return 0;
|
||
}
|
||
|
||
/* Region < BAR + 4K can be directly accessed */
|
||
if (offset < MAPPED_REF_OFF)
|
||
return qdf_ioread32(hal_soc->dev_base_addr + offset);
|
||
|
||
if ((!hal_soc->init_phase) &&
|
||
hif_force_wake_request(hal_soc->hif_handle)) {
|
||
hal_err("Wake up request failed");
|
||
qdf_check_state_before_panic(__func__, __LINE__);
|
||
return 0;
|
||
}
|
||
|
||
if (!hal_soc->use_register_windowing ||
|
||
offset < MAX_UNWINDOWED_ADDRESS) {
|
||
ret = qdf_ioread32(hal_soc->dev_base_addr + offset);
|
||
} else if (hal_soc->static_window_map) {
|
||
new_addr = hal_get_window_address(
|
||
hal_soc,
|
||
hal_soc->dev_base_addr + offset);
|
||
ret = qdf_ioread32(new_addr);
|
||
} else {
|
||
hal_lock_reg_access(hal_soc, &flags);
|
||
hal_select_window_confirm(hal_soc, offset);
|
||
ret = qdf_ioread32(hal_soc->dev_base_addr + WINDOW_START +
|
||
(offset & WINDOW_RANGE_MASK));
|
||
hal_unlock_reg_access(hal_soc, &flags);
|
||
}
|
||
|
||
if ((!hal_soc->init_phase) &&
|
||
hif_force_wake_release(hal_soc->hif_handle)) {
|
||
hal_err("Wake up release failed");
|
||
qdf_check_state_before_panic(__func__, __LINE__);
|
||
return 0;
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
static inline
|
||
uint32_t hal_read32_mb_cmem(struct hal_soc *hal_soc, uint32_t offset)
|
||
{
|
||
uint32_t ret;
|
||
unsigned long flags;
|
||
qdf_iomem_t new_addr;
|
||
|
||
if (!TARGET_ACCESS_ALLOWED(HIF_GET_SOFTC(
|
||
hal_soc->hif_handle))) {
|
||
hal_err_rl("%s: target access is not allowed", __func__);
|
||
return 0;
|
||
}
|
||
|
||
if (!hal_soc->use_register_windowing ||
|
||
offset < MAX_UNWINDOWED_ADDRESS) {
|
||
ret = qdf_ioread32(hal_soc->dev_base_addr + offset);
|
||
} else if (hal_soc->static_window_map) {
|
||
new_addr = hal_get_window_address(
|
||
hal_soc,
|
||
hal_soc->dev_base_addr + offset);
|
||
ret = qdf_ioread32(new_addr);
|
||
} else {
|
||
hal_lock_reg_access(hal_soc, &flags);
|
||
hal_select_window_confirm(hal_soc, offset);
|
||
ret = qdf_ioread32(hal_soc->dev_base_addr + WINDOW_START +
|
||
(offset & WINDOW_RANGE_MASK));
|
||
hal_unlock_reg_access(hal_soc, &flags);
|
||
}
|
||
return ret;
|
||
}
|
||
#endif
|
||
|
||
/* Max times allowed for register writing retry */
|
||
#define HAL_REG_WRITE_RETRY_MAX 5
|
||
/* Delay milliseconds for each time retry */
|
||
#define HAL_REG_WRITE_RETRY_DELAY 1
|
||
|
||
#ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
|
||
/* To check shadow config index range between 0..31 */
|
||
#define HAL_SHADOW_REG_INDEX_LOW 32
|
||
/* To check shadow config index range between 32..39 */
|
||
#define HAL_SHADOW_REG_INDEX_HIGH 40
|
||
/* Dirty bit reg offsets corresponding to shadow config index */
|
||
#define HAL_SHADOW_REG_DIRTY_BIT_DATA_LOW_OFFSET 0x30C8
|
||
#define HAL_SHADOW_REG_DIRTY_BIT_DATA_HIGH_OFFSET 0x30C4
|
||
/* PCIE_PCIE_TOP base addr offset */
|
||
#define HAL_PCIE_PCIE_TOP_WRAPPER 0x01E00000
|
||
/* Max retry attempts to read the dirty bit reg */
|
||
#ifdef HAL_CONFIG_SLUB_DEBUG_ON
|
||
#define HAL_SHADOW_DIRTY_BIT_POLL_MAX 10000
|
||
#else
|
||
#define HAL_SHADOW_DIRTY_BIT_POLL_MAX 2000
|
||
#endif
|
||
/* Delay in usecs for polling dirty bit reg */
|
||
#define HAL_SHADOW_DIRTY_BIT_POLL_DELAY 5
|
||
|
||
/**
|
||
* hal_poll_dirty_bit_reg() - Poll dirty register bit to confirm
|
||
* write was successful
|
||
* @hal_soc: hal soc handle
|
||
* @shadow_config_index: index of shadow reg used to confirm
|
||
* write
|
||
*
|
||
* Return: QDF_STATUS_SUCCESS on success
|
||
*/
|
||
static inline QDF_STATUS hal_poll_dirty_bit_reg(struct hal_soc *hal,
|
||
int shadow_config_index)
|
||
{
|
||
uint32_t read_value = 0;
|
||
int retry_cnt = 0;
|
||
uint32_t reg_offset = 0;
|
||
|
||
if (shadow_config_index > 0 &&
|
||
shadow_config_index < HAL_SHADOW_REG_INDEX_LOW) {
|
||
reg_offset =
|
||
HAL_SHADOW_REG_DIRTY_BIT_DATA_LOW_OFFSET;
|
||
} else if (shadow_config_index >= HAL_SHADOW_REG_INDEX_LOW &&
|
||
shadow_config_index < HAL_SHADOW_REG_INDEX_HIGH) {
|
||
reg_offset =
|
||
HAL_SHADOW_REG_DIRTY_BIT_DATA_HIGH_OFFSET;
|
||
} else {
|
||
hal_err("Invalid shadow_config_index = %d",
|
||
shadow_config_index);
|
||
return QDF_STATUS_E_INVAL;
|
||
}
|
||
while (retry_cnt < HAL_SHADOW_DIRTY_BIT_POLL_MAX) {
|
||
read_value = hal_read32_mb(
|
||
hal, HAL_PCIE_PCIE_TOP_WRAPPER + reg_offset);
|
||
/* Check if dirty bit corresponding to shadow_index is set */
|
||
if (read_value & BIT(shadow_config_index)) {
|
||
/* Dirty reg bit not reset */
|
||
qdf_udelay(HAL_SHADOW_DIRTY_BIT_POLL_DELAY);
|
||
retry_cnt++;
|
||
} else {
|
||
hal_debug("Shadow write: offset 0x%x read val 0x%x",
|
||
reg_offset, read_value);
|
||
return QDF_STATUS_SUCCESS;
|
||
}
|
||
}
|
||
return QDF_STATUS_E_TIMEOUT;
|
||
}
|
||
|
||
/**
|
||
* hal_write32_mb_shadow_confirm() - write to shadow reg and
|
||
* poll dirty register bit to confirm write
|
||
* @hal_soc: hal soc handle
|
||
* @reg_offset: target reg offset address from BAR
|
||
* @value: value to write
|
||
*
|
||
* Return: QDF_STATUS_SUCCESS on success
|
||
*/
|
||
static inline QDF_STATUS hal_write32_mb_shadow_confirm(
|
||
struct hal_soc *hal,
|
||
uint32_t reg_offset,
|
||
uint32_t value)
|
||
{
|
||
int i;
|
||
QDF_STATUS ret;
|
||
uint32_t shadow_reg_offset;
|
||
int shadow_config_index;
|
||
bool is_reg_offset_present = false;
|
||
|
||
for (i = 0; i < MAX_GENERIC_SHADOW_REG; i++) {
|
||
/* Found the shadow config for the reg_offset */
|
||
struct shadow_reg_config *hal_shadow_reg_list =
|
||
&hal->list_shadow_reg_config[i];
|
||
if (hal_shadow_reg_list->target_register ==
|
||
reg_offset) {
|
||
shadow_config_index =
|
||
hal_shadow_reg_list->shadow_config_index;
|
||
shadow_reg_offset =
|
||
SHADOW_REGISTER(shadow_config_index);
|
||
hal_write32_mb_confirm(
|
||
hal, shadow_reg_offset, value);
|
||
is_reg_offset_present = true;
|
||
break;
|
||
}
|
||
ret = QDF_STATUS_E_FAILURE;
|
||
}
|
||
if (is_reg_offset_present) {
|
||
ret = hal_poll_dirty_bit_reg(hal, shadow_config_index);
|
||
hal_info("Shadow write:reg 0x%x val 0x%x ret %d",
|
||
reg_offset, value, ret);
|
||
if (QDF_IS_STATUS_ERROR(ret)) {
|
||
HAL_STATS_INC(hal, shadow_reg_write_fail, 1);
|
||
return ret;
|
||
}
|
||
HAL_STATS_INC(hal, shadow_reg_write_succ, 1);
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
/**
|
||
* hal_write32_mb_confirm_retry() - write register with confirming and
|
||
do retry/recovery if writing failed
|
||
* @hal_soc: hal soc handle
|
||
* @offset: offset address from the BAR
|
||
* @value: value to write
|
||
* @recovery: is recovery needed or not.
|
||
*
|
||
* Write the register value with confirming and read it back, if
|
||
* read back value is not as expected, do retry for writing, if
|
||
* retry hit max times allowed but still fail, check if recovery
|
||
* needed.
|
||
*
|
||
* Return: None
|
||
*/
|
||
static inline void hal_write32_mb_confirm_retry(struct hal_soc *hal_soc,
|
||
uint32_t offset,
|
||
uint32_t value,
|
||
bool recovery)
|
||
{
|
||
QDF_STATUS ret;
|
||
|
||
ret = hal_write32_mb_shadow_confirm(hal_soc, offset, value);
|
||
if (QDF_IS_STATUS_ERROR(ret) && recovery)
|
||
qdf_trigger_self_recovery(NULL, QDF_HAL_REG_WRITE_FAILURE);
|
||
}
|
||
#else /* GENERIC_SHADOW_REGISTER_ACCESS_ENABLE */
|
||
|
||
static inline void hal_write32_mb_confirm_retry(struct hal_soc *hal_soc,
|
||
uint32_t offset,
|
||
uint32_t value,
|
||
bool recovery)
|
||
{
|
||
uint8_t retry_cnt = 0;
|
||
uint32_t read_value;
|
||
|
||
while (retry_cnt <= HAL_REG_WRITE_RETRY_MAX) {
|
||
hal_write32_mb_confirm(hal_soc, offset, value);
|
||
read_value = hal_read32_mb(hal_soc, offset);
|
||
if (qdf_likely(read_value == value))
|
||
break;
|
||
|
||
/* write failed, do retry */
|
||
hal_warn("Retry reg offset 0x%x, value 0x%x, read value 0x%x",
|
||
offset, value, read_value);
|
||
qdf_mdelay(HAL_REG_WRITE_RETRY_DELAY);
|
||
retry_cnt++;
|
||
}
|
||
|
||
if (retry_cnt > HAL_REG_WRITE_RETRY_MAX && recovery)
|
||
qdf_trigger_self_recovery(NULL, QDF_HAL_REG_WRITE_FAILURE);
|
||
}
|
||
#endif /* GENERIC_SHADOW_REGISTER_ACCESS_ENABLE */
|
||
|
||
#if defined(FEATURE_HAL_DELAYED_REG_WRITE)
|
||
/**
|
||
* hal_dump_reg_write_srng_stats() - dump SRNG reg write stats
|
||
* @hal_soc: HAL soc handle
|
||
*
|
||
* Return: none
|
||
*/
|
||
void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl);
|
||
|
||
/**
|
||
* hal_dump_reg_write_stats() - dump reg write stats
|
||
* @hal_soc: HAL soc handle
|
||
*
|
||
* Return: none
|
||
*/
|
||
void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl);
|
||
|
||
/**
|
||
* hal_get_reg_write_pending_work() - get the number of entries
|
||
* pending in the workqueue to be processed.
|
||
* @hal_soc: HAL soc handle
|
||
*
|
||
* Returns: the number of entries pending to be processed
|
||
*/
|
||
int hal_get_reg_write_pending_work(void *hal_soc);
|
||
|
||
#else
|
||
static inline void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
|
||
{
|
||
}
|
||
|
||
static inline void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
|
||
{
|
||
}
|
||
|
||
static inline int hal_get_reg_write_pending_work(void *hal_soc)
|
||
{
|
||
return 0;
|
||
}
|
||
#endif
|
||
|
||
/**
|
||
* hal_read_address_32_mb() - Read 32-bit value from the register
|
||
* @soc: soc handle
|
||
* @addr: register address to read
|
||
*
|
||
* Return: 32-bit value
|
||
*/
|
||
static inline
|
||
uint32_t hal_read_address_32_mb(struct hal_soc *soc,
|
||
qdf_iomem_t addr)
|
||
{
|
||
uint32_t offset;
|
||
uint32_t ret;
|
||
|
||
if (!soc->use_register_windowing)
|
||
return qdf_ioread32(addr);
|
||
|
||
offset = addr - soc->dev_base_addr;
|
||
ret = hal_read32_mb(soc, offset);
|
||
return ret;
|
||
}
|
||
|
||
/**
|
||
* hal_attach - Initialize HAL layer
|
||
* @hif_handle: Opaque HIF handle
|
||
* @qdf_dev: QDF device
|
||
*
|
||
* Return: Opaque HAL SOC handle
|
||
* NULL on failure (if given ring is not available)
|
||
*
|
||
* This function should be called as part of HIF initialization (for accessing
|
||
* copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
|
||
*/
|
||
void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev);
|
||
|
||
/**
|
||
* hal_detach - Detach HAL layer
|
||
* @hal_soc: HAL SOC handle
|
||
*
|
||
* This function should be called as part of HIF detach
|
||
*
|
||
*/
|
||
extern void hal_detach(void *hal_soc);
|
||
|
||
#define HAL_SRNG_LMAC_RING 0x80000000
|
||
/* SRNG flags passed in hal_srng_params.flags */
|
||
#define HAL_SRNG_MSI_SWAP 0x00000008
|
||
#define HAL_SRNG_RING_PTR_SWAP 0x00000010
|
||
#define HAL_SRNG_DATA_TLV_SWAP 0x00000020
|
||
#define HAL_SRNG_LOW_THRES_INTR_ENABLE 0x00010000
|
||
#define HAL_SRNG_MSI_INTR 0x00020000
|
||
#define HAL_SRNG_CACHED_DESC 0x00040000
|
||
|
||
#if defined(QCA_WIFI_QCA6490) || defined(QCA_WIFI_KIWI)
|
||
#define HAL_SRNG_PREFETCH_TIMER 1
|
||
#else
|
||
#define HAL_SRNG_PREFETCH_TIMER 0
|
||
#endif
|
||
|
||
#define PN_SIZE_24 0
|
||
#define PN_SIZE_48 1
|
||
#define PN_SIZE_128 2
|
||
|
||
#ifdef FORCE_WAKE
|
||
/**
|
||
* hal_set_init_phase() - Indicate initialization of
|
||
* datapath rings
|
||
* @soc: hal_soc handle
|
||
* @init_phase: flag to indicate datapath rings
|
||
* initialization status
|
||
*
|
||
* Return: None
|
||
*/
|
||
void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase);
|
||
#else
|
||
static inline
|
||
void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
|
||
{
|
||
}
|
||
#endif /* FORCE_WAKE */
|
||
|
||
/**
|
||
* hal_srng_get_entrysize - Returns size of ring entry in bytes. Should be
|
||
* used by callers for calculating the size of memory to be allocated before
|
||
* calling hal_srng_setup to setup the ring
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @ring_type: one of the types from hal_ring_type
|
||
*
|
||
*/
|
||
extern uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type);
|
||
|
||
/**
|
||
* hal_srng_max_entries - Returns maximum possible number of ring entries
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @ring_type: one of the types from hal_ring_type
|
||
*
|
||
* Return: Maximum number of entries for the given ring_type
|
||
*/
|
||
uint32_t hal_srng_max_entries(void *hal_soc, int ring_type);
|
||
|
||
void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
|
||
uint32_t low_threshold);
|
||
|
||
/**
|
||
* hal_srng_dump - Dump ring status
|
||
* @srng: hal srng pointer
|
||
*/
|
||
void hal_srng_dump(struct hal_srng *srng);
|
||
|
||
/**
|
||
* hal_srng_get_dir - Returns the direction of the ring
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @ring_type: one of the types from hal_ring_type
|
||
*
|
||
* Return: Ring direction
|
||
*/
|
||
enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type);
|
||
|
||
/* HAL memory information */
|
||
struct hal_mem_info {
|
||
/* dev base virutal addr */
|
||
void *dev_base_addr;
|
||
/* dev base physical addr */
|
||
void *dev_base_paddr;
|
||
/* dev base ce virutal addr - applicable only for qca5018 */
|
||
/* In qca5018 CE register are outside wcss block */
|
||
/* using a separate address space to access CE registers */
|
||
void *dev_base_addr_ce;
|
||
/* dev base ce physical addr */
|
||
void *dev_base_paddr_ce;
|
||
/* Remote virtual pointer memory for HW/FW updates */
|
||
void *shadow_rdptr_mem_vaddr;
|
||
/* Remote physical pointer memory for HW/FW updates */
|
||
void *shadow_rdptr_mem_paddr;
|
||
/* Shared memory for ring pointer updates from host to FW */
|
||
void *shadow_wrptr_mem_vaddr;
|
||
/* Shared physical memory for ring pointer updates from host to FW */
|
||
void *shadow_wrptr_mem_paddr;
|
||
/* lmac srng start id */
|
||
uint8_t lmac_srng_start_id;
|
||
};
|
||
|
||
/* SRNG parameters to be passed to hal_srng_setup */
|
||
struct hal_srng_params {
|
||
/* Physical base address of the ring */
|
||
qdf_dma_addr_t ring_base_paddr;
|
||
/* Virtual base address of the ring */
|
||
void *ring_base_vaddr;
|
||
/* Number of entries in ring */
|
||
uint32_t num_entries;
|
||
/* max transfer length */
|
||
uint16_t max_buffer_length;
|
||
/* MSI Address */
|
||
qdf_dma_addr_t msi_addr;
|
||
/* MSI data */
|
||
uint32_t msi_data;
|
||
/* Interrupt timer threshold – in micro seconds */
|
||
uint32_t intr_timer_thres_us;
|
||
/* Interrupt batch counter threshold – in number of ring entries */
|
||
uint32_t intr_batch_cntr_thres_entries;
|
||
/* Low threshold – in number of ring entries
|
||
* (valid for src rings only)
|
||
*/
|
||
uint32_t low_threshold;
|
||
/* Misc flags */
|
||
uint32_t flags;
|
||
/* Unique ring id */
|
||
uint8_t ring_id;
|
||
/* Source or Destination ring */
|
||
enum hal_srng_dir ring_dir;
|
||
/* Size of ring entry */
|
||
uint32_t entry_size;
|
||
/* hw register base address */
|
||
void *hwreg_base[MAX_SRNG_REG_GROUPS];
|
||
/* prefetch timer config - in micro seconds */
|
||
uint32_t prefetch_timer;
|
||
#ifdef WLAN_FEATURE_NEAR_FULL_IRQ
|
||
/* Near full IRQ support flag */
|
||
uint32_t nf_irq_support;
|
||
/* MSI2 Address */
|
||
qdf_dma_addr_t msi2_addr;
|
||
/* MSI2 data */
|
||
uint32_t msi2_data;
|
||
/* Critical threshold */
|
||
uint16_t crit_thresh;
|
||
/* High threshold */
|
||
uint16_t high_thresh;
|
||
/* Safe threshold */
|
||
uint16_t safe_thresh;
|
||
#endif
|
||
};
|
||
|
||
/* hal_construct_srng_shadow_regs() - initialize the shadow
|
||
* registers for srngs
|
||
* @hal_soc: hal handle
|
||
*
|
||
* Return: QDF_STATUS_OK on success
|
||
*/
|
||
QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc);
|
||
|
||
/* hal_set_one_shadow_config() - add a config for the specified ring
|
||
* @hal_soc: hal handle
|
||
* @ring_type: ring type
|
||
* @ring_num: ring num
|
||
*
|
||
* The ring type and ring num uniquely specify the ring. After this call,
|
||
* the hp/tp will be added as the next entry int the shadow register
|
||
* configuration table. The hal code will use the shadow register address
|
||
* in place of the hp/tp address.
|
||
*
|
||
* This function is exposed, so that the CE module can skip configuring shadow
|
||
* registers for unused ring and rings assigned to the firmware.
|
||
*
|
||
* Return: QDF_STATUS_OK on success
|
||
*/
|
||
QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type,
|
||
int ring_num);
|
||
/**
|
||
* hal_get_shadow_config() - retrieve the config table
|
||
* @hal_soc: hal handle
|
||
* @shadow_config: will point to the table after
|
||
* @num_shadow_registers_configured: will contain the number of valid entries
|
||
*/
|
||
extern void hal_get_shadow_config(void *hal_soc,
|
||
struct pld_shadow_reg_v2_cfg **shadow_config,
|
||
int *num_shadow_registers_configured);
|
||
|
||
#ifdef WLAN_FEATURE_NEAR_FULL_IRQ
|
||
/**
|
||
* hal_srng_is_near_full_irq_supported() - Check if srng supports near full irq
|
||
* @hal_soc: HAL SoC handle [To be validated by caller]
|
||
* @ring_type: srng type
|
||
* @ring_num: The index of the srng (of the same type)
|
||
*
|
||
* Return: true, if srng support near full irq trigger
|
||
* false, if the srng does not support near full irq support.
|
||
*/
|
||
bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
|
||
int ring_type, int ring_num);
|
||
#else
|
||
static inline
|
||
bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
|
||
int ring_type, int ring_num)
|
||
{
|
||
return false;
|
||
}
|
||
#endif
|
||
|
||
/**
|
||
* hal_srng_setup - Initialize HW SRNG ring.
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @ring_type: one of the types from hal_ring_type
|
||
* @ring_num: Ring number if there are multiple rings of
|
||
* same type (staring from 0)
|
||
* @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
|
||
* @ring_params: SRNG ring params in hal_srng_params structure.
|
||
|
||
* Callers are expected to allocate contiguous ring memory of size
|
||
* 'num_entries * entry_size' bytes and pass the physical and virtual base
|
||
* addresses through 'ring_base_paddr' and 'ring_base_vaddr' in hal_srng_params
|
||
* structure. Ring base address should be 8 byte aligned and size of each ring
|
||
* entry should be queried using the API hal_srng_get_entrysize
|
||
*
|
||
* Return: Opaque pointer to ring on success
|
||
* NULL on failure (if given ring is not available)
|
||
*/
|
||
extern void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
|
||
int mac_id, struct hal_srng_params *ring_params);
|
||
|
||
/* Remapping ids of REO rings */
|
||
#define REO_REMAP_TCL 0
|
||
#define REO_REMAP_SW1 1
|
||
#define REO_REMAP_SW2 2
|
||
#define REO_REMAP_SW3 3
|
||
#define REO_REMAP_SW4 4
|
||
#define REO_REMAP_RELEASE 5
|
||
#define REO_REMAP_FW 6
|
||
/*
|
||
* In Beryllium: 4 bits REO destination ring value is defined as: 0: TCL
|
||
* 1:SW1 2:SW2 3:SW3 4:SW4 5:Release 6:FW(WIFI) 7:SW5
|
||
* 8:SW6 9:SW7 10:SW8 11: NOT_USED.
|
||
*
|
||
*/
|
||
#define REO_REMAP_SW5 7
|
||
#define REO_REMAP_SW6 8
|
||
#define REO_REMAP_SW7 9
|
||
#define REO_REMAP_SW8 10
|
||
|
||
/*
|
||
* Macro to access HWIO_REO_R0_ERROR_DESTINATION_RING_CTRL_IX_0
|
||
* to map destination to rings
|
||
*/
|
||
#define HAL_REO_ERR_REMAP_IX0(_VALUE, _OFFSET) \
|
||
((_VALUE) << \
|
||
(HWIO_REO_R0_ERROR_DESTINATION_MAPPING_IX_0_ERROR_ ## \
|
||
DESTINATION_RING_ ## _OFFSET ## _SHFT))
|
||
|
||
/*
|
||
* Macro to access HWIO_REO_R0_ERROR_DESTINATION_RING_CTRL_IX_1
|
||
* to map destination to rings
|
||
*/
|
||
#define HAL_REO_ERR_REMAP_IX1(_VALUE, _OFFSET) \
|
||
((_VALUE) << \
|
||
(HWIO_REO_R0_ERROR_DESTINATION_MAPPING_IX_1_ERROR_ ## \
|
||
DESTINATION_RING_ ## _OFFSET ## _SHFT))
|
||
|
||
/*
|
||
* Macro to access HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0
|
||
* to map destination to rings
|
||
*/
|
||
#define HAL_REO_REMAP_IX0(_VALUE, _OFFSET) \
|
||
((_VALUE) << \
|
||
(HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_DEST_RING_MAPPING_ ## \
|
||
_OFFSET ## _SHFT))
|
||
|
||
/*
|
||
* Macro to access HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1
|
||
* to map destination to rings
|
||
*/
|
||
#define HAL_REO_REMAP_IX2(_VALUE, _OFFSET) \
|
||
((_VALUE) << \
|
||
(HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_DEST_RING_MAPPING_ ## \
|
||
_OFFSET ## _SHFT))
|
||
|
||
/*
|
||
* Macro to access HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3
|
||
* to map destination to rings
|
||
*/
|
||
#define HAL_REO_REMAP_IX3(_VALUE, _OFFSET) \
|
||
((_VALUE) << \
|
||
(HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_DEST_RING_MAPPING_ ## \
|
||
_OFFSET ## _SHFT))
|
||
|
||
/**
|
||
* hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
|
||
* @hal_soc_hdl: HAL SOC handle
|
||
* @read: boolean value to indicate if read or write
|
||
* @ix0: pointer to store IX0 reg value
|
||
* @ix1: pointer to store IX1 reg value
|
||
* @ix2: pointer to store IX2 reg value
|
||
* @ix3: pointer to store IX3 reg value
|
||
*/
|
||
void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
|
||
uint32_t *ix0, uint32_t *ix1,
|
||
uint32_t *ix2, uint32_t *ix3);
|
||
|
||
/**
|
||
* hal_srng_set_hp_paddr_confirm() - Set physical address to dest SRNG head
|
||
* pointer and confirm that write went through by reading back the value
|
||
* @sring: sring pointer
|
||
* @paddr: physical address
|
||
*
|
||
* Return: None
|
||
*/
|
||
extern void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *sring,
|
||
uint64_t paddr);
|
||
|
||
/**
|
||
* hal_srng_dst_init_hp() - Initilaize head pointer with cached head pointer
|
||
* @hal_soc: hal_soc handle
|
||
* @srng: sring pointer
|
||
* @vaddr: virtual address
|
||
*/
|
||
void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
|
||
struct hal_srng *srng,
|
||
uint32_t *vaddr);
|
||
|
||
/**
|
||
* hal_srng_cleanup - Deinitialize HW SRNG ring.
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_srng: Opaque HAL SRNG pointer
|
||
*/
|
||
void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl);
|
||
|
||
static inline bool hal_srng_initialized(hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
|
||
return !!srng->initialized;
|
||
}
|
||
|
||
/**
|
||
* hal_srng_dst_peek - Check if there are any entries in the ring (peek)
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Destination ring pointer
|
||
*
|
||
* Caller takes responsibility for any locking needs.
|
||
*
|
||
* Return: Opaque pointer for next ring entry; NULL on failire
|
||
*/
|
||
static inline
|
||
void *hal_srng_dst_peek(hal_soc_handle_t hal_soc_hdl,
|
||
hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
|
||
if (srng->u.dst_ring.tp != srng->u.dst_ring.cached_hp)
|
||
return (void *)(&srng->ring_base_vaddr[srng->u.dst_ring.tp]);
|
||
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/**
|
||
* hal_mem_dma_cache_sync - Cache sync the specified virtual address Range
|
||
* @hal_soc: HAL soc handle
|
||
* @desc: desc start address
|
||
* @entry_size: size of memory to sync
|
||
*
|
||
* Return: void
|
||
*/
|
||
#if defined(__LINUX_MIPS32_ARCH__) || defined(__LINUX_MIPS64_ARCH__)
|
||
static inline void hal_mem_dma_cache_sync(struct hal_soc *soc, uint32_t *desc,
|
||
uint32_t entry_size)
|
||
{
|
||
qdf_nbuf_dma_inv_range((void *)desc, (void *)(desc + entry_size));
|
||
}
|
||
#else
|
||
static inline void hal_mem_dma_cache_sync(struct hal_soc *soc, uint32_t *desc,
|
||
uint32_t entry_size)
|
||
{
|
||
qdf_mem_dma_cache_sync(soc->qdf_dev, qdf_mem_virt_to_phys(desc),
|
||
QDF_DMA_FROM_DEVICE,
|
||
(entry_size * sizeof(uint32_t)));
|
||
}
|
||
#endif
|
||
|
||
/**
|
||
* hal_srng_access_start_unlocked - Start ring access (unlocked). Should use
|
||
* hal_srng_access_start if locked access is required
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Ring pointer (Source or Destination ring)
|
||
*
|
||
* This API doesn't implement any byte-order conversion on reading hp/tp.
|
||
* So, Use API only for those srngs for which the target writes hp/tp values to
|
||
* the DDR in the Host order.
|
||
*
|
||
* Return: 0 on success; error on failire
|
||
*/
|
||
static inline int
|
||
hal_srng_access_start_unlocked(hal_soc_handle_t hal_soc_hdl,
|
||
hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
struct hal_soc *soc = (struct hal_soc *)hal_soc_hdl;
|
||
uint32_t *desc;
|
||
|
||
if (srng->ring_dir == HAL_SRNG_SRC_RING)
|
||
srng->u.src_ring.cached_tp =
|
||
*(volatile uint32_t *)(srng->u.src_ring.tp_addr);
|
||
else {
|
||
srng->u.dst_ring.cached_hp =
|
||
*(volatile uint32_t *)(srng->u.dst_ring.hp_addr);
|
||
|
||
if (srng->flags & HAL_SRNG_CACHED_DESC) {
|
||
desc = hal_srng_dst_peek(hal_soc_hdl, hal_ring_hdl);
|
||
if (qdf_likely(desc)) {
|
||
hal_mem_dma_cache_sync(soc, desc,
|
||
srng->entry_size);
|
||
qdf_prefetch(desc);
|
||
}
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* hal_le_srng_access_start_unlocked_in_cpu_order - Start ring access
|
||
* (unlocked) with endianness correction.
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Ring pointer (Source or Destination ring)
|
||
*
|
||
* This API provides same functionally as hal_srng_access_start_unlocked()
|
||
* except that it converts the little-endian formatted hp/tp values to
|
||
* Host order on reading them. So, this API should only be used for those srngs
|
||
* for which the target always writes hp/tp values in little-endian order
|
||
* regardless of Host order.
|
||
*
|
||
* Also, this API doesn't take the lock. For locked access, use
|
||
* hal_srng_access_start/hal_le_srng_access_start_in_cpu_order.
|
||
*
|
||
* Return: 0 on success; error on failire
|
||
*/
|
||
static inline int
|
||
hal_le_srng_access_start_unlocked_in_cpu_order(
|
||
hal_soc_handle_t hal_soc_hdl,
|
||
hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
struct hal_soc *soc = (struct hal_soc *)hal_soc_hdl;
|
||
uint32_t *desc;
|
||
|
||
if (srng->ring_dir == HAL_SRNG_SRC_RING)
|
||
srng->u.src_ring.cached_tp =
|
||
qdf_le32_to_cpu(*(volatile uint32_t *)
|
||
(srng->u.src_ring.tp_addr));
|
||
else {
|
||
srng->u.dst_ring.cached_hp =
|
||
qdf_le32_to_cpu(*(volatile uint32_t *)
|
||
(srng->u.dst_ring.hp_addr));
|
||
|
||
if (srng->flags & HAL_SRNG_CACHED_DESC) {
|
||
desc = hal_srng_dst_peek(hal_soc_hdl, hal_ring_hdl);
|
||
if (qdf_likely(desc)) {
|
||
hal_mem_dma_cache_sync(soc, desc,
|
||
srng->entry_size);
|
||
qdf_prefetch(desc);
|
||
}
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* hal_srng_try_access_start - Try to start (locked) ring access
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Ring pointer (Source or Destination ring)
|
||
*
|
||
* Return: 0 on success; error on failure
|
||
*/
|
||
static inline int hal_srng_try_access_start(hal_soc_handle_t hal_soc_hdl,
|
||
hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
|
||
if (qdf_unlikely(!hal_ring_hdl)) {
|
||
qdf_print("Error: Invalid hal_ring\n");
|
||
return -EINVAL;
|
||
}
|
||
|
||
if (!SRNG_TRY_LOCK(&(srng->lock)))
|
||
return -EINVAL;
|
||
|
||
return hal_srng_access_start_unlocked(hal_soc_hdl, hal_ring_hdl);
|
||
}
|
||
|
||
/**
|
||
* hal_srng_access_start - Start (locked) ring access
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Ring pointer (Source or Destination ring)
|
||
*
|
||
* This API doesn't implement any byte-order conversion on reading hp/tp.
|
||
* So, Use API only for those srngs for which the target writes hp/tp values to
|
||
* the DDR in the Host order.
|
||
*
|
||
* Return: 0 on success; error on failire
|
||
*/
|
||
static inline int hal_srng_access_start(hal_soc_handle_t hal_soc_hdl,
|
||
hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
|
||
if (qdf_unlikely(!hal_ring_hdl)) {
|
||
qdf_print("Error: Invalid hal_ring\n");
|
||
return -EINVAL;
|
||
}
|
||
|
||
SRNG_LOCK(&(srng->lock));
|
||
|
||
return hal_srng_access_start_unlocked(hal_soc_hdl, hal_ring_hdl);
|
||
}
|
||
|
||
/**
|
||
* hal_le_srng_access_start_in_cpu_order - Start (locked) ring access with
|
||
* endianness correction
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Ring pointer (Source or Destination ring)
|
||
*
|
||
* This API provides same functionally as hal_srng_access_start()
|
||
* except that it converts the little-endian formatted hp/tp values to
|
||
* Host order on reading them. So, this API should only be used for those srngs
|
||
* for which the target always writes hp/tp values in little-endian order
|
||
* regardless of Host order.
|
||
*
|
||
* Return: 0 on success; error on failire
|
||
*/
|
||
static inline int
|
||
hal_le_srng_access_start_in_cpu_order(
|
||
hal_soc_handle_t hal_soc_hdl,
|
||
hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
|
||
if (qdf_unlikely(!hal_ring_hdl)) {
|
||
qdf_print("Error: Invalid hal_ring\n");
|
||
return -EINVAL;
|
||
}
|
||
|
||
SRNG_LOCK(&(srng->lock));
|
||
|
||
return hal_le_srng_access_start_unlocked_in_cpu_order(
|
||
hal_soc_hdl, hal_ring_hdl);
|
||
}
|
||
|
||
/**
|
||
* hal_srng_dst_get_next - Get next entry from a destination ring
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Destination ring pointer
|
||
*
|
||
* Return: Opaque pointer for next ring entry; NULL on failure
|
||
*/
|
||
static inline
|
||
void *hal_srng_dst_get_next(void *hal_soc,
|
||
hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
uint32_t *desc;
|
||
|
||
if (srng->u.dst_ring.tp == srng->u.dst_ring.cached_hp)
|
||
return NULL;
|
||
|
||
desc = &srng->ring_base_vaddr[srng->u.dst_ring.tp];
|
||
/* TODO: Using % is expensive, but we have to do this since
|
||
* size of some SRNG rings is not power of 2 (due to descriptor
|
||
* sizes). Need to create separate API for rings used
|
||
* per-packet, with sizes power of 2 (TCL2SW, REO2SW,
|
||
* SW2RXDMA and CE rings)
|
||
*/
|
||
srng->u.dst_ring.tp = (srng->u.dst_ring.tp + srng->entry_size);
|
||
if (srng->u.dst_ring.tp == srng->ring_size)
|
||
srng->u.dst_ring.tp = 0;
|
||
|
||
if (srng->flags & HAL_SRNG_CACHED_DESC) {
|
||
struct hal_soc *soc = (struct hal_soc *)hal_soc;
|
||
uint32_t *desc_next;
|
||
uint32_t tp;
|
||
|
||
tp = srng->u.dst_ring.tp;
|
||
desc_next = &srng->ring_base_vaddr[srng->u.dst_ring.tp];
|
||
hal_mem_dma_cache_sync(soc, desc_next, srng->entry_size);
|
||
qdf_prefetch(desc_next);
|
||
}
|
||
|
||
return (void *)desc;
|
||
}
|
||
|
||
/**
|
||
* hal_srng_dst_get_next_cached - Get cached next entry
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Destination ring pointer
|
||
*
|
||
* Get next entry from a destination ring and move cached tail pointer
|
||
*
|
||
* Return: Opaque pointer for next ring entry; NULL on failure
|
||
*/
|
||
static inline
|
||
void *hal_srng_dst_get_next_cached(void *hal_soc,
|
||
hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
uint32_t *desc;
|
||
uint32_t *desc_next;
|
||
|
||
if (srng->u.dst_ring.tp == srng->u.dst_ring.cached_hp)
|
||
return NULL;
|
||
|
||
desc = &srng->ring_base_vaddr[srng->u.dst_ring.tp];
|
||
/* TODO: Using % is expensive, but we have to do this since
|
||
* size of some SRNG rings is not power of 2 (due to descriptor
|
||
* sizes). Need to create separate API for rings used
|
||
* per-packet, with sizes power of 2 (TCL2SW, REO2SW,
|
||
* SW2RXDMA and CE rings)
|
||
*/
|
||
srng->u.dst_ring.tp = (srng->u.dst_ring.tp + srng->entry_size);
|
||
if (srng->u.dst_ring.tp == srng->ring_size)
|
||
srng->u.dst_ring.tp = 0;
|
||
|
||
desc_next = &srng->ring_base_vaddr[srng->u.dst_ring.tp];
|
||
qdf_prefetch(desc_next);
|
||
return (void *)desc;
|
||
}
|
||
|
||
/**
|
||
* hal_srng_dst_dec_tp - decrement the TP of the Dst ring by one entry
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Destination ring pointer
|
||
*
|
||
* reset the tail pointer in the destination ring by one entry
|
||
*
|
||
*/
|
||
static inline
|
||
void hal_srng_dst_dec_tp(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
|
||
if (qdf_unlikely(!srng->u.dst_ring.tp))
|
||
srng->u.dst_ring.tp = (srng->ring_size - srng->entry_size);
|
||
else
|
||
srng->u.dst_ring.tp -= srng->entry_size;
|
||
}
|
||
|
||
static inline int hal_srng_lock(hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
|
||
if (qdf_unlikely(!hal_ring_hdl)) {
|
||
qdf_print("error: invalid hal_ring\n");
|
||
return -EINVAL;
|
||
}
|
||
|
||
SRNG_LOCK(&(srng->lock));
|
||
return 0;
|
||
}
|
||
|
||
static inline int hal_srng_unlock(hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
|
||
if (qdf_unlikely(!hal_ring_hdl)) {
|
||
qdf_print("error: invalid hal_ring\n");
|
||
return -EINVAL;
|
||
}
|
||
|
||
SRNG_UNLOCK(&(srng->lock));
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* hal_srng_dst_get_next_hp - Get next entry from a destination ring and move
|
||
* cached head pointer
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Destination ring pointer
|
||
*
|
||
* Return: Opaque pointer for next ring entry; NULL on failire
|
||
*/
|
||
static inline void *
|
||
hal_srng_dst_get_next_hp(hal_soc_handle_t hal_soc_hdl,
|
||
hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
uint32_t *desc;
|
||
/* TODO: Using % is expensive, but we have to do this since
|
||
* size of some SRNG rings is not power of 2 (due to descriptor
|
||
* sizes). Need to create separate API for rings used
|
||
* per-packet, with sizes power of 2 (TCL2SW, REO2SW,
|
||
* SW2RXDMA and CE rings)
|
||
*/
|
||
uint32_t next_hp = (srng->u.dst_ring.cached_hp + srng->entry_size) %
|
||
srng->ring_size;
|
||
|
||
if (next_hp != srng->u.dst_ring.tp) {
|
||
desc = &(srng->ring_base_vaddr[srng->u.dst_ring.cached_hp]);
|
||
srng->u.dst_ring.cached_hp = next_hp;
|
||
return (void *)desc;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/**
|
||
* hal_srng_dst_peek_sync - Check if there are any entries in the ring (peek)
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Destination ring pointer
|
||
*
|
||
* Sync cached head pointer with HW.
|
||
* Caller takes responsibility for any locking needs.
|
||
*
|
||
* Return: Opaque pointer for next ring entry; NULL on failire
|
||
*/
|
||
static inline
|
||
void *hal_srng_dst_peek_sync(hal_soc_handle_t hal_soc_hdl,
|
||
hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
|
||
srng->u.dst_ring.cached_hp =
|
||
*(volatile uint32_t *)(srng->u.dst_ring.hp_addr);
|
||
|
||
if (srng->u.dst_ring.tp != srng->u.dst_ring.cached_hp)
|
||
return (void *)(&(srng->ring_base_vaddr[srng->u.dst_ring.tp]));
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/**
|
||
* hal_srng_dst_peek_sync_locked - Peek for any entries in the ring
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Destination ring pointer
|
||
*
|
||
* Sync cached head pointer with HW.
|
||
* This function takes up SRNG_LOCK. Should not be called with SRNG lock held.
|
||
*
|
||
* Return: Opaque pointer for next ring entry; NULL on failire
|
||
*/
|
||
static inline
|
||
void *hal_srng_dst_peek_sync_locked(hal_soc_handle_t hal_soc_hdl,
|
||
hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
void *ring_desc_ptr = NULL;
|
||
|
||
if (qdf_unlikely(!hal_ring_hdl)) {
|
||
qdf_print("Error: Invalid hal_ring\n");
|
||
return NULL;
|
||
}
|
||
|
||
SRNG_LOCK(&srng->lock);
|
||
|
||
ring_desc_ptr = hal_srng_dst_peek_sync(hal_soc_hdl, hal_ring_hdl);
|
||
|
||
SRNG_UNLOCK(&srng->lock);
|
||
|
||
return ring_desc_ptr;
|
||
}
|
||
|
||
#define hal_srng_dst_num_valid_nolock(hal_soc, hal_ring_hdl, sync_hw_ptr) \
|
||
hal_srng_dst_num_valid(hal_soc, hal_ring_hdl, sync_hw_ptr)
|
||
|
||
/**
|
||
* hal_srng_dst_num_valid - Returns number of valid entries (to be processed
|
||
* by SW) in destination ring
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Destination ring pointer
|
||
* @sync_hw_ptr: Sync cached head pointer with HW
|
||
*
|
||
*/
|
||
static inline
|
||
uint32_t hal_srng_dst_num_valid(void *hal_soc,
|
||
hal_ring_handle_t hal_ring_hdl,
|
||
int sync_hw_ptr)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
uint32_t hp;
|
||
uint32_t tp = srng->u.dst_ring.tp;
|
||
|
||
if (sync_hw_ptr) {
|
||
hp = *(volatile uint32_t *)(srng->u.dst_ring.hp_addr);
|
||
srng->u.dst_ring.cached_hp = hp;
|
||
} else {
|
||
hp = srng->u.dst_ring.cached_hp;
|
||
}
|
||
|
||
if (hp >= tp)
|
||
return (hp - tp) / srng->entry_size;
|
||
|
||
return (srng->ring_size - tp + hp) / srng->entry_size;
|
||
}
|
||
|
||
/**
|
||
* hal_srng_dst_inv_cached_descs - API to invalidate descriptors in batch mode
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Destination ring pointer
|
||
* @entry_count: call invalidate API if valid entries available
|
||
*
|
||
* Invalidates a set of cached descriptors starting from TP to cached_HP
|
||
*
|
||
* Return - None
|
||
*/
|
||
static inline void hal_srng_dst_inv_cached_descs(void *hal_soc,
|
||
hal_ring_handle_t hal_ring_hdl,
|
||
uint32_t entry_count)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
uint32_t *first_desc;
|
||
uint32_t *last_desc;
|
||
|
||
/*
|
||
* If SRNG does not have cached descriptors this
|
||
* API call should be a no op
|
||
*/
|
||
if (!(srng->flags & HAL_SRNG_CACHED_DESC))
|
||
return;
|
||
|
||
if (!entry_count)
|
||
return;
|
||
|
||
first_desc = &srng->ring_base_vaddr[srng->u.dst_ring.tp];
|
||
last_desc = &srng->ring_base_vaddr[srng->u.dst_ring.cached_hp];
|
||
|
||
if (last_desc > (uint32_t *)first_desc)
|
||
/* invalidate from tp to cached_hp */
|
||
qdf_nbuf_dma_inv_range((void *)first_desc, (void *)(last_desc));
|
||
else {
|
||
/* invalidate from tp to end of the ring */
|
||
qdf_nbuf_dma_inv_range((void *)first_desc,
|
||
(void *)srng->ring_vaddr_end);
|
||
|
||
/* invalidate from start of ring to cached_hp */
|
||
qdf_nbuf_dma_inv_range((void *)srng->ring_base_vaddr,
|
||
(void *)last_desc);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* hal_srng_dst_num_valid_locked - Returns num valid entries to be processed
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Destination ring pointer
|
||
* @sync_hw_ptr: Sync cached head pointer with HW
|
||
*
|
||
* Returns number of valid entries to be processed by the host driver. The
|
||
* function takes up SRNG lock.
|
||
*
|
||
* Return: Number of valid destination entries
|
||
*/
|
||
static inline uint32_t
|
||
hal_srng_dst_num_valid_locked(hal_soc_handle_t hal_soc,
|
||
hal_ring_handle_t hal_ring_hdl,
|
||
int sync_hw_ptr)
|
||
{
|
||
uint32_t num_valid;
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
|
||
SRNG_LOCK(&srng->lock);
|
||
num_valid = hal_srng_dst_num_valid(hal_soc, hal_ring_hdl, sync_hw_ptr);
|
||
SRNG_UNLOCK(&srng->lock);
|
||
|
||
return num_valid;
|
||
}
|
||
|
||
/**
|
||
* hal_srng_sync_cachedhp - sync cachehp pointer from hw hp
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Destination ring pointer
|
||
*
|
||
*/
|
||
static inline
|
||
void hal_srng_sync_cachedhp(void *hal_soc,
|
||
hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
uint32_t hp;
|
||
|
||
hp = *(volatile uint32_t *)(srng->u.dst_ring.hp_addr);
|
||
srng->u.dst_ring.cached_hp = hp;
|
||
}
|
||
|
||
/**
|
||
* hal_srng_src_reap_next - Reap next entry from a source ring and move reap
|
||
* pointer. This can be used to release any buffers associated with completed
|
||
* ring entries. Note that this should not be used for posting new descriptor
|
||
* entries. Posting of new entries should be done only using
|
||
* hal_srng_src_get_next_reaped when this function is used for reaping.
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Source ring pointer
|
||
*
|
||
* Return: Opaque pointer for next ring entry; NULL on failire
|
||
*/
|
||
static inline void *
|
||
hal_srng_src_reap_next(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
uint32_t *desc;
|
||
|
||
/* TODO: Using % is expensive, but we have to do this since
|
||
* size of some SRNG rings is not power of 2 (due to descriptor
|
||
* sizes). Need to create separate API for rings used
|
||
* per-packet, with sizes power of 2 (TCL2SW, REO2SW,
|
||
* SW2RXDMA and CE rings)
|
||
*/
|
||
uint32_t next_reap_hp = (srng->u.src_ring.reap_hp + srng->entry_size) %
|
||
srng->ring_size;
|
||
|
||
if (next_reap_hp != srng->u.src_ring.cached_tp) {
|
||
desc = &(srng->ring_base_vaddr[next_reap_hp]);
|
||
srng->u.src_ring.reap_hp = next_reap_hp;
|
||
return (void *)desc;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/**
|
||
* hal_srng_src_get_next_reaped - Get next entry from a source ring that is
|
||
* already reaped using hal_srng_src_reap_next, for posting new entries to
|
||
* the ring
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Source ring pointer
|
||
*
|
||
* Return: Opaque pointer for next (reaped) source ring entry; NULL on failire
|
||
*/
|
||
static inline void *
|
||
hal_srng_src_get_next_reaped(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
uint32_t *desc;
|
||
|
||
if (srng->u.src_ring.hp != srng->u.src_ring.reap_hp) {
|
||
desc = &(srng->ring_base_vaddr[srng->u.src_ring.hp]);
|
||
srng->u.src_ring.hp = (srng->u.src_ring.hp + srng->entry_size) %
|
||
srng->ring_size;
|
||
|
||
return (void *)desc;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/**
|
||
* hal_srng_src_pending_reap_next - Reap next entry from a source ring and
|
||
* move reap pointer. This API is used in detach path to release any buffers
|
||
* associated with ring entries which are pending reap.
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Source ring pointer
|
||
*
|
||
* Return: Opaque pointer for next ring entry; NULL on failire
|
||
*/
|
||
static inline void *
|
||
hal_srng_src_pending_reap_next(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
uint32_t *desc;
|
||
|
||
uint32_t next_reap_hp = (srng->u.src_ring.reap_hp + srng->entry_size) %
|
||
srng->ring_size;
|
||
|
||
if (next_reap_hp != srng->u.src_ring.hp) {
|
||
desc = &(srng->ring_base_vaddr[next_reap_hp]);
|
||
srng->u.src_ring.reap_hp = next_reap_hp;
|
||
return (void *)desc;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/**
|
||
* hal_srng_src_done_val -
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Source ring pointer
|
||
*
|
||
* Return: Opaque pointer for next ring entry; NULL on failire
|
||
*/
|
||
static inline uint32_t
|
||
hal_srng_src_done_val(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
/* TODO: Using % is expensive, but we have to do this since
|
||
* size of some SRNG rings is not power of 2 (due to descriptor
|
||
* sizes). Need to create separate API for rings used
|
||
* per-packet, with sizes power of 2 (TCL2SW, REO2SW,
|
||
* SW2RXDMA and CE rings)
|
||
*/
|
||
uint32_t next_reap_hp = (srng->u.src_ring.reap_hp + srng->entry_size) %
|
||
srng->ring_size;
|
||
|
||
if (next_reap_hp == srng->u.src_ring.cached_tp)
|
||
return 0;
|
||
|
||
if (srng->u.src_ring.cached_tp > next_reap_hp)
|
||
return (srng->u.src_ring.cached_tp - next_reap_hp) /
|
||
srng->entry_size;
|
||
else
|
||
return ((srng->ring_size - next_reap_hp) +
|
||
srng->u.src_ring.cached_tp) / srng->entry_size;
|
||
}
|
||
|
||
/**
|
||
* hal_get_entrysize_from_srng() - Retrieve ring entry size
|
||
* @hal_ring_hdl: Source ring pointer
|
||
*
|
||
* srng->entry_size value is in 4 byte dwords so left shifting
|
||
* this by 2 to return the value of entry_size in bytes.
|
||
*
|
||
* Return: uint8_t
|
||
*/
|
||
static inline
|
||
uint8_t hal_get_entrysize_from_srng(hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
|
||
return srng->entry_size << 2;
|
||
}
|
||
|
||
/**
|
||
* hal_get_sw_hptp - Get SW head and tail pointer location for any ring
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Source ring pointer
|
||
* @tailp: Tail Pointer
|
||
* @headp: Head Pointer
|
||
*
|
||
* Return: Update tail pointer and head pointer in arguments.
|
||
*/
|
||
static inline
|
||
void hal_get_sw_hptp(void *hal_soc, hal_ring_handle_t hal_ring_hdl,
|
||
uint32_t *tailp, uint32_t *headp)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
|
||
if (srng->ring_dir == HAL_SRNG_SRC_RING) {
|
||
*headp = srng->u.src_ring.hp;
|
||
*tailp = *srng->u.src_ring.tp_addr;
|
||
} else {
|
||
*tailp = srng->u.dst_ring.tp;
|
||
*headp = *srng->u.dst_ring.hp_addr;
|
||
}
|
||
}
|
||
|
||
#if defined(CLEAR_SW2TCL_CONSUMED_DESC)
|
||
/**
|
||
* hal_srng_src_get_next_consumed - Get the next desc if consumed by HW
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Source ring pointer
|
||
*
|
||
* Return: pointer to descriptor if consumed by HW, else NULL
|
||
*/
|
||
static inline
|
||
void *hal_srng_src_get_next_consumed(void *hal_soc,
|
||
hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
uint32_t *desc = NULL;
|
||
/* TODO: Using % is expensive, but we have to do this since
|
||
* size of some SRNG rings is not power of 2 (due to descriptor
|
||
* sizes). Need to create separate API for rings used
|
||
* per-packet, with sizes power of 2 (TCL2SW, REO2SW,
|
||
* SW2RXDMA and CE rings)
|
||
*/
|
||
uint32_t next_entry = (srng->last_desc_cleared + srng->entry_size) %
|
||
srng->ring_size;
|
||
|
||
if (next_entry != srng->u.src_ring.cached_tp) {
|
||
desc = &srng->ring_base_vaddr[next_entry];
|
||
srng->last_desc_cleared = next_entry;
|
||
}
|
||
|
||
return desc;
|
||
}
|
||
|
||
#else
|
||
static inline
|
||
void *hal_srng_src_get_next_consumed(void *hal_soc,
|
||
hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
return NULL;
|
||
}
|
||
#endif /* CLEAR_SW2TCL_CONSUMED_DESC */
|
||
|
||
/**
|
||
* hal_srng_src_get_next - Get next entry from a source ring and move cached tail pointer
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Source ring pointer
|
||
*
|
||
* Return: Opaque pointer for next ring entry; NULL on failire
|
||
*/
|
||
static inline
|
||
void *hal_srng_src_get_next(void *hal_soc,
|
||
hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
uint32_t *desc;
|
||
/* TODO: Using % is expensive, but we have to do this since
|
||
* size of some SRNG rings is not power of 2 (due to descriptor
|
||
* sizes). Need to create separate API for rings used
|
||
* per-packet, with sizes power of 2 (TCL2SW, REO2SW,
|
||
* SW2RXDMA and CE rings)
|
||
*/
|
||
uint32_t next_hp = (srng->u.src_ring.hp + srng->entry_size) %
|
||
srng->ring_size;
|
||
|
||
if (next_hp != srng->u.src_ring.cached_tp) {
|
||
desc = &(srng->ring_base_vaddr[srng->u.src_ring.hp]);
|
||
srng->u.src_ring.hp = next_hp;
|
||
/* TODO: Since reap function is not used by all rings, we can
|
||
* remove the following update of reap_hp in this function
|
||
* if we can ensure that only hal_srng_src_get_next_reaped
|
||
* is used for the rings requiring reap functionality
|
||
*/
|
||
srng->u.src_ring.reap_hp = next_hp;
|
||
return (void *)desc;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/**
|
||
* hal_srng_src_peek_n_get_next - Get next entry from a ring without
|
||
* moving head pointer.
|
||
* hal_srng_src_get_next should be called subsequently to move the head pointer
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Source ring pointer
|
||
*
|
||
* Return: Opaque pointer for next ring entry; NULL on failire
|
||
*/
|
||
static inline
|
||
void *hal_srng_src_peek_n_get_next(hal_soc_handle_t hal_soc_hdl,
|
||
hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
uint32_t *desc;
|
||
|
||
/* TODO: Using % is expensive, but we have to do this since
|
||
* size of some SRNG rings is not power of 2 (due to descriptor
|
||
* sizes). Need to create separate API for rings used
|
||
* per-packet, with sizes power of 2 (TCL2SW, REO2SW,
|
||
* SW2RXDMA and CE rings)
|
||
*/
|
||
if (((srng->u.src_ring.hp + srng->entry_size) %
|
||
srng->ring_size) != srng->u.src_ring.cached_tp) {
|
||
desc = &(srng->ring_base_vaddr[(srng->u.src_ring.hp +
|
||
srng->entry_size) %
|
||
srng->ring_size]);
|
||
return (void *)desc;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/**
|
||
* hal_srng_src_peek_n_get_next_next - Get next to next, i.e HP + 2 entry
|
||
* from a ring without moving head pointer.
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Source ring pointer
|
||
*
|
||
* Return: Opaque pointer for next to next ring entry; NULL on failire
|
||
*/
|
||
static inline
|
||
void *hal_srng_src_peek_n_get_next_next(hal_soc_handle_t hal_soc_hdl,
|
||
hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
uint32_t *desc;
|
||
|
||
/* TODO: Using % is expensive, but we have to do this since
|
||
* size of some SRNG rings is not power of 2 (due to descriptor
|
||
* sizes). Need to create separate API for rings used
|
||
* per-packet, with sizes power of 2 (TCL2SW, REO2SW,
|
||
* SW2RXDMA and CE rings)
|
||
*/
|
||
if ((((srng->u.src_ring.hp + (srng->entry_size)) %
|
||
srng->ring_size) != srng->u.src_ring.cached_tp) &&
|
||
(((srng->u.src_ring.hp + (srng->entry_size * 2)) %
|
||
srng->ring_size) != srng->u.src_ring.cached_tp)) {
|
||
desc = &(srng->ring_base_vaddr[(srng->u.src_ring.hp +
|
||
(srng->entry_size * 2)) %
|
||
srng->ring_size]);
|
||
return (void *)desc;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/**
|
||
* hal_srng_src_get_cur_hp_n_move_next () - API returns current hp
|
||
* and move hp to next in src ring
|
||
*
|
||
* Usage: This API should only be used at init time replenish.
|
||
*
|
||
* @hal_soc_hdl: HAL soc handle
|
||
* @hal_ring_hdl: Source ring pointer
|
||
*
|
||
*/
|
||
static inline void *
|
||
hal_srng_src_get_cur_hp_n_move_next(hal_soc_handle_t hal_soc_hdl,
|
||
hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
uint32_t *cur_desc = NULL;
|
||
uint32_t next_hp;
|
||
|
||
cur_desc = &srng->ring_base_vaddr[(srng->u.src_ring.hp)];
|
||
|
||
next_hp = (srng->u.src_ring.hp + srng->entry_size) %
|
||
srng->ring_size;
|
||
|
||
if (next_hp != srng->u.src_ring.cached_tp)
|
||
srng->u.src_ring.hp = next_hp;
|
||
|
||
return (void *)cur_desc;
|
||
}
|
||
|
||
/**
|
||
* hal_srng_src_num_avail - Returns number of available entries in src ring
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Source ring pointer
|
||
* @sync_hw_ptr: Sync cached tail pointer with HW
|
||
*
|
||
*/
|
||
static inline uint32_t
|
||
hal_srng_src_num_avail(void *hal_soc,
|
||
hal_ring_handle_t hal_ring_hdl, int sync_hw_ptr)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
uint32_t tp;
|
||
uint32_t hp = srng->u.src_ring.hp;
|
||
|
||
if (sync_hw_ptr) {
|
||
tp = *(srng->u.src_ring.tp_addr);
|
||
srng->u.src_ring.cached_tp = tp;
|
||
} else {
|
||
tp = srng->u.src_ring.cached_tp;
|
||
}
|
||
|
||
if (tp > hp)
|
||
return ((tp - hp) / srng->entry_size) - 1;
|
||
else
|
||
return ((srng->ring_size - hp + tp) / srng->entry_size) - 1;
|
||
}
|
||
|
||
/**
|
||
* hal_srng_access_end_unlocked - End ring access (unlocked) - update cached
|
||
* ring head/tail pointers to HW.
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Ring pointer (Source or Destination ring)
|
||
*
|
||
* The target expects cached head/tail pointer to be updated to the
|
||
* shared location in the little-endian order, This API ensures that.
|
||
* This API should be used only if hal_srng_access_start_unlocked was used to
|
||
* start ring access
|
||
*
|
||
* Return: None
|
||
*/
|
||
static inline void
|
||
hal_srng_access_end_unlocked(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
|
||
/* TODO: See if we need a write memory barrier here */
|
||
if (srng->flags & HAL_SRNG_LMAC_RING) {
|
||
/* For LMAC rings, ring pointer updates are done through FW and
|
||
* hence written to a shared memory location that is read by FW
|
||
*/
|
||
if (srng->ring_dir == HAL_SRNG_SRC_RING) {
|
||
*srng->u.src_ring.hp_addr =
|
||
qdf_cpu_to_le32(srng->u.src_ring.hp);
|
||
} else {
|
||
*srng->u.dst_ring.tp_addr =
|
||
qdf_cpu_to_le32(srng->u.dst_ring.tp);
|
||
}
|
||
} else {
|
||
if (srng->ring_dir == HAL_SRNG_SRC_RING)
|
||
hal_srng_write_address_32_mb(hal_soc,
|
||
srng,
|
||
srng->u.src_ring.hp_addr,
|
||
srng->u.src_ring.hp);
|
||
else
|
||
hal_srng_write_address_32_mb(hal_soc,
|
||
srng,
|
||
srng->u.dst_ring.tp_addr,
|
||
srng->u.dst_ring.tp);
|
||
}
|
||
}
|
||
|
||
/* hal_srng_access_end_unlocked already handles endianness conversion,
|
||
* use the same.
|
||
*/
|
||
#define hal_le_srng_access_end_unlocked_in_cpu_order \
|
||
hal_srng_access_end_unlocked
|
||
|
||
/**
|
||
* hal_srng_access_end - Unlock ring access and update cached ring head/tail
|
||
* pointers to HW
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Ring pointer (Source or Destination ring)
|
||
*
|
||
* The target expects cached head/tail pointer to be updated to the
|
||
* shared location in the little-endian order, This API ensures that.
|
||
* This API should be used only if hal_srng_access_start was used to
|
||
* start ring access
|
||
*
|
||
* Return: 0 on success; error on failire
|
||
*/
|
||
static inline void
|
||
hal_srng_access_end(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
|
||
if (qdf_unlikely(!hal_ring_hdl)) {
|
||
qdf_print("Error: Invalid hal_ring\n");
|
||
return;
|
||
}
|
||
|
||
hal_srng_access_end_unlocked(hal_soc, hal_ring_hdl);
|
||
SRNG_UNLOCK(&(srng->lock));
|
||
}
|
||
|
||
/* hal_srng_access_end already handles endianness conversion, so use the same */
|
||
#define hal_le_srng_access_end_in_cpu_order \
|
||
hal_srng_access_end
|
||
|
||
/**
|
||
* hal_srng_access_end_reap - Unlock ring access
|
||
* This should be used only if hal_srng_access_start to start ring access
|
||
* and should be used only while reaping SRC ring completions
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Ring pointer (Source or Destination ring)
|
||
*
|
||
* Return: 0 on success; error on failire
|
||
*/
|
||
static inline void
|
||
hal_srng_access_end_reap(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
|
||
SRNG_UNLOCK(&(srng->lock));
|
||
}
|
||
|
||
/* TODO: Check if the following definitions is available in HW headers */
|
||
#define WBM_IDLE_SCATTER_BUF_SIZE 32704
|
||
#define NUM_MPDUS_PER_LINK_DESC 6
|
||
#define NUM_MSDUS_PER_LINK_DESC 7
|
||
#define REO_QUEUE_DESC_ALIGN 128
|
||
|
||
#define LINK_DESC_ALIGN 128
|
||
|
||
#define ADDRESS_MATCH_TAG_VAL 0x5
|
||
/* Number of mpdu link pointers is 9 in case of TX_MPDU_QUEUE_HEAD and 14 in
|
||
* of TX_MPDU_QUEUE_EXT. We are defining a common average count here
|
||
*/
|
||
#define NUM_MPDU_LINKS_PER_QUEUE_DESC 12
|
||
|
||
/* TODO: Check with HW team on the scatter buffer size supported. As per WBM
|
||
* MLD, scatter_buffer_size in IDLE_LIST_CONTROL register is 9 bits and size
|
||
* should be specified in 16 word units. But the number of bits defined for
|
||
* this field in HW header files is 5.
|
||
*/
|
||
#define WBM_IDLE_SCATTER_BUF_NEXT_PTR_SIZE 8
|
||
|
||
|
||
/**
|
||
* hal_idle_list_scatter_buf_size - Get the size of each scatter buffer
|
||
* in an idle list
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
*
|
||
*/
|
||
static inline
|
||
uint32_t hal_idle_list_scatter_buf_size(hal_soc_handle_t hal_soc_hdl)
|
||
{
|
||
return WBM_IDLE_SCATTER_BUF_SIZE;
|
||
}
|
||
|
||
/**
|
||
* hal_get_link_desc_size - Get the size of each link descriptor
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
*
|
||
*/
|
||
static inline uint32_t hal_get_link_desc_size(hal_soc_handle_t hal_soc_hdl)
|
||
{
|
||
struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
|
||
|
||
if (!hal_soc || !hal_soc->ops) {
|
||
qdf_print("Error: Invalid ops\n");
|
||
QDF_BUG(0);
|
||
return -EINVAL;
|
||
}
|
||
if (!hal_soc->ops->hal_get_link_desc_size) {
|
||
qdf_print("Error: Invalid function pointer\n");
|
||
QDF_BUG(0);
|
||
return -EINVAL;
|
||
}
|
||
return hal_soc->ops->hal_get_link_desc_size();
|
||
}
|
||
|
||
/**
|
||
* hal_get_link_desc_align - Get the required start address alignment for
|
||
* link descriptors
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
*
|
||
*/
|
||
static inline
|
||
uint32_t hal_get_link_desc_align(hal_soc_handle_t hal_soc_hdl)
|
||
{
|
||
return LINK_DESC_ALIGN;
|
||
}
|
||
|
||
/**
|
||
* hal_num_mpdus_per_link_desc - Get number of mpdus each link desc can hold
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
*
|
||
*/
|
||
static inline
|
||
uint32_t hal_num_mpdus_per_link_desc(hal_soc_handle_t hal_soc_hdl)
|
||
{
|
||
return NUM_MPDUS_PER_LINK_DESC;
|
||
}
|
||
|
||
/**
|
||
* hal_num_msdus_per_link_desc - Get number of msdus each link desc can hold
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
*
|
||
*/
|
||
static inline
|
||
uint32_t hal_num_msdus_per_link_desc(hal_soc_handle_t hal_soc_hdl)
|
||
{
|
||
return NUM_MSDUS_PER_LINK_DESC;
|
||
}
|
||
|
||
/**
|
||
* hal_num_mpdu_links_per_queue_desc - Get number of mpdu links each queue
|
||
* descriptor can hold
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
*
|
||
*/
|
||
static inline
|
||
uint32_t hal_num_mpdu_links_per_queue_desc(hal_soc_handle_t hal_soc_hdl)
|
||
{
|
||
return NUM_MPDU_LINKS_PER_QUEUE_DESC;
|
||
}
|
||
|
||
/**
|
||
* hal_idle_list_scatter_buf_num_entries - Get the number of link desc entries
|
||
* that the given buffer size
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @scatter_buf_size: Size of scatter buffer
|
||
*
|
||
*/
|
||
static inline
|
||
uint32_t hal_idle_scatter_buf_num_entries(hal_soc_handle_t hal_soc_hdl,
|
||
uint32_t scatter_buf_size)
|
||
{
|
||
return (scatter_buf_size - WBM_IDLE_SCATTER_BUF_NEXT_PTR_SIZE) /
|
||
hal_srng_get_entrysize(hal_soc_hdl, WBM_IDLE_LINK);
|
||
}
|
||
|
||
/**
|
||
* hal_idle_list_num_scatter_bufs - Get the number of sctater buffer
|
||
* each given buffer size
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @total_mem: size of memory to be scattered
|
||
* @scatter_buf_size: Size of scatter buffer
|
||
*
|
||
*/
|
||
static inline
|
||
uint32_t hal_idle_list_num_scatter_bufs(hal_soc_handle_t hal_soc_hdl,
|
||
uint32_t total_mem,
|
||
uint32_t scatter_buf_size)
|
||
{
|
||
uint8_t rem = (total_mem % (scatter_buf_size -
|
||
WBM_IDLE_SCATTER_BUF_NEXT_PTR_SIZE)) ? 1 : 0;
|
||
|
||
uint32_t num_scatter_bufs = (total_mem / (scatter_buf_size -
|
||
WBM_IDLE_SCATTER_BUF_NEXT_PTR_SIZE)) + rem;
|
||
|
||
return num_scatter_bufs;
|
||
}
|
||
|
||
enum hal_pn_type {
|
||
HAL_PN_NONE,
|
||
HAL_PN_WPA,
|
||
HAL_PN_WAPI_EVEN,
|
||
HAL_PN_WAPI_UNEVEN,
|
||
};
|
||
|
||
#define HAL_RX_MAX_BA_WINDOW 256
|
||
|
||
/**
|
||
* hal_get_reo_qdesc_align - Get start address alignment for reo
|
||
* queue descriptors
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
*
|
||
*/
|
||
static inline
|
||
uint32_t hal_get_reo_qdesc_align(hal_soc_handle_t hal_soc_hdl)
|
||
{
|
||
return REO_QUEUE_DESC_ALIGN;
|
||
}
|
||
|
||
/**
|
||
* hal_srng_get_hp_addr - Get head pointer physical address
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Ring pointer (Source or Destination ring)
|
||
*
|
||
*/
|
||
static inline qdf_dma_addr_t
|
||
hal_srng_get_hp_addr(void *hal_soc,
|
||
hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
struct hal_soc *hal = (struct hal_soc *)hal_soc;
|
||
|
||
if (srng->ring_dir == HAL_SRNG_SRC_RING) {
|
||
return hal->shadow_wrptr_mem_paddr +
|
||
((unsigned long)(srng->u.src_ring.hp_addr) -
|
||
(unsigned long)(hal->shadow_wrptr_mem_vaddr));
|
||
} else {
|
||
return hal->shadow_rdptr_mem_paddr +
|
||
((unsigned long)(srng->u.dst_ring.hp_addr) -
|
||
(unsigned long)(hal->shadow_rdptr_mem_vaddr));
|
||
}
|
||
}
|
||
|
||
/**
|
||
* hal_srng_get_tp_addr - Get tail pointer physical address
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Ring pointer (Source or Destination ring)
|
||
*
|
||
*/
|
||
static inline qdf_dma_addr_t
|
||
hal_srng_get_tp_addr(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
struct hal_soc *hal = (struct hal_soc *)hal_soc;
|
||
|
||
if (srng->ring_dir == HAL_SRNG_SRC_RING) {
|
||
return hal->shadow_rdptr_mem_paddr +
|
||
((unsigned long)(srng->u.src_ring.tp_addr) -
|
||
(unsigned long)(hal->shadow_rdptr_mem_vaddr));
|
||
} else {
|
||
return hal->shadow_wrptr_mem_paddr +
|
||
((unsigned long)(srng->u.dst_ring.tp_addr) -
|
||
(unsigned long)(hal->shadow_wrptr_mem_vaddr));
|
||
}
|
||
}
|
||
|
||
/**
|
||
* hal_srng_get_num_entries - Get total entries in the HAL Srng
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Ring pointer (Source or Destination ring)
|
||
*
|
||
* Return: total number of entries in hal ring
|
||
*/
|
||
static inline
|
||
uint32_t hal_srng_get_num_entries(hal_soc_handle_t hal_soc_hdl,
|
||
hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
|
||
return srng->num_entries;
|
||
}
|
||
|
||
/**
|
||
* hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Ring pointer (Source or Destination ring)
|
||
* @ring_params: SRNG parameters will be returned through this structure
|
||
*/
|
||
void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
|
||
hal_ring_handle_t hal_ring_hdl,
|
||
struct hal_srng_params *ring_params);
|
||
|
||
/**
|
||
* hal_mem_info - Retrieve hal memory base address
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @mem: pointer to structure to be updated with hal mem info
|
||
*/
|
||
void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem);
|
||
|
||
/**
|
||
* hal_get_target_type - Return target type
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
*/
|
||
uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl);
|
||
|
||
/**
|
||
* hal_srng_dst_hw_init - Private function to initialize SRNG
|
||
* destination ring HW
|
||
* @hal_soc: HAL SOC handle
|
||
* @srng: SRNG ring pointer
|
||
*/
|
||
static inline void hal_srng_dst_hw_init(struct hal_soc *hal,
|
||
struct hal_srng *srng)
|
||
{
|
||
hal->ops->hal_srng_dst_hw_init(hal, srng);
|
||
}
|
||
|
||
/**
|
||
* hal_srng_src_hw_init - Private function to initialize SRNG
|
||
* source ring HW
|
||
* @hal_soc: HAL SOC handle
|
||
* @srng: SRNG ring pointer
|
||
*/
|
||
static inline void hal_srng_src_hw_init(struct hal_soc *hal,
|
||
struct hal_srng *srng)
|
||
{
|
||
hal->ops->hal_srng_src_hw_init(hal, srng);
|
||
}
|
||
|
||
/**
|
||
* hal_get_hw_hptp() - Get HW head and tail pointer value for any ring
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Source ring pointer
|
||
* @headp: Head Pointer
|
||
* @tailp: Tail Pointer
|
||
* @ring_type: Ring
|
||
*
|
||
* Return: Update tail pointer and head pointer in arguments.
|
||
*/
|
||
static inline
|
||
void hal_get_hw_hptp(hal_soc_handle_t hal_soc_hdl,
|
||
hal_ring_handle_t hal_ring_hdl,
|
||
uint32_t *headp, uint32_t *tailp,
|
||
uint8_t ring_type)
|
||
{
|
||
struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
|
||
|
||
hal_soc->ops->hal_get_hw_hptp(hal_soc, hal_ring_hdl,
|
||
headp, tailp, ring_type);
|
||
}
|
||
|
||
/**
|
||
* hal_reo_setup - Initialize HW REO block
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @reo_params: parameters needed by HAL for REO config
|
||
*/
|
||
static inline void hal_reo_setup(hal_soc_handle_t hal_soc_hdl,
|
||
void *reoparams)
|
||
{
|
||
struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
|
||
|
||
hal_soc->ops->hal_reo_setup(hal_soc, reoparams);
|
||
}
|
||
|
||
static inline
|
||
void hal_compute_reo_remap_ix2_ix3(hal_soc_handle_t hal_soc_hdl,
|
||
uint32_t *ring, uint32_t num_rings,
|
||
uint32_t *remap1, uint32_t *remap2)
|
||
{
|
||
struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
|
||
|
||
return hal_soc->ops->hal_compute_reo_remap_ix2_ix3(ring,
|
||
num_rings, remap1, remap2);
|
||
}
|
||
|
||
/**
|
||
* hal_setup_link_idle_list - Setup scattered idle list using the
|
||
* buffer list provided
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @scatter_bufs_base_paddr: Array of physical base addresses
|
||
* @scatter_bufs_base_vaddr: Array of virtual base addresses
|
||
* @num_scatter_bufs: Number of scatter buffers in the above lists
|
||
* @scatter_buf_size: Size of each scatter buffer
|
||
* @last_buf_end_offset: Offset to the last entry
|
||
* @num_entries: Total entries of all scatter bufs
|
||
*
|
||
*/
|
||
static inline
|
||
void hal_setup_link_idle_list(hal_soc_handle_t hal_soc_hdl,
|
||
qdf_dma_addr_t scatter_bufs_base_paddr[],
|
||
void *scatter_bufs_base_vaddr[],
|
||
uint32_t num_scatter_bufs,
|
||
uint32_t scatter_buf_size,
|
||
uint32_t last_buf_end_offset,
|
||
uint32_t num_entries)
|
||
{
|
||
struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
|
||
|
||
hal_soc->ops->hal_setup_link_idle_list(hal_soc, scatter_bufs_base_paddr,
|
||
scatter_bufs_base_vaddr, num_scatter_bufs,
|
||
scatter_buf_size, last_buf_end_offset,
|
||
num_entries);
|
||
|
||
}
|
||
|
||
#ifdef DUMP_REO_QUEUE_INFO_IN_DDR
|
||
/**
|
||
* hal_dump_rx_reo_queue_desc() - Dump reo queue descriptor fields
|
||
* @hw_qdesc_vaddr_aligned: Pointer to hw reo queue desc virtual addr
|
||
*
|
||
* Use the virtual addr pointer to reo h/w queue desc to read
|
||
* the values from ddr and log them.
|
||
*
|
||
* Return: none
|
||
*/
|
||
static inline void hal_dump_rx_reo_queue_desc(
|
||
void *hw_qdesc_vaddr_aligned)
|
||
{
|
||
struct rx_reo_queue *hw_qdesc =
|
||
(struct rx_reo_queue *)hw_qdesc_vaddr_aligned;
|
||
|
||
if (!hw_qdesc)
|
||
return;
|
||
|
||
hal_info("receive_queue_number %u vld %u window_jump_2k %u"
|
||
" hole_count %u ba_window_size %u ignore_ampdu_flag %u"
|
||
" svld %u ssn %u current_index %u"
|
||
" disable_duplicate_detection %u soft_reorder_enable %u"
|
||
" chk_2k_mode %u oor_mode %u mpdu_frames_processed_count %u"
|
||
" msdu_frames_processed_count %u total_processed_byte_count %u"
|
||
" late_receive_mpdu_count %u seq_2k_error_detected_flag %u"
|
||
" pn_error_detected_flag %u current_mpdu_count %u"
|
||
" current_msdu_count %u timeout_count %u"
|
||
" forward_due_to_bar_count %u duplicate_count %u"
|
||
" frames_in_order_count %u bar_received_count %u"
|
||
" pn_check_needed %u pn_shall_be_even %u"
|
||
" pn_shall_be_uneven %u pn_size %u",
|
||
hw_qdesc->receive_queue_number,
|
||
hw_qdesc->vld,
|
||
hw_qdesc->window_jump_2k,
|
||
hw_qdesc->hole_count,
|
||
hw_qdesc->ba_window_size,
|
||
hw_qdesc->ignore_ampdu_flag,
|
||
hw_qdesc->svld,
|
||
hw_qdesc->ssn,
|
||
hw_qdesc->current_index,
|
||
hw_qdesc->disable_duplicate_detection,
|
||
hw_qdesc->soft_reorder_enable,
|
||
hw_qdesc->chk_2k_mode,
|
||
hw_qdesc->oor_mode,
|
||
hw_qdesc->mpdu_frames_processed_count,
|
||
hw_qdesc->msdu_frames_processed_count,
|
||
hw_qdesc->total_processed_byte_count,
|
||
hw_qdesc->late_receive_mpdu_count,
|
||
hw_qdesc->seq_2k_error_detected_flag,
|
||
hw_qdesc->pn_error_detected_flag,
|
||
hw_qdesc->current_mpdu_count,
|
||
hw_qdesc->current_msdu_count,
|
||
hw_qdesc->timeout_count,
|
||
hw_qdesc->forward_due_to_bar_count,
|
||
hw_qdesc->duplicate_count,
|
||
hw_qdesc->frames_in_order_count,
|
||
hw_qdesc->bar_received_count,
|
||
hw_qdesc->pn_check_needed,
|
||
hw_qdesc->pn_shall_be_even,
|
||
hw_qdesc->pn_shall_be_uneven,
|
||
hw_qdesc->pn_size);
|
||
}
|
||
|
||
#else /* DUMP_REO_QUEUE_INFO_IN_DDR */
|
||
|
||
static inline void hal_dump_rx_reo_queue_desc(
|
||
void *hw_qdesc_vaddr_aligned)
|
||
{
|
||
}
|
||
#endif /* DUMP_REO_QUEUE_INFO_IN_DDR */
|
||
|
||
/**
|
||
* hal_srng_dump_ring_desc() - Dump ring descriptor info
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Source ring pointer
|
||
* @ring_desc: Opaque ring descriptor handle
|
||
*/
|
||
static inline void hal_srng_dump_ring_desc(hal_soc_handle_t hal_soc_hdl,
|
||
hal_ring_handle_t hal_ring_hdl,
|
||
hal_ring_desc_t ring_desc)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
|
||
QDF_TRACE_HEX_DUMP(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
|
||
ring_desc, (srng->entry_size << 2));
|
||
}
|
||
|
||
/**
|
||
* hal_srng_dump_ring() - Dump last 128 descs of the ring
|
||
*
|
||
* @hal_soc: Opaque HAL SOC handle
|
||
* @hal_ring_hdl: Source ring pointer
|
||
*/
|
||
static inline void hal_srng_dump_ring(hal_soc_handle_t hal_soc_hdl,
|
||
hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
uint32_t *desc;
|
||
uint32_t tp, i;
|
||
|
||
tp = srng->u.dst_ring.tp;
|
||
|
||
for (i = 0; i < 128; i++) {
|
||
if (!tp)
|
||
tp = srng->ring_size;
|
||
|
||
desc = &srng->ring_base_vaddr[tp - srng->entry_size];
|
||
QDF_TRACE_HEX_DUMP(QDF_MODULE_ID_DP,
|
||
QDF_TRACE_LEVEL_DEBUG,
|
||
desc, (srng->entry_size << 2));
|
||
|
||
tp -= srng->entry_size;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* hal_rxdma_desc_to_hal_ring_desc - API to convert rxdma ring desc
|
||
* to opaque dp_ring desc type
|
||
* @ring_desc - rxdma ring desc
|
||
*
|
||
* Return: hal_rxdma_desc_t type
|
||
*/
|
||
static inline
|
||
hal_ring_desc_t hal_rxdma_desc_to_hal_ring_desc(hal_rxdma_desc_t ring_desc)
|
||
{
|
||
return (hal_ring_desc_t)ring_desc;
|
||
}
|
||
|
||
/**
|
||
* hal_srng_set_event() - Set hal_srng event
|
||
* @hal_ring_hdl: Source ring pointer
|
||
* @event: SRNG ring event
|
||
*
|
||
* Return: None
|
||
*/
|
||
static inline void hal_srng_set_event(hal_ring_handle_t hal_ring_hdl, int event)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
|
||
qdf_atomic_set_bit(event, &srng->srng_event);
|
||
}
|
||
|
||
/**
|
||
* hal_srng_clear_event() - Clear hal_srng event
|
||
* @hal_ring_hdl: Source ring pointer
|
||
* @event: SRNG ring event
|
||
*
|
||
* Return: None
|
||
*/
|
||
static inline
|
||
void hal_srng_clear_event(hal_ring_handle_t hal_ring_hdl, int event)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
|
||
qdf_atomic_clear_bit(event, &srng->srng_event);
|
||
}
|
||
|
||
/**
|
||
* hal_srng_get_clear_event() - Clear srng event and return old value
|
||
* @hal_ring_hdl: Source ring pointer
|
||
* @event: SRNG ring event
|
||
*
|
||
* Return: Return old event value
|
||
*/
|
||
static inline
|
||
int hal_srng_get_clear_event(hal_ring_handle_t hal_ring_hdl, int event)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
|
||
return qdf_atomic_test_and_clear_bit(event, &srng->srng_event);
|
||
}
|
||
|
||
/**
|
||
* hal_srng_set_flush_last_ts() - Record last flush time stamp
|
||
* @hal_ring_hdl: Source ring pointer
|
||
*
|
||
* Return: None
|
||
*/
|
||
static inline void hal_srng_set_flush_last_ts(hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
|
||
srng->last_flush_ts = qdf_get_log_timestamp();
|
||
}
|
||
|
||
/**
|
||
* hal_srng_inc_flush_cnt() - Increment flush counter
|
||
* @hal_ring_hdl: Source ring pointer
|
||
*
|
||
* Return: None
|
||
*/
|
||
static inline void hal_srng_inc_flush_cnt(hal_ring_handle_t hal_ring_hdl)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
|
||
srng->flush_count++;
|
||
}
|
||
|
||
/**
|
||
* hal_rx_sw_mon_desc_info_get () - Get SW monitor desc info
|
||
*
|
||
* @hal: Core HAL soc handle
|
||
* @ring_desc: Mon dest ring descriptor
|
||
* @desc_info: Desc info to be populated
|
||
*
|
||
* Return void
|
||
*/
|
||
static inline void
|
||
hal_rx_sw_mon_desc_info_get(struct hal_soc *hal,
|
||
hal_ring_desc_t ring_desc,
|
||
hal_rx_mon_desc_info_t desc_info)
|
||
{
|
||
return hal->ops->hal_rx_sw_mon_desc_info_get(ring_desc, desc_info);
|
||
}
|
||
|
||
/**
|
||
* hal_reo_set_err_dst_remap() - Set REO error destination ring remap
|
||
* register value.
|
||
*
|
||
* @hal_soc_hdl: Opaque HAL soc handle
|
||
*
|
||
* Return: None
|
||
*/
|
||
static inline void hal_reo_set_err_dst_remap(hal_soc_handle_t hal_soc_hdl)
|
||
{
|
||
struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
|
||
|
||
if (hal_soc->ops->hal_reo_set_err_dst_remap)
|
||
hal_soc->ops->hal_reo_set_err_dst_remap(hal_soc);
|
||
}
|
||
|
||
/**
|
||
* hal_reo_enable_pn_in_dest() - Subscribe for previous PN for 2k-jump or
|
||
* OOR error frames
|
||
* @hal_soc_hdl: Opaque HAL soc handle
|
||
*
|
||
* Return: true if feature is enabled,
|
||
* false, otherwise.
|
||
*/
|
||
static inline uint8_t
|
||
hal_reo_enable_pn_in_dest(hal_soc_handle_t hal_soc_hdl)
|
||
{
|
||
struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
|
||
|
||
if (hal_soc->ops->hal_reo_enable_pn_in_dest)
|
||
return hal_soc->ops->hal_reo_enable_pn_in_dest(hal_soc);
|
||
|
||
return 0;
|
||
}
|
||
|
||
#ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
|
||
|
||
/**
|
||
* hal_set_one_target_reg_config() - Populate the target reg
|
||
* offset in hal_soc for one non srng related register at the
|
||
* given list index
|
||
* @hal_soc: hal handle
|
||
* @target_reg_offset: target register offset
|
||
* @list_index: index in hal list for shadow regs
|
||
*
|
||
* Return: none
|
||
*/
|
||
void hal_set_one_target_reg_config(struct hal_soc *hal,
|
||
uint32_t target_reg_offset,
|
||
int list_index);
|
||
|
||
/**
|
||
* hal_set_shadow_regs() - Populate register offset for
|
||
* registers that need to be populated in list_shadow_reg_config
|
||
* in order to be sent to FW. These reg offsets will be mapped
|
||
* to shadow registers.
|
||
* @hal_soc: hal handle
|
||
*
|
||
* Return: QDF_STATUS_OK on success
|
||
*/
|
||
QDF_STATUS hal_set_shadow_regs(void *hal_soc);
|
||
|
||
/**
|
||
* hal_construct_shadow_regs() - initialize the shadow registers
|
||
* for non-srng related register configs
|
||
* @hal_soc: hal handle
|
||
*
|
||
* Return: QDF_STATUS_OK on success
|
||
*/
|
||
QDF_STATUS hal_construct_shadow_regs(void *hal_soc);
|
||
|
||
#else /* GENERIC_SHADOW_REGISTER_ACCESS_ENABLE */
|
||
static inline void hal_set_one_target_reg_config(
|
||
struct hal_soc *hal,
|
||
uint32_t target_reg_offset,
|
||
int list_index)
|
||
{
|
||
}
|
||
|
||
static inline QDF_STATUS hal_set_shadow_regs(void *hal_soc)
|
||
{
|
||
return QDF_STATUS_SUCCESS;
|
||
}
|
||
|
||
static inline QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
|
||
{
|
||
return QDF_STATUS_SUCCESS;
|
||
}
|
||
#endif /* GENERIC_SHADOW_REGISTER_ACCESS_ENABLE */
|
||
|
||
#ifdef FEATURE_HAL_DELAYED_REG_WRITE
|
||
/**
|
||
* hal_flush_reg_write_work() - flush all writes from register write queue
|
||
* @arg: hal_soc pointer
|
||
*
|
||
* Return: None
|
||
*/
|
||
void hal_flush_reg_write_work(hal_soc_handle_t hal_handle);
|
||
|
||
#else
|
||
static inline void hal_flush_reg_write_work(hal_soc_handle_t hal_handle) { }
|
||
#endif
|
||
|
||
/**
|
||
* hal_get_ring_usage - Calculate the ring usage percentage
|
||
* @hal_ring_hdl: Ring pointer
|
||
* @ring_type: Ring type
|
||
* @headp: pointer to head value
|
||
* @tailp: pointer to tail value
|
||
*
|
||
* Calculate the ring usage percentage for src and dest rings
|
||
*
|
||
* Return: Ring usage percentage
|
||
*/
|
||
static inline
|
||
uint32_t hal_get_ring_usage(
|
||
hal_ring_handle_t hal_ring_hdl,
|
||
enum hal_ring_type ring_type, uint32_t *headp, uint32_t *tailp)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
uint32_t num_avail, num_valid = 0;
|
||
uint32_t ring_usage;
|
||
|
||
if (srng->ring_dir == HAL_SRNG_SRC_RING) {
|
||
if (*tailp > *headp)
|
||
num_avail = ((*tailp - *headp) / srng->entry_size) - 1;
|
||
else
|
||
num_avail = ((srng->ring_size - *headp + *tailp) /
|
||
srng->entry_size) - 1;
|
||
if (ring_type == WBM_IDLE_LINK)
|
||
num_valid = num_avail;
|
||
else
|
||
num_valid = srng->num_entries - num_avail;
|
||
} else {
|
||
if (*headp >= *tailp)
|
||
num_valid = ((*headp - *tailp) / srng->entry_size);
|
||
else
|
||
num_valid = ((srng->ring_size - *tailp + *headp) /
|
||
srng->entry_size);
|
||
}
|
||
ring_usage = (100 * num_valid) / srng->num_entries;
|
||
return ring_usage;
|
||
}
|
||
|
||
/**
|
||
* hal_cmem_write() - function for CMEM buffer writing
|
||
* @hal_soc_hdl: HAL SOC handle
|
||
* @offset: CMEM address
|
||
* @value: value to write
|
||
*
|
||
* Return: None.
|
||
*/
|
||
static inline void
|
||
hal_cmem_write(hal_soc_handle_t hal_soc_hdl, uint32_t offset,
|
||
uint32_t value)
|
||
{
|
||
struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
|
||
|
||
if (hal_soc->ops->hal_cmem_write)
|
||
hal_soc->ops->hal_cmem_write(hal_soc_hdl, offset, value);
|
||
|
||
return;
|
||
}
|
||
|
||
static inline bool
|
||
hal_dmac_cmn_src_rxbuf_ring_get(hal_soc_handle_t hal_soc_hdl)
|
||
{
|
||
struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
|
||
|
||
return hal_soc->dmac_cmn_src_rxbuf_ring;
|
||
}
|
||
|
||
/**
|
||
* hal_srng_dst_prefetch() - function to prefetch 4 destination ring descs
|
||
* @hal_soc_hdl: HAL SOC handle
|
||
* @hal_ring_hdl: Destination ring pointer
|
||
* @num_valid: valid entries in the ring
|
||
*
|
||
* return: last prefetched destination ring descriptor
|
||
*/
|
||
static inline
|
||
void *hal_srng_dst_prefetch(hal_soc_handle_t hal_soc_hdl,
|
||
hal_ring_handle_t hal_ring_hdl,
|
||
uint16_t num_valid)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
uint8_t *desc;
|
||
uint32_t cnt;
|
||
/*
|
||
* prefetching 4 HW descriptors will ensure atleast by the time
|
||
* 5th HW descriptor is being processed it is guranteed that the
|
||
* 5th HW descriptor, its SW Desc, its nbuf and its nbuf's data
|
||
* are in cache line. basically ensuring all the 4 (HW, SW, nbuf
|
||
* & nbuf->data) are prefetched.
|
||
*/
|
||
uint32_t max_prefetch = 4;
|
||
|
||
if (srng->u.dst_ring.tp == srng->u.dst_ring.cached_hp)
|
||
return NULL;
|
||
|
||
desc = (uint8_t *)&srng->ring_base_vaddr[srng->u.dst_ring.tp];
|
||
|
||
if (num_valid < max_prefetch)
|
||
max_prefetch = num_valid;
|
||
|
||
for (cnt = 0; cnt < max_prefetch; cnt++) {
|
||
desc += srng->entry_size * sizeof(uint32_t);
|
||
if (desc == ((uint8_t *)srng->ring_vaddr_end))
|
||
desc = (uint8_t *)&srng->ring_base_vaddr[0];
|
||
|
||
qdf_prefetch(desc);
|
||
}
|
||
return (void *)desc;
|
||
}
|
||
|
||
/**
|
||
* hal_srng_dst_prefetch_next_cached_desc() - function to prefetch next desc
|
||
* @hal_soc_hdl: HAL SOC handle
|
||
* @hal_ring_hdl: Destination ring pointer
|
||
* @last_prefetched_hw_desc: last prefetched HW descriptor
|
||
*
|
||
* return: next prefetched destination descriptor
|
||
*/
|
||
static inline
|
||
void *hal_srng_dst_prefetch_next_cached_desc(hal_soc_handle_t hal_soc_hdl,
|
||
hal_ring_handle_t hal_ring_hdl,
|
||
uint8_t *last_prefetched_hw_desc)
|
||
{
|
||
struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
|
||
|
||
if (srng->u.dst_ring.tp == srng->u.dst_ring.cached_hp)
|
||
return NULL;
|
||
|
||
last_prefetched_hw_desc += srng->entry_size * sizeof(uint32_t);
|
||
if (last_prefetched_hw_desc == ((uint8_t *)srng->ring_vaddr_end))
|
||
last_prefetched_hw_desc = (uint8_t *)&srng->ring_base_vaddr[0];
|
||
|
||
qdf_prefetch(last_prefetched_hw_desc);
|
||
return (void *)last_prefetched_hw_desc;
|
||
}
|
||
#endif /* _HAL_APIH_ */
|