Files
android_kernel_samsung_sm86…/dp/wifi3.0/dp_main.c
Jinwei Chen 9012d61d31 qcacmn: fix invalid accessing to rx_desc_status pool
crash scenario:
a. pktlog is enabled, the timer mon_reap_timer is active,
   reap mon_status_ring hal desc periodically.
b. rx_desc status pool is freed in dp_rx_pdev_mon_detach() when do
   dp_pdev_deinit() while the mon_reap_timer is still active until
   dp_rxdma_ring_cleanup() free it.
c. during the timeslot between dp_rx_pdev_mon_detach() and
   dp_rxdma_ring_cleanup(), if some hal desc is pending to be
   processed on mon_status_ring, invalid accessing to rx_desc_status
   pool happened.

solution:
  if pktlog is enabled, stop mon_reap_timer ahead of
dp_rx_pdev_mon_detach() in dp_pktlogmod_exit().

Change-Id: I91b16a88a5e4390587925d6eb2840b3ec1ec2187
CRs-Fixed: 2579817
2019-12-09 01:31:20 -08:00

10548 regels
280 KiB
C
Ruw Blame Geschiedenis

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
/*
* Copyright (c) 2016-2019 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include <qdf_types.h>
#include <qdf_lock.h>
#include <qdf_net_types.h>
#include <qdf_lro.h>
#include <qdf_module.h>
#include <hal_hw_headers.h>
#include <hal_api.h>
#include <hif.h>
#include <htt.h>
#include <wdi_event.h>
#include <queue.h>
#include "dp_types.h"
#include "dp_internal.h"
#include "dp_tx.h"
#include "dp_tx_desc.h"
#include "dp_rx.h"
#include "dp_rx_mon.h"
#ifdef DP_RATETABLE_SUPPORT
#include "dp_ratetable.h"
#endif
#include <cdp_txrx_handle.h>
#include <wlan_cfg.h>
#include "cdp_txrx_cmn_struct.h"
#include "cdp_txrx_stats_struct.h"
#include "cdp_txrx_cmn_reg.h"
#include <qdf_util.h>
#include "dp_peer.h"
#include "dp_rx_mon.h"
#include "htt_stats.h"
#include "dp_htt.h"
#include "htt_ppdu_stats.h"
#include "qdf_mem.h" /* qdf_mem_malloc,free */
#include "cfg_ucfg_api.h"
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
#include "cdp_txrx_flow_ctrl_v2.h"
#else
static inline void
cdp_dump_flow_pool_info(struct cdp_soc_t *soc)
{
return;
}
#endif
#include "dp_ipa.h"
#include "dp_cal_client_api.h"
#ifdef FEATURE_WDS
#include "dp_txrx_wds.h"
#endif
#ifdef ATH_SUPPORT_IQUE
#include "dp_txrx_me.h"
#endif
#if defined(DP_CON_MON)
#ifndef REMOVE_PKT_LOG
#include <pktlog_ac_api.h>
#include <pktlog_ac.h>
#endif
#endif
#ifdef WLAN_FEATURE_DP_EVENT_HISTORY
/*
* If WLAN_CFG_INT_NUM_CONTEXTS is changed, HIF_NUM_INT_CONTEXTS
* also should be updated accordingly
*/
QDF_COMPILE_TIME_ASSERT(num_intr_grps,
HIF_NUM_INT_CONTEXTS == WLAN_CFG_INT_NUM_CONTEXTS);
/*
* HIF_EVENT_HIST_MAX should always be power of 2
*/
QDF_COMPILE_TIME_ASSERT(hif_event_history_size,
(HIF_EVENT_HIST_MAX & (HIF_EVENT_HIST_MAX - 1)) == 0);
#endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
/*
* If WLAN_CFG_INT_NUM_CONTEXTS is changed,
* WLAN_CFG_INT_NUM_CONTEXTS_MAX should also be updated
*/
QDF_COMPILE_TIME_ASSERT(wlan_cfg_num_int_ctxs,
WLAN_CFG_INT_NUM_CONTEXTS_MAX >=
WLAN_CFG_INT_NUM_CONTEXTS);
#ifdef WLAN_RX_PKT_CAPTURE_ENH
#include "dp_rx_mon_feature.h"
#else
/*
* dp_config_enh_rx_capture()- API to enable/disable enhanced rx capture
* @pdev_handle: DP_PDEV handle
* @val: user provided value
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_config_enh_rx_capture(struct cdp_pdev *pdev_handle, uint8_t val)
{
return QDF_STATUS_E_INVAL;
}
#endif /* WLAN_RX_PKT_CAPTURE_ENH */
#ifdef WLAN_TX_PKT_CAPTURE_ENH
#include "dp_tx_capture.h"
#else
/*
* dp_config_enh_tx_capture()- API to enable/disable enhanced tx capture
* @pdev_handle: DP_PDEV handle
* @val: user provided value
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_config_enh_tx_capture(struct cdp_pdev *pdev_handle, uint8_t val)
{
return QDF_STATUS_E_INVAL;
}
#endif
void *dp_soc_init(void *dpsoc, HTC_HANDLE htc_handle,
struct hif_opaque_softc *hif_handle);
static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force);
static struct dp_soc *
dp_soc_attach(struct cdp_ctrl_objmgr_psoc *ctrl_psoc, HTC_HANDLE htc_handle,
qdf_device_t qdf_osdev,
struct ol_if_ops *ol_ops, uint16_t device_id);
static void dp_pktlogmod_exit(struct dp_pdev *handle);
static void *dp_peer_create_wifi3(struct cdp_vdev *vdev_handle,
uint8_t *peer_mac_addr);
static void dp_peer_delete_wifi3(void *peer_handle, uint32_t bitmap);
static void dp_ppdu_ring_reset(struct dp_pdev *pdev);
static void dp_ppdu_ring_cfg(struct dp_pdev *pdev);
static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle,
bool unmap_only);
#ifdef ENABLE_VERBOSE_DEBUG
bool is_dp_verbose_debug_enabled;
#endif
static uint8_t dp_soc_ring_if_nss_offloaded(struct dp_soc *soc,
enum hal_ring_type ring_type,
int ring_num);
#define DP_INTR_POLL_TIMER_MS 10
/* Generic AST entry aging timer value */
#define DP_AST_AGING_TIMER_DEFAULT_MS 1000
#define DP_MCS_LENGTH (6*MAX_MCS)
#define DP_CURR_FW_STATS_AVAIL 19
#define DP_HTT_DBG_EXT_STATS_MAX 256
#define DP_MAX_SLEEP_TIME 100
#ifndef QCA_WIFI_3_0_EMU
#define SUSPEND_DRAIN_WAIT 500
#else
#define SUSPEND_DRAIN_WAIT 3000
#endif
#ifdef IPA_OFFLOAD
/* Exclude IPA rings from the interrupt context */
#define TX_RING_MASK_VAL 0xb
#define RX_RING_MASK_VAL 0x7
#else
#define TX_RING_MASK_VAL 0xF
#define RX_RING_MASK_VAL 0xF
#endif
#define STR_MAXLEN 64
#define RNG_ERR "SRNG setup failed for"
/* Threshold for peer's cached buf queue beyond which frames are dropped */
#define DP_RX_CACHED_BUFQ_THRESH 64
/**
* default_dscp_tid_map - Default DSCP-TID mapping
*
* DSCP TID
* 000000 0
* 001000 1
* 010000 2
* 011000 3
* 100000 4
* 101000 5
* 110000 6
* 111000 7
*/
static uint8_t default_dscp_tid_map[DSCP_TID_MAP_MAX] = {
0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7,
};
/**
* default_pcp_tid_map - Default PCP-TID mapping
*
* PCP TID
* 000 0
* 001 1
* 010 2
* 011 3
* 100 4
* 101 5
* 110 6
* 111 7
*/
static uint8_t default_pcp_tid_map[PCP_TID_MAP_MAX] = {
0, 1, 2, 3, 4, 5, 6, 7,
};
/**
* @brief Cpu to tx ring map
*/
uint8_t
dp_cpu_ring_map[DP_NSS_CPU_RING_MAP_MAX][WLAN_CFG_INT_NUM_CONTEXTS_MAX] = {
{0x0, 0x1, 0x2, 0x0, 0x0, 0x1, 0x2, 0x0, 0x0, 0x1, 0x2},
{0x1, 0x2, 0x1, 0x2, 0x1, 0x2, 0x1, 0x2, 0x1, 0x2, 0x1},
{0x0, 0x2, 0x0, 0x2, 0x0, 0x2, 0x0, 0x2, 0x0, 0x2, 0x0},
{0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2},
{0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3},
#ifdef WLAN_TX_PKT_CAPTURE_ENH
{0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1}
#endif
};
/**
* @brief Select the type of statistics
*/
enum dp_stats_type {
STATS_FW = 0,
STATS_HOST = 1,
STATS_TYPE_MAX = 2,
};
/**
* @brief General Firmware statistics options
*
*/
enum dp_fw_stats {
TXRX_FW_STATS_INVALID = -1,
};
/**
* dp_stats_mapping_table - Firmware and Host statistics
* currently supported
*/
const int dp_stats_mapping_table[][STATS_TYPE_MAX] = {
{HTT_DBG_EXT_STATS_RESET, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_RX, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_HWQ, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_SCHED, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_ERROR, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TQM, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TQM_CMDQ, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TX_DE_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_RATE, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_RX_RATE, TXRX_HOST_STATS_INVALID},
{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TX_SELFGEN_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TX_MU_HWQ, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_RING_IF_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_SRNG_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_SFM_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_MU, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_ACTIVE_PEERS_LIST, TXRX_HOST_STATS_INVALID},
/* Last ENUM for HTT FW STATS */
{DP_HTT_DBG_EXT_STATS_MAX, TXRX_HOST_STATS_INVALID},
{TXRX_FW_STATS_INVALID, TXRX_CLEAR_STATS},
{TXRX_FW_STATS_INVALID, TXRX_RX_RATE_STATS},
{TXRX_FW_STATS_INVALID, TXRX_TX_RATE_STATS},
{TXRX_FW_STATS_INVALID, TXRX_TX_HOST_STATS},
{TXRX_FW_STATS_INVALID, TXRX_RX_HOST_STATS},
{TXRX_FW_STATS_INVALID, TXRX_AST_STATS},
{TXRX_FW_STATS_INVALID, TXRX_SRNG_PTR_STATS},
{TXRX_FW_STATS_INVALID, TXRX_RX_MON_STATS},
{TXRX_FW_STATS_INVALID, TXRX_REO_QUEUE_STATS},
{TXRX_FW_STATS_INVALID, TXRX_SOC_CFG_PARAMS},
{TXRX_FW_STATS_INVALID, TXRX_PDEV_CFG_PARAMS},
{TXRX_FW_STATS_INVALID, TXRX_SOC_INTERRUPT_STATS},
};
/* MCL specific functions */
#if defined(DP_CON_MON)
/**
* dp_soc_get_mon_mask_for_interrupt_mode() - get mon mode mask for intr mode
* @soc: pointer to dp_soc handle
* @intr_ctx_num: interrupt context number for which mon mask is needed
*
* For MCL, monitor mode rings are being processed in timer contexts (polled).
* This function is returning 0, since in interrupt mode(softirq based RX),
* we donot want to process monitor mode rings in a softirq.
*
* So, in case packet log is enabled for SAP/STA/P2P modes,
* regular interrupt processing will not process monitor mode rings. It would be
* done in a separate timer context.
*
* Return: 0
*/
static inline
uint32_t dp_soc_get_mon_mask_for_interrupt_mode(struct dp_soc *soc, int intr_ctx_num)
{
return 0;
}
/*
* dp_service_mon_rings()- timer to reap monitor rings
* reqd as we are not getting ppdu end interrupts
* @arg: SoC Handle
*
* Return:
*
*/
static void dp_service_mon_rings(void *arg)
{
struct dp_soc *soc = (struct dp_soc *)arg;
int ring = 0, work_done, mac_id;
struct dp_pdev *pdev = NULL;
for (ring = 0 ; ring < MAX_PDEV_CNT; ring++) {
pdev = soc->pdev_list[ring];
if (!pdev)
continue;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
work_done = dp_mon_process(soc, mac_for_pdev,
QCA_NAPI_BUDGET);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("Reaped %d descs from Monitor rings"),
work_done);
}
}
qdf_timer_mod(&soc->mon_reap_timer, DP_INTR_POLL_TIMER_MS);
}
#ifndef REMOVE_PKT_LOG
/**
* dp_pkt_log_init() - API to initialize packet log
* @soc_hdl: Datapath soc handle
* @pdev_id: id of data path pdev handle
* @scn: HIF context
*
* Return: none
*/
void dp_pkt_log_init(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, void *scn)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *handle =
dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!handle) {
dp_err("pdev handle is NULL");
return;
}
if (handle->pkt_log_init) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: Packet log not initialized", __func__);
return;
}
pktlog_sethandle(&handle->pl_dev, scn);
pktlog_set_callback_regtype(PKTLOG_DEFAULT_CALLBACK_REGISTRATION);
if (pktlogmod_init(scn)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: pktlogmod_init failed", __func__);
handle->pkt_log_init = false;
} else {
handle->pkt_log_init = true;
}
}
/**
* dp_pkt_log_con_service() - connect packet log service
* @soc_hdl: Datapath soc handle
* @pdev_id: id of data path pdev handle
* @scn: device context
*
* Return: none
*/
static void dp_pkt_log_con_service(struct cdp_soc_t *soc_hdl,
uint8_t pdev_id, void *scn)
{
dp_pkt_log_init(soc_hdl, pdev_id, scn);
pktlog_htc_attach();
}
/**
* dp_get_num_rx_contexts() - get number of RX contexts
* @soc_hdl: cdp opaque soc handle
*
* Return: number of RX contexts
*/
static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
{
int i;
int num_rx_contexts = 0;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++)
if (wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, i))
num_rx_contexts++;
return num_rx_contexts;
}
/**
* dp_pktlogmod_exit() - API to cleanup pktlog info
* @pdev: Pdev handle
*
* Return: none
*/
static void dp_pktlogmod_exit(struct dp_pdev *pdev)
{
struct dp_soc *soc = pdev->soc;
struct hif_opaque_softc *scn = soc->hif_handle;
if (!scn) {
dp_err("Invalid hif(scn) handle");
return;
}
/* stop mon_reap_timer if it has been started */
if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_DISABLED &&
soc->reap_timer_init)
qdf_timer_sync_cancel(&soc->mon_reap_timer);
pktlogmod_exit(scn);
pdev->pkt_log_init = false;
}
#endif
#else
static void dp_pktlogmod_exit(struct dp_pdev *handle) { }
/**
* dp_soc_get_mon_mask_for_interrupt_mode() - get mon mode mask for intr mode
* @soc: pointer to dp_soc handle
* @intr_ctx_num: interrupt context number for which mon mask is needed
*
* Return: mon mask value
*/
static inline
uint32_t dp_soc_get_mon_mask_for_interrupt_mode(struct dp_soc *soc, int intr_ctx_num)
{
return wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
}
#endif
/**
* dp_get_dp_vdev_from_cdp_vdev() - get dp_vdev from cdp_vdev by type-casting
* @cdp_opaque_vdev: pointer to cdp_vdev
*
* Return: pointer to dp_vdev
*/
static
struct dp_vdev *dp_get_dp_vdev_from_cdp_vdev(struct cdp_vdev *cdp_opaque_vdev)
{
return (struct dp_vdev *)cdp_opaque_vdev;
}
static int dp_peer_add_ast_wifi3(struct cdp_soc_t *soc_hdl,
struct cdp_peer *peer_hdl,
uint8_t *mac_addr,
enum cdp_txrx_ast_entry_type type,
uint32_t flags)
{
return dp_peer_add_ast((struct dp_soc *)soc_hdl,
(struct dp_peer *)peer_hdl,
mac_addr,
type,
flags);
}
static int dp_peer_update_ast_wifi3(struct cdp_soc_t *soc_hdl,
struct cdp_peer *peer_hdl,
uint8_t *wds_macaddr,
uint32_t flags)
{
int status = -1;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_ast_entry *ast_entry = NULL;
struct dp_peer *peer = (struct dp_peer *)peer_hdl;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr,
peer->vdev->pdev->pdev_id);
if (ast_entry) {
status = dp_peer_update_ast(soc,
peer,
ast_entry, flags);
}
qdf_spin_unlock_bh(&soc->ast_lock);
return status;
}
/*
* dp_wds_reset_ast_wifi3() - Reset the is_active param for ast entry
* @soc_handle: Datapath SOC handle
* @wds_macaddr: WDS entry MAC Address
* Return: None
*/
static void dp_wds_reset_ast_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t *wds_macaddr,
uint8_t *peer_mac_addr,
void *vdev_handle)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_ast_entry *ast_entry = NULL;
struct dp_ast_entry *tmp_ast_entry;
struct dp_peer *peer;
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
if (!vdev)
return;
pdev = vdev->pdev;
if (peer_mac_addr) {
peer = dp_peer_find_hash_find(soc, peer_mac_addr,
0, vdev->vdev_id);
if (!peer)
return;
qdf_spin_lock_bh(&soc->ast_lock);
DP_PEER_ITERATE_ASE_LIST(peer, ast_entry, tmp_ast_entry) {
if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
(ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
dp_peer_del_ast(soc, ast_entry);
}
qdf_spin_unlock_bh(&soc->ast_lock);
dp_peer_unref_delete(peer);
} else if (wds_macaddr) {
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr,
pdev->pdev_id);
if (ast_entry) {
if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
(ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
dp_peer_del_ast(soc, ast_entry);
}
qdf_spin_unlock_bh(&soc->ast_lock);
}
}
/*
* dp_wds_reset_ast_table_wifi3() - Reset the is_active param for all ast entry
* @soc: Datapath SOC handle
*
* Return: None
*/
static void dp_wds_reset_ast_table_wifi3(struct cdp_soc_t *soc_hdl,
void *vdev_hdl)
{
struct dp_soc *soc = (struct dp_soc *) soc_hdl;
struct dp_pdev *pdev;
struct dp_vdev *vdev;
struct dp_peer *peer;
struct dp_ast_entry *ase, *temp_ase;
int i;
qdf_spin_lock_bh(&soc->ast_lock);
for (i = 0; i < MAX_PDEV_CNT && soc->pdev_list[i]; i++) {
pdev = soc->pdev_list[i];
qdf_spin_lock_bh(&pdev->vdev_list_lock);
DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
DP_VDEV_ITERATE_PEER_LIST(vdev, peer) {
DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
if ((ase->type ==
CDP_TXRX_AST_TYPE_WDS_HM) ||
(ase->type ==
CDP_TXRX_AST_TYPE_WDS_HM_SEC))
dp_peer_del_ast(soc, ase);
}
}
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
}
qdf_spin_unlock_bh(&soc->ast_lock);
}
/*
* dp_wds_flush_ast_table_wifi3() - Delete all wds and hmwds ast entry
* @soc: Datapath SOC handle
*
* Return: None
*/
static void dp_wds_flush_ast_table_wifi3(struct cdp_soc_t *soc_hdl)
{
struct dp_soc *soc = (struct dp_soc *) soc_hdl;
struct dp_pdev *pdev;
struct dp_vdev *vdev;
struct dp_peer *peer;
struct dp_ast_entry *ase, *temp_ase;
int i;
qdf_spin_lock_bh(&soc->ast_lock);
for (i = 0; i < MAX_PDEV_CNT && soc->pdev_list[i]; i++) {
pdev = soc->pdev_list[i];
qdf_spin_lock_bh(&pdev->vdev_list_lock);
DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
DP_VDEV_ITERATE_PEER_LIST(vdev, peer) {
DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
if ((ase->type ==
CDP_TXRX_AST_TYPE_STATIC) ||
(ase->type ==
CDP_TXRX_AST_TYPE_SELF) ||
(ase->type ==
CDP_TXRX_AST_TYPE_STA_BSS))
continue;
dp_peer_del_ast(soc, ase);
}
}
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
}
qdf_spin_unlock_bh(&soc->ast_lock);
}
/**
* dp_peer_get_ast_info_by_soc_wifi3() - search the soc AST hash table
* and return ast entry information
* of first ast entry found in the
* table with given mac address
*
* @soc : data path soc handle
* @ast_mac_addr : AST entry mac address
* @ast_entry_info : ast entry information
*
* return : true if ast entry found with ast_mac_addr
* false if ast entry not found
*/
static bool dp_peer_get_ast_info_by_soc_wifi3
(struct cdp_soc_t *soc_hdl,
uint8_t *ast_mac_addr,
struct cdp_ast_entry_info *ast_entry_info)
{
struct dp_ast_entry *ast_entry = NULL;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_soc(soc, ast_mac_addr);
if (!ast_entry || !ast_entry->peer) {
qdf_spin_unlock_bh(&soc->ast_lock);
return false;
}
if (ast_entry->delete_in_progress && !ast_entry->callback) {
qdf_spin_unlock_bh(&soc->ast_lock);
return false;
}
ast_entry_info->type = ast_entry->type;
ast_entry_info->pdev_id = ast_entry->pdev_id;
ast_entry_info->vdev_id = ast_entry->peer->vdev->vdev_id;
ast_entry_info->peer_id = ast_entry->peer->peer_ids[0];
qdf_mem_copy(&ast_entry_info->peer_mac_addr[0],
&ast_entry->peer->mac_addr.raw[0],
QDF_MAC_ADDR_SIZE);
qdf_spin_unlock_bh(&soc->ast_lock);
return true;
}
/**
* dp_peer_get_ast_info_by_pdevid_wifi3() - search the soc AST hash table
* and return ast entry information
* if mac address and pdev_id matches
*
* @soc : data path soc handle
* @ast_mac_addr : AST entry mac address
* @pdev_id : pdev_id
* @ast_entry_info : ast entry information
*
* return : true if ast entry found with ast_mac_addr
* false if ast entry not found
*/
static bool dp_peer_get_ast_info_by_pdevid_wifi3
(struct cdp_soc_t *soc_hdl,
uint8_t *ast_mac_addr,
uint8_t pdev_id,
struct cdp_ast_entry_info *ast_entry_info)
{
struct dp_ast_entry *ast_entry;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, ast_mac_addr, pdev_id);
if (!ast_entry || !ast_entry->peer) {
qdf_spin_unlock_bh(&soc->ast_lock);
return false;
}
if (ast_entry->delete_in_progress && !ast_entry->callback) {
qdf_spin_unlock_bh(&soc->ast_lock);
return false;
}
ast_entry_info->type = ast_entry->type;
ast_entry_info->pdev_id = ast_entry->pdev_id;
ast_entry_info->vdev_id = ast_entry->peer->vdev->vdev_id;
ast_entry_info->peer_id = ast_entry->peer->peer_ids[0];
qdf_mem_copy(&ast_entry_info->peer_mac_addr[0],
&ast_entry->peer->mac_addr.raw[0],
QDF_MAC_ADDR_SIZE);
qdf_spin_unlock_bh(&soc->ast_lock);
return true;
}
/**
* dp_peer_ast_entry_del_by_soc() - delete the ast entry from soc AST hash table
* with given mac address
*
* @soc : data path soc handle
* @ast_mac_addr : AST entry mac address
* @callback : callback function to called on ast delete response from FW
* @cookie : argument to be passed to callback
*
* return : QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
* is sent
* QDF_STATUS_E_INVAL false if ast entry not found
*/
static QDF_STATUS dp_peer_ast_entry_del_by_soc(struct cdp_soc_t *soc_handle,
uint8_t *mac_addr,
txrx_ast_free_cb callback,
void *cookie)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
struct dp_ast_entry *ast_entry = NULL;
txrx_ast_free_cb cb = NULL;
void *arg = NULL;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_soc(soc, mac_addr);
if (!ast_entry) {
qdf_spin_unlock_bh(&soc->ast_lock);
return -QDF_STATUS_E_INVAL;
}
if (ast_entry->callback) {
cb = ast_entry->callback;
arg = ast_entry->cookie;
}
ast_entry->callback = callback;
ast_entry->cookie = cookie;
/*
* if delete_in_progress is set AST delete is sent to target
* and host is waiting for response should not send delete
* again
*/
if (!ast_entry->delete_in_progress)
dp_peer_del_ast(soc, ast_entry);
qdf_spin_unlock_bh(&soc->ast_lock);
if (cb) {
cb(soc->ctrl_psoc,
dp_soc_to_cdp_soc(soc),
arg,
CDP_TXRX_AST_DELETE_IN_PROGRESS);
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_peer_ast_entry_del_by_pdev() - delete the ast entry from soc AST hash
* table if mac address and pdev_id matches
*
* @soc : data path soc handle
* @ast_mac_addr : AST entry mac address
* @pdev_id : pdev id
* @callback : callback function to called on ast delete response from FW
* @cookie : argument to be passed to callback
*
* return : QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
* is sent
* QDF_STATUS_E_INVAL false if ast entry not found
*/
static QDF_STATUS dp_peer_ast_entry_del_by_pdev(struct cdp_soc_t *soc_handle,
uint8_t *mac_addr,
uint8_t pdev_id,
txrx_ast_free_cb callback,
void *cookie)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
struct dp_ast_entry *ast_entry;
txrx_ast_free_cb cb = NULL;
void *arg = NULL;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, mac_addr, pdev_id);
if (!ast_entry) {
qdf_spin_unlock_bh(&soc->ast_lock);
return -QDF_STATUS_E_INVAL;
}
if (ast_entry->callback) {
cb = ast_entry->callback;
arg = ast_entry->cookie;
}
ast_entry->callback = callback;
ast_entry->cookie = cookie;
/*
* if delete_in_progress is set AST delete is sent to target
* and host is waiting for response should not sent delete
* again
*/
if (!ast_entry->delete_in_progress)
dp_peer_del_ast(soc, ast_entry);
qdf_spin_unlock_bh(&soc->ast_lock);
if (cb) {
cb(soc->ctrl_psoc,
dp_soc_to_cdp_soc(soc),
arg,
CDP_TXRX_AST_DELETE_IN_PROGRESS);
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_srng_find_ring_in_mask() - find which ext_group a ring belongs
* @ring_num: ring num of the ring being queried
* @grp_mask: the grp_mask array for the ring type in question.
*
* The grp_mask array is indexed by group number and the bit fields correspond
* to ring numbers. We are finding which interrupt group a ring belongs to.
*
* Return: the index in the grp_mask array with the ring number.
* -QDF_STATUS_E_NOENT if no entry is found
*/
static int dp_srng_find_ring_in_mask(int ring_num, int *grp_mask)
{
int ext_group_num;
int mask = 1 << ring_num;
for (ext_group_num = 0; ext_group_num < WLAN_CFG_INT_NUM_CONTEXTS;
ext_group_num++) {
if (mask & grp_mask[ext_group_num])
return ext_group_num;
}
return -QDF_STATUS_E_NOENT;
}
static int dp_srng_calculate_msi_group(struct dp_soc *soc,
enum hal_ring_type ring_type,
int ring_num)
{
int *grp_mask;
switch (ring_type) {
case WBM2SW_RELEASE:
/* dp_tx_comp_handler - soc->tx_comp_ring */
if (ring_num < 3)
grp_mask = &soc->wlan_cfg_ctx->int_tx_ring_mask[0];
/* dp_rx_wbm_err_process - soc->rx_rel_ring */
else if (ring_num == 3) {
/* sw treats this as a separate ring type */
grp_mask = &soc->wlan_cfg_ctx->
int_rx_wbm_rel_ring_mask[0];
ring_num = 0;
} else {
qdf_assert(0);
return -QDF_STATUS_E_NOENT;
}
break;
case REO_EXCEPTION:
/* dp_rx_err_process - &soc->reo_exception_ring */
grp_mask = &soc->wlan_cfg_ctx->int_rx_err_ring_mask[0];
break;
case REO_DST:
/* dp_rx_process - soc->reo_dest_ring */
grp_mask = &soc->wlan_cfg_ctx->int_rx_ring_mask[0];
break;
case REO_STATUS:
/* dp_reo_status_ring_handler - soc->reo_status_ring */
grp_mask = &soc->wlan_cfg_ctx->int_reo_status_ring_mask[0];
break;
/* dp_rx_mon_status_srng_process - pdev->rxdma_mon_status_ring*/
case RXDMA_MONITOR_STATUS:
/* dp_rx_mon_dest_process - pdev->rxdma_mon_dst_ring */
case RXDMA_MONITOR_DST:
/* dp_mon_process */
grp_mask = &soc->wlan_cfg_ctx->int_rx_mon_ring_mask[0];
break;
case RXDMA_DST:
/* dp_rxdma_err_process */
grp_mask = &soc->wlan_cfg_ctx->int_rxdma2host_ring_mask[0];
break;
case RXDMA_BUF:
grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_ring_mask[0];
break;
case RXDMA_MONITOR_BUF:
/* TODO: support low_thresh interrupt */
return -QDF_STATUS_E_NOENT;
break;
case TCL_DATA:
case TCL_CMD:
case REO_CMD:
case SW2WBM_RELEASE:
case WBM_IDLE_LINK:
/* normally empty SW_TO_HW rings */
return -QDF_STATUS_E_NOENT;
break;
case TCL_STATUS:
case REO_REINJECT:
/* misc unused rings */
return -QDF_STATUS_E_NOENT;
break;
case CE_SRC:
case CE_DST:
case CE_DST_STATUS:
/* CE_rings - currently handled by hif */
default:
return -QDF_STATUS_E_NOENT;
break;
}
return dp_srng_find_ring_in_mask(ring_num, grp_mask);
}
static void dp_srng_msi_setup(struct dp_soc *soc, struct hal_srng_params
*ring_params, int ring_type, int ring_num)
{
int msi_group_number;
int msi_data_count;
int ret;
uint32_t msi_data_start, msi_irq_start, addr_low, addr_high;
ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
&msi_data_count, &msi_data_start,
&msi_irq_start);
if (ret)
return;
msi_group_number = dp_srng_calculate_msi_group(soc, ring_type,
ring_num);
if (msi_group_number < 0) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW,
FL("ring not part of an ext_group; ring_type: %d,ring_num %d"),
ring_type, ring_num);
ring_params->msi_addr = 0;
ring_params->msi_data = 0;
return;
}
if (msi_group_number > msi_data_count) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_WARN,
FL("2 msi_groups will share an msi; msi_group_num %d"),
msi_group_number);
QDF_ASSERT(0);
}
pld_get_msi_address(soc->osdev->dev, &addr_low, &addr_high);
ring_params->msi_addr = addr_low;
ring_params->msi_addr |= (qdf_dma_addr_t)(((uint64_t)addr_high) << 32);
ring_params->msi_data = (msi_group_number % msi_data_count)
+ msi_data_start;
ring_params->flags |= HAL_SRNG_MSI_INTR;
}
/**
* dp_print_ast_stats() - Dump AST table contents
* @soc: Datapath soc handle
*
* return void
*/
#ifdef FEATURE_AST
void dp_print_ast_stats(struct dp_soc *soc)
{
uint8_t i;
uint8_t num_entries = 0;
struct dp_vdev *vdev;
struct dp_pdev *pdev;
struct dp_peer *peer;
struct dp_ast_entry *ase, *tmp_ase;
char type[CDP_TXRX_AST_TYPE_MAX][10] = {
"NONE", "STATIC", "SELF", "WDS", "MEC", "HMWDS", "BSS",
"DA", "HMWDS_SEC"};
DP_PRINT_STATS("AST Stats:");
DP_PRINT_STATS(" Entries Added = %d", soc->stats.ast.added);
DP_PRINT_STATS(" Entries Deleted = %d", soc->stats.ast.deleted);
DP_PRINT_STATS(" Entries Agedout = %d", soc->stats.ast.aged_out);
DP_PRINT_STATS(" Entries MAP ERR = %d", soc->stats.ast.map_err);
DP_PRINT_STATS("AST Table:");
qdf_spin_lock_bh(&soc->ast_lock);
for (i = 0; i < MAX_PDEV_CNT && soc->pdev_list[i]; i++) {
pdev = soc->pdev_list[i];
qdf_spin_lock_bh(&pdev->vdev_list_lock);
DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
DP_VDEV_ITERATE_PEER_LIST(vdev, peer) {
DP_PEER_ITERATE_ASE_LIST(peer, ase, tmp_ase) {
DP_PRINT_STATS("%6d mac_addr = %pM"
" peer_mac_addr = %pM"
" peer_id = %u"
" type = %s"
" next_hop = %d"
" is_active = %d"
" ast_idx = %d"
" ast_hash = %d"
" delete_in_progress = %d"
" pdev_id = %d"
" vdev_id = %d",
++num_entries,
ase->mac_addr.raw,
ase->peer->mac_addr.raw,
ase->peer->peer_ids[0],
type[ase->type],
ase->next_hop,
ase->is_active,
ase->ast_idx,
ase->ast_hash_value,
ase->delete_in_progress,
ase->pdev_id,
vdev->vdev_id);
}
}
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
}
qdf_spin_unlock_bh(&soc->ast_lock);
}
#else
void dp_print_ast_stats(struct dp_soc *soc)
{
DP_PRINT_STATS("AST Stats not available.Enable FEATURE_AST");
return;
}
#endif
/**
* dp_print_peer_table() - Dump all Peer stats
* @vdev: Datapath Vdev handle
*
* return void
*/
static void dp_print_peer_table(struct dp_vdev *vdev)
{
struct dp_peer *peer = NULL;
DP_PRINT_STATS("Dumping Peer Table Stats:");
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
if (!peer) {
DP_PRINT_STATS("Invalid Peer");
return;
}
DP_PRINT_STATS(" peer_mac_addr = %pM"
" nawds_enabled = %d"
" bss_peer = %d"
" wds_enabled = %d"
" tx_cap_enabled = %d"
" rx_cap_enabled = %d"
" delete in progress = %d"
" peer id = %d",
peer->mac_addr.raw,
peer->nawds_enabled,
peer->bss_peer,
peer->wds_enabled,
peer->tx_cap_enabled,
peer->rx_cap_enabled,
peer->delete_in_progress,
peer->peer_ids[0]);
}
}
#ifdef WLAN_DP_PER_RING_TYPE_CONFIG
/**
* dp_srng_configure_interrupt_thresholds() - Retrieve interrupt
* threshold values from the wlan_srng_cfg table for each ring type
* @soc: device handle
* @ring_params: per ring specific parameters
* @ring_type: Ring type
* @ring_num: Ring number for a given ring type
*
* Fill the ring params with the interrupt threshold
* configuration parameters available in the per ring type wlan_srng_cfg
* table.
*
* Return: None
*/
static void
dp_srng_configure_interrupt_thresholds(struct dp_soc *soc,
struct hal_srng_params *ring_params,
int ring_type, int ring_num,
int num_entries)
{
if (ring_type == WBM2SW_RELEASE && (ring_num == 3)) {
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_other(soc->wlan_cfg_ctx);
ring_params->intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_other(soc->wlan_cfg_ctx);
} else {
ring_params->intr_timer_thres_us =
soc->wlan_srng_cfg[ring_type].timer_threshold;
ring_params->intr_batch_cntr_thres_entries =
soc->wlan_srng_cfg[ring_type].batch_count_threshold;
}
ring_params->low_threshold =
soc->wlan_srng_cfg[ring_type].low_threshold;
if (ring_params->low_threshold)
ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
}
#else
static void
dp_srng_configure_interrupt_thresholds(struct dp_soc *soc,
struct hal_srng_params *ring_params,
int ring_type, int ring_num,
int num_entries)
{
if (ring_type == REO_DST) {
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
ring_params->intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_rx(soc->wlan_cfg_ctx);
} else if (ring_type == WBM2SW_RELEASE && (ring_num < 3)) {
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_tx(soc->wlan_cfg_ctx);
ring_params->intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_tx(soc->wlan_cfg_ctx);
} else {
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_other(soc->wlan_cfg_ctx);
ring_params->intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_other(soc->wlan_cfg_ctx);
}
/* Enable low threshold interrupts for rx buffer rings (regular and
* monitor buffer rings.
* TODO: See if this is required for any other ring
*/
if ((ring_type == RXDMA_BUF) || (ring_type == RXDMA_MONITOR_BUF) ||
(ring_type == RXDMA_MONITOR_STATUS)) {
/* TODO: Setting low threshold to 1/8th of ring size
* see if this needs to be configurable
*/
ring_params->low_threshold = num_entries >> 3;
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
ring_params->intr_batch_cntr_thres_entries = 0;
}
}
#endif
/**
* dp_srng_setup() - Internal function to setup SRNG rings used by data path
* @soc: datapath soc handle
* @srng: srng handle
* @ring_type: ring that needs to be configured
* @mac_id: mac number
* @num_entries: Total number of entries for a given ring
*
* Return: non-zero - failure/zero - success
*/
static int dp_srng_setup(struct dp_soc *soc, struct dp_srng *srng,
int ring_type, int ring_num, int mac_id,
uint32_t num_entries, bool cached)
{
hal_soc_handle_t hal_soc = soc->hal_soc;
uint32_t entry_size = hal_srng_get_entrysize(hal_soc, ring_type);
/* TODO: See if we should get align size from hal */
uint32_t ring_base_align = 8;
struct hal_srng_params ring_params;
uint32_t max_entries = hal_srng_max_entries(hal_soc, ring_type);
/* TODO: Currently hal layer takes care of endianness related settings.
* See if these settings need to passed from DP layer
*/
ring_params.flags = 0;
num_entries = (num_entries > max_entries) ? max_entries : num_entries;
srng->hal_srng = NULL;
srng->alloc_size = num_entries * entry_size;
srng->num_entries = num_entries;
if (!dp_is_soc_reinit(soc)) {
if (!cached) {
ring_params.ring_base_vaddr =
qdf_aligned_mem_alloc_consistent(
soc->osdev, &srng->alloc_size,
&srng->base_vaddr_unaligned,
&srng->base_paddr_unaligned,
&ring_params.ring_base_paddr,
ring_base_align);
} else {
ring_params.ring_base_vaddr = qdf_aligned_malloc(
&srng->alloc_size,
&srng->base_vaddr_unaligned,
&srng->base_paddr_unaligned,
&ring_params.ring_base_paddr,
ring_base_align);
}
if (!ring_params.ring_base_vaddr) {
dp_err("alloc failed - ring_type: %d, ring_num %d",
ring_type, ring_num);
return QDF_STATUS_E_NOMEM;
}
}
ring_params.ring_base_paddr = (qdf_dma_addr_t)qdf_align(
(unsigned long)(srng->base_paddr_unaligned),
ring_base_align);
ring_params.ring_base_vaddr = (void *)(
(unsigned long)(srng->base_vaddr_unaligned) +
((unsigned long)(ring_params.ring_base_paddr) -
(unsigned long)(srng->base_paddr_unaligned)));
qdf_assert_always(ring_params.ring_base_vaddr);
ring_params.num_entries = num_entries;
dp_verbose_debug("Ring type: %d, num:%d vaddr %pK paddr %pK entries %u",
ring_type, ring_num,
(void *)ring_params.ring_base_vaddr,
(void *)ring_params.ring_base_paddr,
ring_params.num_entries);
if (soc->intr_mode == DP_INTR_MSI) {
dp_srng_msi_setup(soc, &ring_params, ring_type, ring_num);
dp_verbose_debug("Using MSI for ring_type: %d, ring_num %d",
ring_type, ring_num);
} else {
ring_params.msi_data = 0;
ring_params.msi_addr = 0;
dp_verbose_debug("Skipping MSI for ring_type: %d, ring_num %d",
ring_type, ring_num);
}
dp_srng_configure_interrupt_thresholds(soc, &ring_params,
ring_type, ring_num,
num_entries);
if (cached) {
ring_params.flags |= HAL_SRNG_CACHED_DESC;
srng->cached = 1;
}
srng->hal_srng = hal_srng_setup(hal_soc, ring_type, ring_num,
mac_id, &ring_params);
if (!srng->hal_srng) {
if (cached) {
qdf_mem_free(srng->base_vaddr_unaligned);
} else {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
srng->alloc_size,
srng->base_vaddr_unaligned,
srng->base_paddr_unaligned, 0);
}
}
return 0;
}
/*
* dp_srng_deinit() - Internal function to deinit SRNG rings used by data path
* @soc: DP SOC handle
* @srng: source ring structure
* @ring_type: type of ring
* @ring_num: ring number
*
* Return: None
*/
static void dp_srng_deinit(struct dp_soc *soc, struct dp_srng *srng,
int ring_type, int ring_num)
{
if (!srng->hal_srng) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Ring type: %d, num:%d not setup"),
ring_type, ring_num);
return;
}
hal_srng_cleanup(soc->hal_soc, srng->hal_srng);
srng->hal_srng = NULL;
}
/**
* dp_srng_cleanup - Internal function to cleanup SRNG rings used by data path
* Any buffers allocated and attached to ring entries are expected to be freed
* before calling this function.
*/
static void dp_srng_cleanup(struct dp_soc *soc, struct dp_srng *srng,
int ring_type, int ring_num)
{
if (!dp_is_soc_reinit(soc)) {
if (!srng->hal_srng && (srng->alloc_size == 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Ring type: %d, num:%d not setup"),
ring_type, ring_num);
return;
}
if (srng->hal_srng) {
hal_srng_cleanup(soc->hal_soc, srng->hal_srng);
srng->hal_srng = NULL;
}
}
if (srng->alloc_size && srng->base_vaddr_unaligned) {
if (!srng->cached) {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
srng->alloc_size,
srng->base_vaddr_unaligned,
srng->base_paddr_unaligned, 0);
} else {
qdf_mem_free(srng->base_vaddr_unaligned);
}
srng->alloc_size = 0;
srng->base_vaddr_unaligned = NULL;
}
srng->hal_srng = NULL;
}
/* TODO: Need this interface from HIF */
void *hif_get_hal_handle(struct hif_opaque_softc *hif_handle);
#ifdef WLAN_FEATURE_DP_EVENT_HISTORY
int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
hal_ring_handle_t hal_ring_hdl)
{
hal_soc_handle_t hal_soc = dp_soc->hal_soc;
uint32_t hp, tp;
uint8_t ring_id;
hal_get_sw_hptp(hal_soc, hal_ring_hdl, &tp, &hp);
ring_id = hal_srng_ring_id_get(hal_ring_hdl);
hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id,
ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_START);
return hal_srng_access_start(hal_soc, hal_ring_hdl);
}
void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
hal_ring_handle_t hal_ring_hdl)
{
hal_soc_handle_t hal_soc = dp_soc->hal_soc;
uint32_t hp, tp;
uint8_t ring_id;
hal_get_sw_hptp(hal_soc, hal_ring_hdl, &tp, &hp);
ring_id = hal_srng_ring_id_get(hal_ring_hdl);
hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id,
ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_END);
return hal_srng_access_end(hal_soc, hal_ring_hdl);
}
#endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
/*
* dp_service_srngs() - Top level interrupt handler for DP Ring interrupts
* @dp_ctx: DP SOC handle
* @budget: Number of frames/descriptors that can be processed in one shot
*
* Return: remaining budget/quota for the soc device
*/
static uint32_t dp_service_srngs(void *dp_ctx, uint32_t dp_budget)
{
struct dp_intr *int_ctx = (struct dp_intr *)dp_ctx;
struct dp_intr_stats *intr_stats = &int_ctx->intr_stats;
struct dp_soc *soc = int_ctx->soc;
int ring = 0;
uint32_t work_done = 0;
int budget = dp_budget;
uint8_t tx_mask = int_ctx->tx_ring_mask;
uint8_t rx_mask = int_ctx->rx_ring_mask;
uint8_t rx_err_mask = int_ctx->rx_err_ring_mask;
uint8_t rx_wbm_rel_mask = int_ctx->rx_wbm_rel_ring_mask;
uint8_t reo_status_mask = int_ctx->reo_status_ring_mask;
uint32_t remaining_quota = dp_budget;
struct dp_pdev *pdev = NULL;
int mac_id;
dp_verbose_debug("tx %x rx %x rx_err %x rx_wbm_rel %x reo_status %x rx_mon_ring %x host2rxdma %x rxdma2host %x\n",
tx_mask, rx_mask, rx_err_mask, rx_wbm_rel_mask,
reo_status_mask,
int_ctx->rx_mon_ring_mask,
int_ctx->host2rxdma_ring_mask,
int_ctx->rxdma2host_ring_mask);
/* Process Tx completion interrupts first to return back buffers */
while (tx_mask) {
if (tx_mask & 0x1) {
work_done = dp_tx_comp_handler(int_ctx,
soc,
soc->tx_comp_ring[ring].hal_srng,
ring, remaining_quota);
if (work_done) {
intr_stats->num_tx_ring_masks[ring]++;
dp_verbose_debug("tx mask 0x%x ring %d, budget %d, work_done %d",
tx_mask, ring, budget,
work_done);
}
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
tx_mask = tx_mask >> 1;
ring++;
}
/* Process REO Exception ring interrupt */
if (rx_err_mask) {
work_done = dp_rx_err_process(int_ctx, soc,
soc->reo_exception_ring.hal_srng,
remaining_quota);
if (work_done) {
intr_stats->num_rx_err_ring_masks++;
dp_verbose_debug("REO Exception Ring: work_done %d budget %d",
work_done, budget);
}
budget -= work_done;
if (budget <= 0) {
goto budget_done;
}
remaining_quota = budget;
}
/* Process Rx WBM release ring interrupt */
if (rx_wbm_rel_mask) {
work_done = dp_rx_wbm_err_process(int_ctx, soc,
soc->rx_rel_ring.hal_srng,
remaining_quota);
if (work_done) {
intr_stats->num_rx_wbm_rel_ring_masks++;
dp_verbose_debug("WBM Release Ring: work_done %d budget %d",
work_done, budget);
}
budget -= work_done;
if (budget <= 0) {
goto budget_done;
}
remaining_quota = budget;
}
/* Process Rx interrupts */
if (rx_mask) {
for (ring = 0; ring < soc->num_reo_dest_rings; ring++) {
if (!(rx_mask & (1 << ring)))
continue;
work_done = dp_rx_process(int_ctx,
soc->reo_dest_ring[ring].hal_srng,
ring,
remaining_quota);
if (work_done) {
intr_stats->num_rx_ring_masks[ring]++;
dp_verbose_debug("rx mask 0x%x ring %d, work_done %d budget %d",
rx_mask, ring,
work_done, budget);
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
}
}
if (reo_status_mask) {
if (dp_reo_status_ring_handler(int_ctx, soc))
int_ctx->intr_stats.num_reo_status_ring_masks++;
}
/* Process LMAC interrupts */
for (ring = 0 ; ring < MAX_PDEV_CNT; ring++) {
pdev = soc->pdev_list[ring];
if (!pdev)
continue;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
if (int_ctx->rx_mon_ring_mask & (1 << mac_for_pdev)) {
work_done = dp_mon_process(soc, mac_for_pdev,
remaining_quota);
if (work_done)
intr_stats->num_rx_mon_ring_masks++;
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
if (int_ctx->rxdma2host_ring_mask &
(1 << mac_for_pdev)) {
work_done = dp_rxdma_err_process(int_ctx, soc,
mac_for_pdev,
remaining_quota);
if (work_done)
intr_stats->num_rxdma2host_ring_masks++;
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
if (int_ctx->host2rxdma_ring_mask &
(1 << mac_for_pdev)) {
union dp_rx_desc_list_elem_t *desc_list = NULL;
union dp_rx_desc_list_elem_t *tail = NULL;
struct dp_srng *rx_refill_buf_ring =
&pdev->rx_refill_buf_ring;
intr_stats->num_host2rxdma_ring_masks++;
DP_STATS_INC(pdev, replenish.low_thresh_intrs,
1);
dp_rx_buffers_replenish(soc, mac_for_pdev,
rx_refill_buf_ring,
&soc->rx_desc_buf[mac_for_pdev],
0, &desc_list, &tail);
}
}
}
qdf_lro_flush(int_ctx->lro_ctx);
intr_stats->num_masks++;
budget_done:
return dp_budget - budget;
}
/* dp_interrupt_timer()- timer poll for interrupts
*
* @arg: SoC Handle
*
* Return:
*
*/
static void dp_interrupt_timer(void *arg)
{
struct dp_soc *soc = (struct dp_soc *) arg;
int i;
if (qdf_atomic_read(&soc->cmn_init_done)) {
for (i = 0;
i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++)
dp_service_srngs(&soc->intr_ctx[i], 0xffff);
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
}
}
/*
* dp_soc_attach_poll() - Register handlers for DP interrupts
* @txrx_soc: DP SOC handle
*
* Host driver will register for “DP_NUM_INTERRUPT_CONTEXTS” number of NAPI
* contexts. Each NAPI context will have a tx_ring_mask , rx_ring_mask ,and
* rx_monitor_ring mask to indicate the rings that are processed by the handler.
*
* Return: 0 for success, nonzero for failure.
*/
static QDF_STATUS dp_soc_attach_poll(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i;
soc->intr_mode = DP_INTR_POLL;
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) {
soc->intr_ctx[i].dp_intr_id = i;
soc->intr_ctx[i].tx_ring_mask =
wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rx_ring_mask =
wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rx_mon_ring_mask =
wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rx_err_ring_mask =
wlan_cfg_get_rx_err_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rx_wbm_rel_ring_mask =
wlan_cfg_get_rx_wbm_rel_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].reo_status_ring_mask =
wlan_cfg_get_reo_status_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rxdma2host_ring_mask =
wlan_cfg_get_rxdma2host_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].soc = soc;
soc->intr_ctx[i].lro_ctx = qdf_lro_init();
}
qdf_timer_init(soc->osdev, &soc->int_timer,
dp_interrupt_timer, (void *)soc,
QDF_TIMER_TYPE_WAKE_APPS);
return QDF_STATUS_SUCCESS;
}
/**
* dp_soc_set_interrupt_mode() - Set the interrupt mode in soc
* soc: DP soc handle
*
* Set the appropriate interrupt mode flag in the soc
*/
static void dp_soc_set_interrupt_mode(struct dp_soc *soc)
{
uint32_t msi_base_data, msi_vector_start;
int msi_vector_count, ret;
soc->intr_mode = DP_INTR_LEGACY;
if (!(soc->wlan_cfg_ctx->napi_enabled) ||
(soc->cdp_soc.ol_ops->get_con_mode &&
soc->cdp_soc.ol_ops->get_con_mode() == QDF_GLOBAL_MONITOR_MODE)) {
soc->intr_mode = DP_INTR_POLL;
} else {
ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
&msi_vector_count,
&msi_base_data,
&msi_vector_start);
if (ret)
return;
soc->intr_mode = DP_INTR_MSI;
}
}
static QDF_STATUS dp_soc_interrupt_attach(void *txrx_soc);
#if defined(DP_INTR_POLL_BOTH)
/*
* dp_soc_interrupt_attach_wrapper() - Register handlers for DP interrupts
* @txrx_soc: DP SOC handle
*
* Call the appropriate attach function based on the mode of operation.
* This is a WAR for enabling monitor mode.
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS dp_soc_interrupt_attach_wrapper(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
if (!(soc->wlan_cfg_ctx->napi_enabled) ||
(soc->cdp_soc.ol_ops->get_con_mode &&
soc->cdp_soc.ol_ops->get_con_mode() ==
QDF_GLOBAL_MONITOR_MODE)) {
dp_info("Poll mode");
return dp_soc_attach_poll(txrx_soc);
} else {
dp_info("Interrupt mode");
return dp_soc_interrupt_attach(txrx_soc);
}
}
#else
#if defined(DP_INTR_POLL_BASED) && DP_INTR_POLL_BASED
static QDF_STATUS dp_soc_interrupt_attach_wrapper(void *txrx_soc)
{
return dp_soc_attach_poll(txrx_soc);
}
#else
static QDF_STATUS dp_soc_interrupt_attach_wrapper(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
if (hif_is_polled_mode_enabled(soc->hif_handle))
return dp_soc_attach_poll(txrx_soc);
else
return dp_soc_interrupt_attach(txrx_soc);
}
#endif
#endif
static void dp_soc_interrupt_map_calculate_integrated(struct dp_soc *soc,
int intr_ctx_num, int *irq_id_map, int *num_irq_r)
{
int j;
int num_irq = 0;
int tx_mask =
wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mask =
wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mon_mask =
wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
soc->intr_mode = DP_INTR_LEGACY;
for (j = 0; j < HIF_MAX_GRP_IRQ; j++) {
if (tx_mask & (1 << j)) {
irq_id_map[num_irq++] =
(wbm2host_tx_completions_ring1 - j);
}
if (rx_mask & (1 << j)) {
irq_id_map[num_irq++] =
(reo2host_destination_ring1 - j);
}
if (rxdma2host_ring_mask & (1 << j)) {
irq_id_map[num_irq++] =
rxdma2host_destination_ring_mac1 -
wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, j);
}
if (host2rxdma_ring_mask & (1 << j)) {
irq_id_map[num_irq++] =
host2rxdma_host_buf_ring_mac1 -
wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, j);
}
if (host2rxdma_mon_ring_mask & (1 << j)) {
irq_id_map[num_irq++] =
host2rxdma_monitor_ring1 -
wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, j);
}
if (rx_mon_mask & (1 << j)) {
irq_id_map[num_irq++] =
ppdu_end_interrupts_mac1 -
wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, j);
irq_id_map[num_irq++] =
rxdma2host_monitor_status_ring_mac1 -
wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, j);
}
if (rx_wbm_rel_ring_mask & (1 << j))
irq_id_map[num_irq++] = wbm2host_rx_release;
if (rx_err_ring_mask & (1 << j))
irq_id_map[num_irq++] = reo2host_exception;
if (reo_status_ring_mask & (1 << j))
irq_id_map[num_irq++] = reo2host_status;
}
*num_irq_r = num_irq;
}
static void dp_soc_interrupt_map_calculate_msi(struct dp_soc *soc,
int intr_ctx_num, int *irq_id_map, int *num_irq_r,
int msi_vector_count, int msi_vector_start)
{
int tx_mask = wlan_cfg_get_tx_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mask = wlan_cfg_get_rx_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mon_mask = wlan_cfg_get_rx_mon_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
unsigned int vector =
(intr_ctx_num % msi_vector_count) + msi_vector_start;
int num_irq = 0;
soc->intr_mode = DP_INTR_MSI;
if (tx_mask | rx_mask | rx_mon_mask | rx_err_ring_mask |
rx_wbm_rel_ring_mask | reo_status_ring_mask | rxdma2host_ring_mask)
irq_id_map[num_irq++] =
pld_get_msi_irq(soc->osdev->dev, vector);
*num_irq_r = num_irq;
}
static void dp_soc_interrupt_map_calculate(struct dp_soc *soc, int intr_ctx_num,
int *irq_id_map, int *num_irq)
{
int msi_vector_count, ret;
uint32_t msi_base_data, msi_vector_start;
ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
&msi_vector_count,
&msi_base_data,
&msi_vector_start);
if (ret)
return dp_soc_interrupt_map_calculate_integrated(soc,
intr_ctx_num, irq_id_map, num_irq);
else
dp_soc_interrupt_map_calculate_msi(soc,
intr_ctx_num, irq_id_map, num_irq,
msi_vector_count, msi_vector_start);
}
/*
* dp_soc_interrupt_attach() - Register handlers for DP interrupts
* @txrx_soc: DP SOC handle
*
* Host driver will register for “DP_NUM_INTERRUPT_CONTEXTS” number of NAPI
* contexts. Each NAPI context will have a tx_ring_mask , rx_ring_mask ,and
* rx_monitor_ring mask to indicate the rings that are processed by the handler.
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS dp_soc_interrupt_attach(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i = 0;
int num_irq = 0;
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) {
int ret = 0;
/* Map of IRQ ids registered with one interrupt context */
int irq_id_map[HIF_MAX_GRP_IRQ];
int tx_mask =
wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, i);
int rx_mask =
wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, i);
int rx_mon_mask =
dp_soc_get_mon_mask_for_interrupt_mode(soc, i);
int rx_err_ring_mask =
wlan_cfg_get_rx_err_ring_mask(soc->wlan_cfg_ctx, i);
int rx_wbm_rel_ring_mask =
wlan_cfg_get_rx_wbm_rel_ring_mask(soc->wlan_cfg_ctx, i);
int reo_status_ring_mask =
wlan_cfg_get_reo_status_ring_mask(soc->wlan_cfg_ctx, i);
int rxdma2host_ring_mask =
wlan_cfg_get_rxdma2host_ring_mask(soc->wlan_cfg_ctx, i);
int host2rxdma_ring_mask =
wlan_cfg_get_host2rxdma_ring_mask(soc->wlan_cfg_ctx, i);
int host2rxdma_mon_ring_mask =
wlan_cfg_get_host2rxdma_mon_ring_mask(
soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].dp_intr_id = i;
soc->intr_ctx[i].tx_ring_mask = tx_mask;
soc->intr_ctx[i].rx_ring_mask = rx_mask;
soc->intr_ctx[i].rx_mon_ring_mask = rx_mon_mask;
soc->intr_ctx[i].rx_err_ring_mask = rx_err_ring_mask;
soc->intr_ctx[i].rxdma2host_ring_mask = rxdma2host_ring_mask;
soc->intr_ctx[i].host2rxdma_ring_mask = host2rxdma_ring_mask;
soc->intr_ctx[i].rx_wbm_rel_ring_mask = rx_wbm_rel_ring_mask;
soc->intr_ctx[i].reo_status_ring_mask = reo_status_ring_mask;
soc->intr_ctx[i].host2rxdma_mon_ring_mask =
host2rxdma_mon_ring_mask;
soc->intr_ctx[i].soc = soc;
num_irq = 0;
dp_soc_interrupt_map_calculate(soc, i, &irq_id_map[0],
&num_irq);
ret = hif_register_ext_group(soc->hif_handle,
num_irq, irq_id_map, dp_service_srngs,
&soc->intr_ctx[i], "dp_intr",
HIF_EXEC_NAPI_TYPE, QCA_NAPI_DEF_SCALE_BIN_SHIFT);
if (ret) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("failed, ret = %d"), ret);
return QDF_STATUS_E_FAILURE;
}
soc->intr_ctx[i].lro_ctx = qdf_lro_init();
}
hif_configure_ext_group_interrupts(soc->hif_handle);
return QDF_STATUS_SUCCESS;
}
/*
* dp_soc_interrupt_detach() - Deregister any allocations done for interrupts
* @txrx_soc: DP SOC handle
*
* Return: void
*/
static void dp_soc_interrupt_detach(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i;
if (soc->intr_mode == DP_INTR_POLL) {
qdf_timer_stop(&soc->int_timer);
qdf_timer_free(&soc->int_timer);
} else {
hif_deregister_exec_group(soc->hif_handle, "dp_intr");
}
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) {
soc->intr_ctx[i].tx_ring_mask = 0;
soc->intr_ctx[i].rx_ring_mask = 0;
soc->intr_ctx[i].rx_mon_ring_mask = 0;
soc->intr_ctx[i].rx_err_ring_mask = 0;
soc->intr_ctx[i].rx_wbm_rel_ring_mask = 0;
soc->intr_ctx[i].reo_status_ring_mask = 0;
soc->intr_ctx[i].rxdma2host_ring_mask = 0;
soc->intr_ctx[i].host2rxdma_ring_mask = 0;
soc->intr_ctx[i].host2rxdma_mon_ring_mask = 0;
qdf_lro_deinit(soc->intr_ctx[i].lro_ctx);
}
}
#define AVG_MAX_MPDUS_PER_TID 128
#define AVG_TIDS_PER_CLIENT 2
#define AVG_FLOWS_PER_TID 2
#define AVG_MSDUS_PER_FLOW 128
#define AVG_MSDUS_PER_MPDU 4
/*
* Allocate and setup link descriptor pool that will be used by HW for
* various link and queue descriptors and managed by WBM
*/
static int dp_hw_link_desc_pool_setup(struct dp_soc *soc)
{
int link_desc_size = hal_get_link_desc_size(soc->hal_soc);
int link_desc_align = hal_get_link_desc_align(soc->hal_soc);
uint32_t max_clients = wlan_cfg_get_max_clients(soc->wlan_cfg_ctx);
uint32_t num_mpdus_per_link_desc =
hal_num_mpdus_per_link_desc(soc->hal_soc);
uint32_t num_msdus_per_link_desc =
hal_num_msdus_per_link_desc(soc->hal_soc);
uint32_t num_mpdu_links_per_queue_desc =
hal_num_mpdu_links_per_queue_desc(soc->hal_soc);
uint32_t max_alloc_size = wlan_cfg_max_alloc_size(soc->wlan_cfg_ctx);
uint32_t total_link_descs, total_mem_size;
uint32_t num_mpdu_link_descs, num_mpdu_queue_descs;
uint32_t num_tx_msdu_link_descs, num_rx_msdu_link_descs;
uint32_t num_link_desc_banks;
uint32_t last_bank_size = 0;
uint32_t entry_size, num_entries;
int i;
uint32_t desc_id = 0;
qdf_dma_addr_t *baseaddr = NULL;
/* Only Tx queue descriptors are allocated from common link descriptor
* pool Rx queue descriptors are not included in this because (REO queue
* extension descriptors) they are expected to be allocated contiguously
* with REO queue descriptors
*/
num_mpdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT *
AVG_MAX_MPDUS_PER_TID) / num_mpdus_per_link_desc;
num_mpdu_queue_descs = num_mpdu_link_descs /
num_mpdu_links_per_queue_desc;
num_tx_msdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT *
AVG_FLOWS_PER_TID * AVG_MSDUS_PER_FLOW) /
num_msdus_per_link_desc;
num_rx_msdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT *
AVG_MAX_MPDUS_PER_TID * AVG_MSDUS_PER_MPDU) / 6;
num_entries = num_mpdu_link_descs + num_mpdu_queue_descs +
num_tx_msdu_link_descs + num_rx_msdu_link_descs;
/* Round up to power of 2 */
total_link_descs = 1;
while (total_link_descs < num_entries)
total_link_descs <<= 1;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
FL("total_link_descs: %u, link_desc_size: %d"),
total_link_descs, link_desc_size);
total_mem_size = total_link_descs * link_desc_size;
total_mem_size += link_desc_align;
if (total_mem_size <= max_alloc_size) {
num_link_desc_banks = 0;
last_bank_size = total_mem_size;
} else {
num_link_desc_banks = (total_mem_size) /
(max_alloc_size - link_desc_align);
last_bank_size = total_mem_size %
(max_alloc_size - link_desc_align);
}
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
FL("total_mem_size: %d, num_link_desc_banks: %u"),
total_mem_size, num_link_desc_banks);
for (i = 0; i < num_link_desc_banks; i++) {
if (!dp_is_soc_reinit(soc)) {
baseaddr = &soc->link_desc_banks[i].
base_paddr_unaligned;
soc->link_desc_banks[i].base_vaddr_unaligned =
qdf_mem_alloc_consistent(soc->osdev,
soc->osdev->dev,
max_alloc_size,
baseaddr);
}
soc->link_desc_banks[i].size = max_alloc_size;
soc->link_desc_banks[i].base_vaddr = (void *)((unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned) +
((unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned) %
link_desc_align));
soc->link_desc_banks[i].base_paddr = (unsigned long)(
soc->link_desc_banks[i].base_paddr_unaligned) +
((unsigned long)(soc->link_desc_banks[i].base_vaddr) -
(unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned));
if (!soc->link_desc_banks[i].base_vaddr_unaligned) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Link descriptor memory alloc failed"));
goto fail;
}
if (!dp_is_soc_reinit(soc)) {
qdf_minidump_log(soc->link_desc_banks[i].base_vaddr,
soc->link_desc_banks[i].size,
"link_desc_bank");
}
qdf_minidump_log((soc->link_desc_banks[i].base_vaddr),
soc->link_desc_banks[i].size,
"link_desc_bank");
}
if (last_bank_size) {
/* Allocate last bank in case total memory required is not exact
* multiple of max_alloc_size
*/
if (!dp_is_soc_reinit(soc)) {
baseaddr = &soc->link_desc_banks[i].
base_paddr_unaligned;
soc->link_desc_banks[i].base_vaddr_unaligned =
qdf_mem_alloc_consistent(soc->osdev,
soc->osdev->dev,
last_bank_size,
baseaddr);
}
soc->link_desc_banks[i].size = last_bank_size;
soc->link_desc_banks[i].base_vaddr = (void *)((unsigned long)
(soc->link_desc_banks[i].base_vaddr_unaligned) +
((unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned) %
link_desc_align));
soc->link_desc_banks[i].base_paddr =
(unsigned long)(
soc->link_desc_banks[i].base_paddr_unaligned) +
((unsigned long)(soc->link_desc_banks[i].base_vaddr) -
(unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned));
if (!dp_is_soc_reinit(soc)) {
qdf_minidump_log(soc->link_desc_banks[i].base_vaddr,
soc->link_desc_banks[i].size,
"link_desc_bank");
}
qdf_minidump_log((soc->link_desc_banks[i].base_vaddr),
soc->link_desc_banks[i].size,
"link_desc_bank");
}
/* Allocate and setup link descriptor idle list for HW internal use */
entry_size = hal_srng_get_entrysize(soc->hal_soc, WBM_IDLE_LINK);
total_mem_size = entry_size * total_link_descs;
if (total_mem_size <= max_alloc_size) {
void *desc;
if (dp_srng_setup(soc, &soc->wbm_idle_link_ring,
WBM_IDLE_LINK, 0, 0, total_link_descs, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Link desc idle ring setup failed"));
goto fail;
}
qdf_minidump_log(soc->wbm_idle_link_ring.base_vaddr_unaligned,
soc->wbm_idle_link_ring.alloc_size,
"wbm_idle_link_ring");
hal_srng_access_start_unlocked(soc->hal_soc,
soc->wbm_idle_link_ring.hal_srng);
for (i = 0; i < MAX_LINK_DESC_BANKS &&
soc->link_desc_banks[i].base_paddr; i++) {
uint32_t num_entries = (soc->link_desc_banks[i].size -
((unsigned long)(
soc->link_desc_banks[i].base_vaddr) -
(unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned)))
/ link_desc_size;
unsigned long paddr = (unsigned long)(
soc->link_desc_banks[i].base_paddr);
while (num_entries && (desc = hal_srng_src_get_next(
soc->hal_soc,
soc->wbm_idle_link_ring.hal_srng))) {
hal_set_link_desc_addr(desc,
LINK_DESC_COOKIE(desc_id, i), paddr);
num_entries--;
desc_id++;
paddr += link_desc_size;
}
}
hal_srng_access_end_unlocked(soc->hal_soc,
soc->wbm_idle_link_ring.hal_srng);
} else {
uint32_t num_scatter_bufs;
uint32_t num_entries_per_buf;
uint32_t rem_entries;
uint8_t *scatter_buf_ptr;
uint16_t scatter_buf_num;
uint32_t buf_size = 0;
soc->wbm_idle_scatter_buf_size =
hal_idle_list_scatter_buf_size(soc->hal_soc);
num_entries_per_buf = hal_idle_scatter_buf_num_entries(
soc->hal_soc, soc->wbm_idle_scatter_buf_size);
num_scatter_bufs = hal_idle_list_num_scatter_bufs(
soc->hal_soc, total_mem_size,
soc->wbm_idle_scatter_buf_size);
if (num_scatter_bufs > MAX_IDLE_SCATTER_BUFS) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("scatter bufs size out of bounds"));
goto fail;
}
for (i = 0; i < num_scatter_bufs; i++) {
baseaddr = &soc->wbm_idle_scatter_buf_base_paddr[i];
if (!dp_is_soc_reinit(soc)) {
buf_size = soc->wbm_idle_scatter_buf_size;
soc->wbm_idle_scatter_buf_base_vaddr[i] =
qdf_mem_alloc_consistent(soc->osdev,
soc->osdev->
dev,
buf_size,
baseaddr);
}
if (!soc->wbm_idle_scatter_buf_base_vaddr[i]) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("Scatter lst memory alloc fail"));
goto fail;
}
}
/* Populate idle list scatter buffers with link descriptor
* pointers
*/
scatter_buf_num = 0;
scatter_buf_ptr = (uint8_t *)(
soc->wbm_idle_scatter_buf_base_vaddr[scatter_buf_num]);
rem_entries = num_entries_per_buf;
for (i = 0; i < MAX_LINK_DESC_BANKS &&
soc->link_desc_banks[i].base_paddr; i++) {
uint32_t num_link_descs =
(soc->link_desc_banks[i].size -
((unsigned long)(
soc->link_desc_banks[i].base_vaddr) -
(unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned)))
/ link_desc_size;
unsigned long paddr = (unsigned long)(
soc->link_desc_banks[i].base_paddr);
while (num_link_descs) {
hal_set_link_desc_addr((void *)scatter_buf_ptr,
LINK_DESC_COOKIE(desc_id, i), paddr);
num_link_descs--;
desc_id++;
paddr += link_desc_size;
rem_entries--;
if (rem_entries) {
scatter_buf_ptr += entry_size;
} else {
rem_entries = num_entries_per_buf;
scatter_buf_num++;
if (scatter_buf_num >= num_scatter_bufs)
break;
scatter_buf_ptr = (uint8_t *)(
soc->wbm_idle_scatter_buf_base_vaddr[
scatter_buf_num]);
}
}
}
/* Setup link descriptor idle list in HW */
hal_setup_link_idle_list(soc->hal_soc,
soc->wbm_idle_scatter_buf_base_paddr,
soc->wbm_idle_scatter_buf_base_vaddr,
num_scatter_bufs, soc->wbm_idle_scatter_buf_size,
(uint32_t)(scatter_buf_ptr -
(uint8_t *)(soc->wbm_idle_scatter_buf_base_vaddr[
scatter_buf_num-1])), total_link_descs);
}
return 0;
fail:
if (soc->wbm_idle_link_ring.hal_srng) {
dp_srng_cleanup(soc, &soc->wbm_idle_link_ring,
WBM_IDLE_LINK, 0);
}
for (i = 0; i < MAX_IDLE_SCATTER_BUFS; i++) {
if (soc->wbm_idle_scatter_buf_base_vaddr[i]) {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
soc->wbm_idle_scatter_buf_size,
soc->wbm_idle_scatter_buf_base_vaddr[i],
soc->wbm_idle_scatter_buf_base_paddr[i], 0);
soc->wbm_idle_scatter_buf_base_vaddr[i] = NULL;
}
}
for (i = 0; i < MAX_LINK_DESC_BANKS; i++) {
if (soc->link_desc_banks[i].base_vaddr_unaligned) {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
soc->link_desc_banks[i].size,
soc->link_desc_banks[i].base_vaddr_unaligned,
soc->link_desc_banks[i].base_paddr_unaligned,
0);
soc->link_desc_banks[i].base_vaddr_unaligned = NULL;
}
}
return QDF_STATUS_E_FAILURE;
}
/*
* Free link descriptor pool that was setup HW
*/
static void dp_hw_link_desc_pool_cleanup(struct dp_soc *soc)
{
int i;
if (soc->wbm_idle_link_ring.hal_srng) {
qdf_minidump_remove(
soc->wbm_idle_link_ring.base_vaddr_unaligned);
dp_srng_cleanup(soc, &soc->wbm_idle_link_ring,
WBM_IDLE_LINK, 0);
}
for (i = 0; i < MAX_IDLE_SCATTER_BUFS; i++) {
if (soc->wbm_idle_scatter_buf_base_vaddr[i]) {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
soc->wbm_idle_scatter_buf_size,
soc->wbm_idle_scatter_buf_base_vaddr[i],
soc->wbm_idle_scatter_buf_base_paddr[i], 0);
soc->wbm_idle_scatter_buf_base_vaddr[i] = NULL;
}
}
for (i = 0; i < MAX_LINK_DESC_BANKS; i++) {
if (soc->link_desc_banks[i].base_vaddr_unaligned) {
qdf_minidump_remove(soc->link_desc_banks[i].base_vaddr);
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
soc->link_desc_banks[i].size,
soc->link_desc_banks[i].base_vaddr_unaligned,
soc->link_desc_banks[i].base_paddr_unaligned,
0);
soc->link_desc_banks[i].base_vaddr_unaligned = NULL;
}
}
}
#ifdef IPA_OFFLOAD
#define REO_DST_RING_SIZE_QCA6290 1023
#ifndef QCA_WIFI_QCA8074_VP
#define REO_DST_RING_SIZE_QCA8074 1023
#define REO_DST_RING_SIZE_QCN9000 2048
#else
#define REO_DST_RING_SIZE_QCA8074 8
#define REO_DST_RING_SIZE_QCN9000 8
#endif /* QCA_WIFI_QCA8074_VP */
#else
#define REO_DST_RING_SIZE_QCA6290 1024
#ifndef QCA_WIFI_QCA8074_VP
#define REO_DST_RING_SIZE_QCA8074 2048
#define REO_DST_RING_SIZE_QCN9000 2048
#else
#define REO_DST_RING_SIZE_QCA8074 8
#define REO_DST_RING_SIZE_QCN9000 8
#endif /* QCA_WIFI_QCA8074_VP */
#endif /* IPA_OFFLOAD */
#ifndef FEATURE_WDS
static void dp_soc_wds_attach(struct dp_soc *soc)
{
}
static void dp_soc_wds_detach(struct dp_soc *soc)
{
}
#endif
/*
* dp_soc_reset_ring_map() - Reset cpu ring map
* @soc: Datapath soc handler
*
* This api resets the default cpu ring map
*/
static void dp_soc_reset_cpu_ring_map(struct dp_soc *soc)
{
uint8_t i;
int nss_config = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
for (i = 0; i < WLAN_CFG_INT_NUM_CONTEXTS; i++) {
switch (nss_config) {
case dp_nss_cfg_first_radio:
/*
* Setting Tx ring map for one nss offloaded radio
*/
soc->tx_ring_map[i] = dp_cpu_ring_map[DP_NSS_FIRST_RADIO_OFFLOADED_MAP][i];
break;
case dp_nss_cfg_second_radio:
/*
* Setting Tx ring for two nss offloaded radios
*/
soc->tx_ring_map[i] = dp_cpu_ring_map[DP_NSS_SECOND_RADIO_OFFLOADED_MAP][i];
break;
case dp_nss_cfg_dbdc:
/*
* Setting Tx ring map for 2 nss offloaded radios
*/
soc->tx_ring_map[i] =
dp_cpu_ring_map[DP_NSS_DBDC_OFFLOADED_MAP][i];
break;
case dp_nss_cfg_dbtc:
/*
* Setting Tx ring map for 3 nss offloaded radios
*/
soc->tx_ring_map[i] =
dp_cpu_ring_map[DP_NSS_DBTC_OFFLOADED_MAP][i];
break;
default:
dp_err("tx_ring_map failed due to invalid nss cfg");
break;
}
}
}
/*
* dp_soc_ring_if_nss_offloaded() - find if ring is offloaded to NSS
* @dp_soc - DP soc handle
* @ring_type - ring type
* @ring_num - ring_num
*
* return 0 or 1
*/
static uint8_t dp_soc_ring_if_nss_offloaded(struct dp_soc *soc, enum hal_ring_type ring_type, int ring_num)
{
uint8_t nss_config = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
uint8_t status = 0;
switch (ring_type) {
case WBM2SW_RELEASE:
case REO_DST:
case RXDMA_BUF:
status = ((nss_config) & (1 << ring_num));
break;
default:
break;
}
return status;
}
/*
* dp_soc_disable_mac2_intr_mask() - reset interrupt mask for WMAC2 hw rings
* @dp_soc - DP Soc handle
*
* Return: Return void
*/
static void dp_soc_disable_mac2_intr_mask(struct dp_soc *soc)
{
int *grp_mask = NULL;
int group_number;
grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_ring_mask[0];
group_number = dp_srng_find_ring_in_mask(0x2, grp_mask);
wlan_cfg_set_host2rxdma_ring_mask(soc->wlan_cfg_ctx,
group_number, 0x0);
grp_mask = &soc->wlan_cfg_ctx->int_rx_mon_ring_mask[0];
group_number = dp_srng_find_ring_in_mask(0x2, grp_mask);
wlan_cfg_set_rx_mon_ring_mask(soc->wlan_cfg_ctx,
group_number, 0x0);
grp_mask = &soc->wlan_cfg_ctx->int_rxdma2host_ring_mask[0];
group_number = dp_srng_find_ring_in_mask(0x2, grp_mask);
wlan_cfg_set_rxdma2host_ring_mask(soc->wlan_cfg_ctx,
group_number, 0x0);
grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_mon_ring_mask[0];
group_number = dp_srng_find_ring_in_mask(0x2, grp_mask);
wlan_cfg_set_host2rxdma_mon_ring_mask(soc->wlan_cfg_ctx,
group_number, 0x0);
}
/*
* dp_soc_reset_intr_mask() - reset interrupt mask
* @dp_soc - DP Soc handle
*
* Return: Return void
*/
static void dp_soc_reset_intr_mask(struct dp_soc *soc)
{
uint8_t j;
int *grp_mask = NULL;
int group_number, mask, num_ring;
/* number of tx ring */
num_ring = wlan_cfg_num_tcl_data_rings(soc->wlan_cfg_ctx);
/*
* group mask for tx completion ring.
*/
grp_mask = &soc->wlan_cfg_ctx->int_tx_ring_mask[0];
/* loop and reset the mask for only offloaded ring */
for (j = 0; j < num_ring; j++) {
if (!dp_soc_ring_if_nss_offloaded(soc, WBM2SW_RELEASE, j)) {
continue;
}
/*
* Group number corresponding to tx offloaded ring.
*/
group_number = dp_srng_find_ring_in_mask(j, grp_mask);
if (group_number < 0) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("ring not part of any group; ring_type: %d,ring_num %d"),
WBM2SW_RELEASE, j);
return;
}
/* reset the tx mask for offloaded ring */
mask = wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, group_number);
mask &= (~(1 << j));
/*
* reset the interrupt mask for offloaded ring.
*/
wlan_cfg_set_tx_ring_mask(soc->wlan_cfg_ctx, group_number, mask);
}
/* number of rx rings */
num_ring = wlan_cfg_num_reo_dest_rings(soc->wlan_cfg_ctx);
/*
* group mask for reo destination ring.
*/
grp_mask = &soc->wlan_cfg_ctx->int_rx_ring_mask[0];
/* loop and reset the mask for only offloaded ring */
for (j = 0; j < num_ring; j++) {
if (!dp_soc_ring_if_nss_offloaded(soc, REO_DST, j)) {
continue;
}
/*
* Group number corresponding to rx offloaded ring.
*/
group_number = dp_srng_find_ring_in_mask(j, grp_mask);
if (group_number < 0) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("ring not part of any group; ring_type: %d,ring_num %d"),
REO_DST, j);
return;
}
/* set the interrupt mask for offloaded ring */
mask = wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, group_number);
mask &= (~(1 << j));
/*
* set the interrupt mask to zero for rx offloaded radio.
*/
wlan_cfg_set_rx_ring_mask(soc->wlan_cfg_ctx, group_number, mask);
}
/*
* group mask for Rx buffer refill ring
*/
grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_ring_mask[0];
/* loop and reset the mask for only offloaded ring */
for (j = 0; j < MAX_PDEV_CNT; j++) {
if (!dp_soc_ring_if_nss_offloaded(soc, RXDMA_BUF, j)) {
continue;
}
/*
* Group number corresponding to rx offloaded ring.
*/
group_number = dp_srng_find_ring_in_mask(j, grp_mask);
if (group_number < 0) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("ring not part of any group; ring_type: %d,ring_num %d"),
REO_DST, j);
return;
}
/* set the interrupt mask for offloaded ring */
mask = wlan_cfg_get_host2rxdma_ring_mask(soc->wlan_cfg_ctx,
group_number);
mask &= (~(1 << j));
/*
* set the interrupt mask to zero for rx offloaded radio.
*/
wlan_cfg_set_host2rxdma_ring_mask(soc->wlan_cfg_ctx,
group_number, mask);
}
}
#ifdef IPA_OFFLOAD
/**
* dp_reo_remap_config() - configure reo remap register value based
* nss configuration.
* based on offload_radio value below remap configuration
* get applied.
* 0 - both Radios handled by host (remap rings 1, 2, 3 & 4)
* 1 - 1st Radio handled by NSS (remap rings 2, 3 & 4)
* 2 - 2nd Radio handled by NSS (remap rings 1, 2 & 4)
* 3 - both Radios handled by NSS (remap not required)
* 4 - IPA OFFLOAD enabled (remap rings 1,2 & 3)
*
* @remap1: output parameter indicates reo remap 1 register value
* @remap2: output parameter indicates reo remap 2 register value
* Return: bool type, true if remap is configured else false.
*/
bool dp_reo_remap_config(struct dp_soc *soc, uint32_t *remap1, uint32_t *remap2)
{
*remap1 = HAL_REO_REMAP_IX2(REO_REMAP_SW1, 16) |
HAL_REO_REMAP_IX2(REO_REMAP_SW2, 17) |
HAL_REO_REMAP_IX2(REO_REMAP_SW3, 18) |
HAL_REO_REMAP_IX2(REO_REMAP_SW1, 19) |
HAL_REO_REMAP_IX2(REO_REMAP_SW2, 20) |
HAL_REO_REMAP_IX2(REO_REMAP_SW3, 21) |
HAL_REO_REMAP_IX2(REO_REMAP_SW1, 22) |
HAL_REO_REMAP_IX2(REO_REMAP_SW2, 23);
*remap2 = HAL_REO_REMAP_IX3(REO_REMAP_SW3, 24) |
HAL_REO_REMAP_IX3(REO_REMAP_SW1, 25) |
HAL_REO_REMAP_IX3(REO_REMAP_SW2, 26) |
HAL_REO_REMAP_IX3(REO_REMAP_SW3, 27) |
HAL_REO_REMAP_IX3(REO_REMAP_SW1, 28) |
HAL_REO_REMAP_IX3(REO_REMAP_SW2, 29) |
HAL_REO_REMAP_IX3(REO_REMAP_SW3, 30) |
HAL_REO_REMAP_IX3(REO_REMAP_SW1, 31);
dp_debug("remap1 %x remap2 %x", *remap1, *remap2);
return true;
}
#else
static bool dp_reo_remap_config(struct dp_soc *soc,
uint32_t *remap1,
uint32_t *remap2)
{
uint8_t offload_radio = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
uint8_t target_type;
target_type = hal_get_target_type(soc->hal_soc);
switch (offload_radio) {
case dp_nss_cfg_default:
*remap1 = HAL_REO_REMAP_IX2(REO_REMAP_SW1, 16) |
HAL_REO_REMAP_IX2(REO_REMAP_SW2, 17) |
HAL_REO_REMAP_IX2(REO_REMAP_SW3, 18) |
HAL_REO_REMAP_IX2(REO_REMAP_SW4, 19) |
HAL_REO_REMAP_IX2(REO_REMAP_SW1, 20) |
HAL_REO_REMAP_IX2(REO_REMAP_SW2, 21) |
HAL_REO_REMAP_IX2(REO_REMAP_SW3, 22) |
HAL_REO_REMAP_IX2(REO_REMAP_SW4, 23);
*remap2 = HAL_REO_REMAP_IX3(REO_REMAP_SW1, 24) |
HAL_REO_REMAP_IX3(REO_REMAP_SW2, 25) |
HAL_REO_REMAP_IX3(REO_REMAP_SW3, 26) |
HAL_REO_REMAP_IX3(REO_REMAP_SW4, 27) |
HAL_REO_REMAP_IX3(REO_REMAP_SW1, 28) |
HAL_REO_REMAP_IX3(REO_REMAP_SW2, 29) |
HAL_REO_REMAP_IX3(REO_REMAP_SW3, 30) |
HAL_REO_REMAP_IX3(REO_REMAP_SW4, 31);
break;
case dp_nss_cfg_first_radio:
*remap1 = HAL_REO_REMAP_IX2(REO_REMAP_SW2, 16) |
HAL_REO_REMAP_IX2(REO_REMAP_SW3, 17) |
HAL_REO_REMAP_IX2(REO_REMAP_SW4, 18) |
HAL_REO_REMAP_IX2(REO_REMAP_SW2, 19) |
HAL_REO_REMAP_IX2(REO_REMAP_SW3, 20) |
HAL_REO_REMAP_IX2(REO_REMAP_SW4, 21) |
HAL_REO_REMAP_IX2(REO_REMAP_SW2, 22) |
HAL_REO_REMAP_IX2(REO_REMAP_SW3, 23);
*remap2 = HAL_REO_REMAP_IX3(REO_REMAP_SW4, 24) |
HAL_REO_REMAP_IX3(REO_REMAP_SW2, 25) |
HAL_REO_REMAP_IX3(REO_REMAP_SW3, 26) |
HAL_REO_REMAP_IX3(REO_REMAP_SW4, 27) |
HAL_REO_REMAP_IX3(REO_REMAP_SW2, 28) |
HAL_REO_REMAP_IX3(REO_REMAP_SW3, 29) |
HAL_REO_REMAP_IX3(REO_REMAP_SW4, 30) |
HAL_REO_REMAP_IX3(REO_REMAP_SW2, 31);
break;
case dp_nss_cfg_second_radio:
*remap1 = HAL_REO_REMAP_IX2(REO_REMAP_SW1, 16) |
HAL_REO_REMAP_IX2(REO_REMAP_SW3, 17) |
HAL_REO_REMAP_IX2(REO_REMAP_SW4, 18) |
HAL_REO_REMAP_IX2(REO_REMAP_SW1, 19) |
HAL_REO_REMAP_IX2(REO_REMAP_SW3, 20) |
HAL_REO_REMAP_IX2(REO_REMAP_SW4, 21) |
HAL_REO_REMAP_IX2(REO_REMAP_SW1, 22) |
HAL_REO_REMAP_IX2(REO_REMAP_SW3, 23);
*remap2 = HAL_REO_REMAP_IX3(REO_REMAP_SW4, 24) |
HAL_REO_REMAP_IX3(REO_REMAP_SW1, 25) |
HAL_REO_REMAP_IX3(REO_REMAP_SW3, 26) |
HAL_REO_REMAP_IX3(REO_REMAP_SW4, 27) |
HAL_REO_REMAP_IX3(REO_REMAP_SW1, 28) |
HAL_REO_REMAP_IX3(REO_REMAP_SW3, 29) |
HAL_REO_REMAP_IX3(REO_REMAP_SW4, 30) |
HAL_REO_REMAP_IX3(REO_REMAP_SW1, 31);
break;
case dp_nss_cfg_dbdc:
case dp_nss_cfg_dbtc:
/* return false if both or all are offloaded to NSS */
return false;
}
dp_debug("remap1 %x remap2 %x offload_radio %u",
*remap1, *remap2, offload_radio);
return true;
}
#endif /* IPA_OFFLOAD */
/*
* dp_reo_frag_dst_set() - configure reo register to set the
* fragment destination ring
* @soc : Datapath soc
* @frag_dst_ring : output parameter to set fragment destination ring
*
* Based on offload_radio below fragment destination rings is selected
* 0 - TCL
* 1 - SW1
* 2 - SW2
* 3 - SW3
* 4 - SW4
* 5 - Release
* 6 - FW
* 7 - alternate select
*
* return: void
*/
static void dp_reo_frag_dst_set(struct dp_soc *soc, uint8_t *frag_dst_ring)
{
uint8_t offload_radio = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
switch (offload_radio) {
case dp_nss_cfg_default:
*frag_dst_ring = HAL_SRNG_REO_EXCEPTION;
break;
case dp_nss_cfg_first_radio:
/*
* This configuration is valid for single band radio which
* is also NSS offload.
*/
case dp_nss_cfg_dbdc:
case dp_nss_cfg_dbtc:
*frag_dst_ring = HAL_SRNG_REO_ALTERNATE_SELECT;
break;
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_reo_frag_dst_set invalid offload radio config"));
break;
}
}
#ifdef ENABLE_VERBOSE_DEBUG
static void dp_enable_verbose_debug(struct dp_soc *soc)
{
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
soc_cfg_ctx = soc->wlan_cfg_ctx;
if (soc_cfg_ctx->per_pkt_trace & dp_verbose_debug_mask)
is_dp_verbose_debug_enabled = true;
if (soc_cfg_ctx->per_pkt_trace & hal_verbose_debug_mask)
hal_set_verbose_debug(true);
else
hal_set_verbose_debug(false);
}
#else
static void dp_enable_verbose_debug(struct dp_soc *soc)
{
}
#endif
/*
* dp_soc_cmn_setup() - Common SoC level initializion
* @soc: Datapath SOC handle
*
* This is an internal function used to setup common SOC data structures,
* to be called from PDEV attach after receiving HW mode capabilities from FW
*/
static int dp_soc_cmn_setup(struct dp_soc *soc)
{
int i, cached;
struct hal_reo_params reo_params;
int tx_ring_size;
int tx_comp_ring_size;
int reo_dst_ring_size;
uint32_t entries;
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
if (qdf_atomic_read(&soc->cmn_init_done))
return 0;
if (dp_hw_link_desc_pool_setup(soc))
goto fail1;
soc_cfg_ctx = soc->wlan_cfg_ctx;
dp_enable_verbose_debug(soc);
/* Setup SRNG rings */
/* Common rings */
entries = wlan_cfg_get_dp_soc_wbm_release_ring_size(soc_cfg_ctx);
if (dp_srng_setup(soc, &soc->wbm_desc_rel_ring, SW2WBM_RELEASE, 0, 0,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for wbm_desc_rel_ring"));
goto fail1;
}
qdf_minidump_log(soc->wbm_desc_rel_ring.base_vaddr_unaligned,
soc->wbm_desc_rel_ring.alloc_size,
"wbm_desc_rel_ring");
soc->num_tcl_data_rings = 0;
/* Tx data rings */
if (!wlan_cfg_per_pdev_tx_ring(soc_cfg_ctx)) {
soc->num_tcl_data_rings =
wlan_cfg_num_tcl_data_rings(soc_cfg_ctx);
tx_comp_ring_size =
wlan_cfg_tx_comp_ring_size(soc_cfg_ctx);
tx_ring_size =
wlan_cfg_tx_ring_size(soc_cfg_ctx);
for (i = 0; i < soc->num_tcl_data_rings; i++) {
if (dp_srng_setup(soc, &soc->tcl_data_ring[i],
TCL_DATA, i, 0, tx_ring_size, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tcl_data_ring[%d]"), i);
goto fail1;
}
/* Disable cached desc if NSS offload is enabled */
cached = WLAN_CFG_DST_RING_CACHED_DESC;
if (wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx))
cached = 0;
/*
* TBD: Set IPA WBM ring size with ini IPA UC tx buffer
* count
*/
if (dp_srng_setup(soc, &soc->tx_comp_ring[i],
WBM2SW_RELEASE, i, 0,
tx_comp_ring_size,
cached)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tx_comp_ring[%d]"), i);
goto fail1;
}
}
} else {
/* This will be incremented during per pdev ring setup */
soc->num_tcl_data_rings = 0;
}
if (dp_tx_soc_attach(soc)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_tx_soc_attach failed"));
goto fail1;
}
entries = wlan_cfg_get_dp_soc_tcl_cmd_ring_size(soc_cfg_ctx);
/* TCL command and status rings */
if (dp_srng_setup(soc, &soc->tcl_cmd_ring, TCL_CMD, 0, 0,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tcl_cmd_ring"));
goto fail2;
}
entries = wlan_cfg_get_dp_soc_tcl_status_ring_size(soc_cfg_ctx);
if (dp_srng_setup(soc, &soc->tcl_status_ring, TCL_STATUS, 0, 0,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tcl_status_ring"));
goto fail2;
}
reo_dst_ring_size = wlan_cfg_get_reo_dst_ring_size(soc->wlan_cfg_ctx);
/* TBD: call dp_tx_init to setup Tx SW descriptors and MSDU extension
* descriptors
*/
/* Rx data rings */
if (!wlan_cfg_per_pdev_rx_ring(soc_cfg_ctx)) {
soc->num_reo_dest_rings =
wlan_cfg_num_reo_dest_rings(soc_cfg_ctx);
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_INFO,
FL("num_reo_dest_rings %d"), soc->num_reo_dest_rings);
/* Disable cached desc if NSS offload is enabled */
cached = WLAN_CFG_DST_RING_CACHED_DESC;
if (wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx))
cached = 0;
for (i = 0; i < soc->num_reo_dest_rings; i++) {
if (dp_srng_setup(soc, &soc->reo_dest_ring[i], REO_DST,
i, 0, reo_dst_ring_size, cached)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "reo_dest_ring [%d]"), i);
goto fail2;
}
}
} else {
/* This will be incremented during per pdev ring setup */
soc->num_reo_dest_rings = 0;
}
entries = wlan_cfg_get_dp_soc_rxdma_err_dst_ring_size(soc_cfg_ctx);
/* LMAC RxDMA to SW Rings configuration */
if (!wlan_cfg_per_pdev_lmac_ring(soc_cfg_ctx)) {
/* Only valid for MCL */
struct dp_pdev *pdev = soc->pdev_list[0];
for (i = 0; i < MAX_RX_MAC_RINGS; i++) {
if (dp_srng_setup(soc, &pdev->rxdma_err_dst_ring[i],
RXDMA_DST, 0, i, entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_err_dst_ring"));
goto fail2;
}
}
}
/* TBD: call dp_rx_init to setup Rx SW descriptors */
/* REO reinjection ring */
entries = wlan_cfg_get_dp_soc_reo_reinject_ring_size(soc_cfg_ctx);
if (dp_srng_setup(soc, &soc->reo_reinject_ring, REO_REINJECT, 0, 0,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for reo_reinject_ring"));
goto fail2;
}
/* Rx release ring */
if (dp_srng_setup(soc, &soc->rx_rel_ring, WBM2SW_RELEASE, 3, 0,
wlan_cfg_get_dp_soc_rx_release_ring_size(soc_cfg_ctx),
0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for rx_rel_ring"));
goto fail2;
}
/* Rx exception ring */
entries = wlan_cfg_get_dp_soc_reo_exception_ring_size(soc_cfg_ctx);
if (dp_srng_setup(soc, &soc->reo_exception_ring,
REO_EXCEPTION, 0, MAX_REO_DEST_RINGS, entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for reo_exception_ring"));
goto fail2;
}
/* REO command and status rings */
if (dp_srng_setup(soc, &soc->reo_cmd_ring, REO_CMD, 0, 0,
wlan_cfg_get_dp_soc_reo_cmd_ring_size(soc_cfg_ctx),
0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for reo_cmd_ring"));
goto fail2;
}
hal_reo_init_cmd_ring(soc->hal_soc, soc->reo_cmd_ring.hal_srng);
TAILQ_INIT(&soc->rx.reo_cmd_list);
qdf_spinlock_create(&soc->rx.reo_cmd_lock);
if (dp_srng_setup(soc, &soc->reo_status_ring, REO_STATUS, 0, 0,
wlan_cfg_get_dp_soc_reo_status_ring_size(soc_cfg_ctx),
0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for reo_status_ring"));
goto fail2;
}
/*
* Skip registering hw ring interrupts for WMAC2 on IPQ6018
* WMAC2 is not there in IPQ6018 platform.
*/
if (hal_get_target_type(soc->hal_soc) == TARGET_TYPE_QCA6018) {
dp_soc_disable_mac2_intr_mask(soc);
}
/* Reset the cpu ring map if radio is NSS offloaded */
if (wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx)) {
dp_soc_reset_cpu_ring_map(soc);
dp_soc_reset_intr_mask(soc);
}
/* Setup HW REO */
qdf_mem_zero(&reo_params, sizeof(reo_params));
if (wlan_cfg_is_rx_hash_enabled(soc_cfg_ctx)) {
/*
* Reo ring remap is not required if both radios
* are offloaded to NSS
*/
if (!dp_reo_remap_config(soc,
&reo_params.remap1,
&reo_params.remap2))
goto out;
reo_params.rx_hash_enabled = true;
}
/* setup the global rx defrag waitlist */
TAILQ_INIT(&soc->rx.defrag.waitlist);
soc->rx.defrag.timeout_ms =
wlan_cfg_get_rx_defrag_min_timeout(soc_cfg_ctx);
soc->rx.defrag.next_flush_ms = 0;
soc->rx.flags.defrag_timeout_check =
wlan_cfg_get_defrag_timeout_check(soc_cfg_ctx);
qdf_spinlock_create(&soc->rx.defrag.defrag_lock);
out:
/*
* set the fragment destination ring
*/
dp_reo_frag_dst_set(soc, &reo_params.frag_dst_ring);
hal_reo_setup(soc->hal_soc, &reo_params);
qdf_atomic_set(&soc->cmn_init_done, 1);
dp_soc_wds_attach(soc);
qdf_nbuf_queue_init(&soc->htt_stats.msg);
return 0;
fail2:
dp_tx_soc_detach(soc);
fail1:
/*
* Cleanup will be done as part of soc_detach, which will
* be called on pdev attach failure
*/
return QDF_STATUS_E_FAILURE;
}
/*
* dp_soc_cmn_cleanup() - Common SoC level De-initializion
*
* @soc: Datapath SOC handle
*
* This function is responsible for cleaning up DP resource of Soc
* initialled in dp_pdev_attach_wifi3-->dp_soc_cmn_setup, since
* dp_soc_detach_wifi3 could not identify some of them
* whether they have done initialized or not accurately.
*
*/
static void dp_soc_cmn_cleanup(struct dp_soc *soc)
{
dp_tx_soc_detach(soc);
qdf_spinlock_destroy(&soc->rx.defrag.defrag_lock);
dp_reo_cmdlist_destroy(soc);
qdf_spinlock_destroy(&soc->rx.reo_cmd_lock);
}
static void dp_pdev_detach_wifi3(struct cdp_pdev *txrx_pdev, int force);
static QDF_STATUS dp_lro_hash_setup(struct dp_soc *soc, struct dp_pdev *pdev)
{
struct cdp_lro_hash_config lro_hash;
QDF_STATUS status;
if (!wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) &&
!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx) &&
!wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
dp_err("LRO, GRO and RX hash disabled");
return QDF_STATUS_E_FAILURE;
}
qdf_mem_zero(&lro_hash, sizeof(lro_hash));
if (wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) ||
wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx)) {
lro_hash.lro_enable = 1;
lro_hash.tcp_flag = QDF_TCPHDR_ACK;
lro_hash.tcp_flag_mask = QDF_TCPHDR_FIN | QDF_TCPHDR_SYN |
QDF_TCPHDR_RST | QDF_TCPHDR_ACK | QDF_TCPHDR_URG |
QDF_TCPHDR_ECE | QDF_TCPHDR_CWR;
}
qdf_get_random_bytes(lro_hash.toeplitz_hash_ipv4,
(sizeof(lro_hash.toeplitz_hash_ipv4[0]) *
LRO_IPV4_SEED_ARR_SZ));
qdf_get_random_bytes(lro_hash.toeplitz_hash_ipv6,
(sizeof(lro_hash.toeplitz_hash_ipv6[0]) *
LRO_IPV6_SEED_ARR_SZ));
qdf_assert(soc->cdp_soc.ol_ops->lro_hash_config);
if (!soc->cdp_soc.ol_ops->lro_hash_config) {
QDF_BUG(0);
dp_err("lro_hash_config not configured");
return QDF_STATUS_E_FAILURE;
}
status = soc->cdp_soc.ol_ops->lro_hash_config(soc->ctrl_psoc,
pdev->pdev_id,
&lro_hash);
if (!QDF_IS_STATUS_SUCCESS(status)) {
dp_err("failed to send lro_hash_config to FW %u", status);
return status;
}
dp_info("LRO CMD config: lro_enable: 0x%x tcp_flag 0x%x tcp_flag_mask 0x%x",
lro_hash.lro_enable, lro_hash.tcp_flag,
lro_hash.tcp_flag_mask);
dp_info("toeplitz_hash_ipv4:");
qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
lro_hash.toeplitz_hash_ipv4,
(sizeof(lro_hash.toeplitz_hash_ipv4[0]) *
LRO_IPV4_SEED_ARR_SZ));
dp_info("toeplitz_hash_ipv6:");
qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
lro_hash.toeplitz_hash_ipv6,
(sizeof(lro_hash.toeplitz_hash_ipv6[0]) *
LRO_IPV6_SEED_ARR_SZ));
return status;
}
/*
* dp_rxdma_ring_setup() - configure the RX DMA rings
* @soc: data path SoC handle
* @pdev: Physical device handle
*
* Return: 0 - success, > 0 - failure
*/
#ifdef QCA_HOST2FW_RXBUF_RING
static int dp_rxdma_ring_setup(struct dp_soc *soc,
struct dp_pdev *pdev)
{
struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
int max_mac_rings;
int i;
int ring_size;
pdev_cfg_ctx = pdev->wlan_cfg_ctx;
max_mac_rings = wlan_cfg_get_num_mac_rings(pdev_cfg_ctx);
ring_size = wlan_cfg_get_rx_dma_buf_ring_size(pdev_cfg_ctx);
for (i = 0; i < max_mac_rings; i++) {
dp_verbose_debug("pdev_id %d mac_id %d", pdev->pdev_id, i);
if (dp_srng_setup(soc, &pdev->rx_mac_buf_ring[i],
RXDMA_BUF, 1, i, ring_size, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("failed rx mac ring setup"));
return QDF_STATUS_E_FAILURE;
}
}
return QDF_STATUS_SUCCESS;
}
#else
static int dp_rxdma_ring_setup(struct dp_soc *soc,
struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
#endif
/**
* dp_dscp_tid_map_setup(): Initialize the dscp-tid maps
* @pdev - DP_PDEV handle
*
* Return: void
*/
static inline void
dp_dscp_tid_map_setup(struct dp_pdev *pdev)
{
uint8_t map_id;
struct dp_soc *soc = pdev->soc;
if (!soc)
return;
for (map_id = 0; map_id < DP_MAX_TID_MAPS; map_id++) {
qdf_mem_copy(pdev->dscp_tid_map[map_id],
default_dscp_tid_map,
sizeof(default_dscp_tid_map));
}
for (map_id = 0; map_id < soc->num_hw_dscp_tid_map; map_id++) {
hal_tx_set_dscp_tid_map(soc->hal_soc,
default_dscp_tid_map,
map_id);
}
}
/**
* dp_pcp_tid_map_setup(): Initialize the pcp-tid maps
* @pdev - DP_PDEV handle
*
* Return: void
*/
static inline void
dp_pcp_tid_map_setup(struct dp_pdev *pdev)
{
struct dp_soc *soc = pdev->soc;
if (!soc)
return;
qdf_mem_copy(soc->pcp_tid_map, default_pcp_tid_map,
sizeof(default_pcp_tid_map));
hal_tx_set_pcp_tid_map_default(soc->hal_soc, default_pcp_tid_map);
}
#ifdef IPA_OFFLOAD
/**
* dp_setup_ipa_rx_refill_buf_ring - Setup second Rx refill buffer ring
* @soc: data path instance
* @pdev: core txrx pdev context
*
* Return: QDF_STATUS_SUCCESS: success
* QDF_STATUS_E_RESOURCES: Error return
*/
static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
int entries;
soc_cfg_ctx = soc->wlan_cfg_ctx;
entries = wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
/* Setup second Rx refill buffer ring */
if (dp_srng_setup(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
IPA_RX_REFILL_BUF_RING_IDX, pdev->pdev_id, entries, 0)
) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed second rx refill ring"));
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_cleanup_ipa_rx_refill_buf_ring - Cleanup second Rx refill buffer ring
* @soc: data path instance
* @pdev: core txrx pdev context
*
* Return: void
*/
static void dp_cleanup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
dp_srng_cleanup(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
IPA_RX_REFILL_BUF_RING_IDX);
}
#else
static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
static void dp_cleanup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
}
#endif
#if !defined(DISABLE_MON_CONFIG)
/**
* dp_mon_rings_setup() - Initialize Monitor rings based on target
* @soc: soc handle
* @pdev: physical device handle
*
* Return: nonzero on failure and zero on success
*/
static
QDF_STATUS dp_mon_rings_setup(struct dp_soc *soc, struct dp_pdev *pdev)
{
int mac_id = 0;
int pdev_id = pdev->pdev_id;
int entries;
struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
pdev_cfg_ctx = pdev->wlan_cfg_ctx;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id, pdev_id);
if (soc->wlan_cfg_ctx->rxdma1_enable) {
entries =
wlan_cfg_get_dma_mon_buf_ring_size(pdev_cfg_ctx);
if (dp_srng_setup(soc,
&pdev->rxdma_mon_buf_ring[mac_id],
RXDMA_MONITOR_BUF, 0, mac_for_pdev,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_mon_buf_ring "));
return QDF_STATUS_E_NOMEM;
}
entries =
wlan_cfg_get_dma_mon_dest_ring_size(pdev_cfg_ctx);
if (dp_srng_setup(soc,
&pdev->rxdma_mon_dst_ring[mac_id],
RXDMA_MONITOR_DST, 0, mac_for_pdev,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_mon_dst_ring"));
return QDF_STATUS_E_NOMEM;
}
entries =
wlan_cfg_get_dma_mon_stat_ring_size(pdev_cfg_ctx);
if (dp_srng_setup(soc,
&pdev->rxdma_mon_status_ring[mac_id],
RXDMA_MONITOR_STATUS, 0, mac_for_pdev,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_mon_status_ring"));
return QDF_STATUS_E_NOMEM;
}
entries =
wlan_cfg_get_dma_mon_desc_ring_size(pdev_cfg_ctx);
if (dp_srng_setup(soc,
&pdev->rxdma_mon_desc_ring[mac_id],
RXDMA_MONITOR_DESC, 0, mac_for_pdev,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_mon_desc_ring"));
return QDF_STATUS_E_NOMEM;
}
} else {
entries =
wlan_cfg_get_dma_mon_stat_ring_size(pdev_cfg_ctx);
if (dp_srng_setup(soc,
&pdev->rxdma_mon_status_ring[mac_id],
RXDMA_MONITOR_STATUS, 0, mac_for_pdev,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_mon_status_ring"));
return QDF_STATUS_E_NOMEM;
}
}
}
return QDF_STATUS_SUCCESS;
}
#else
static
QDF_STATUS dp_mon_rings_setup(struct dp_soc *soc, struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
#endif
/*dp_iterate_update_peer_list - update peer stats on cal client timer
* @pdev_hdl: pdev handle
*/
#ifdef ATH_SUPPORT_EXT_STAT
void dp_iterate_update_peer_list(struct cdp_pdev *pdev_hdl)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_hdl;
struct dp_soc *soc = pdev->soc;
struct dp_vdev *vdev = NULL;
struct dp_peer *peer = NULL;
qdf_spin_lock_bh(&soc->peer_ref_mutex);
qdf_spin_lock_bh(&pdev->vdev_list_lock);
DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
DP_VDEV_ITERATE_PEER_LIST(vdev, peer) {
dp_cal_client_update_peer_stats(&peer->stats);
}
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
}
#else
void dp_iterate_update_peer_list(struct cdp_pdev *pdev_hdl)
{
}
#endif
/*
* dp_htt_ppdu_stats_attach() - attach resources for HTT PPDU stats processing
* @pdev: Datapath PDEV handle
*
* Return: QDF_STATUS_SUCCESS: Success
* QDF_STATUS_E_NOMEM: Error
*/
static QDF_STATUS dp_htt_ppdu_stats_attach(struct dp_pdev *pdev)
{
pdev->ppdu_tlv_buf = qdf_mem_malloc(HTT_T2H_MAX_MSG_SIZE);
if (!pdev->ppdu_tlv_buf) {
QDF_TRACE_ERROR(QDF_MODULE_ID_DP, "ppdu_tlv_buf alloc fail");
return QDF_STATUS_E_NOMEM;
}
return QDF_STATUS_SUCCESS;
}
/*
* dp_pdev_attach_wifi3() - attach txrx pdev
* @txrx_soc: Datapath SOC handle
* @htc_handle: HTC handle for host-target interface
* @qdf_osdev: QDF OS device
* @pdev_id: PDEV ID
*
* Return: DP PDEV handle on success, NULL on failure
*/
static struct cdp_pdev *dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc,
HTC_HANDLE htc_handle, qdf_device_t qdf_osdev, uint8_t pdev_id)
{
int ring_size;
int entries;
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
int nss_cfg;
void *sojourn_buf;
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
struct dp_pdev *pdev = NULL;
if (dp_is_soc_reinit(soc)) {
pdev = soc->pdev_list[pdev_id];
} else {
pdev = qdf_mem_malloc(sizeof(*pdev));
qdf_minidump_log(pdev, sizeof(*pdev), "dp_pdev");
}
if (!pdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("DP PDEV memory allocation failed"));
goto fail0;
}
/*
* Variable to prevent double pdev deinitialization during
* radio detach execution .i.e. in the absence of any vdev.
*/
pdev->pdev_deinit = 0;
pdev->invalid_peer = qdf_mem_malloc(sizeof(struct dp_peer));
if (!pdev->invalid_peer) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Invalid peer memory allocation failed"));
qdf_mem_free(pdev);
goto fail0;
}
soc_cfg_ctx = soc->wlan_cfg_ctx;
pdev->wlan_cfg_ctx = wlan_cfg_pdev_attach(soc->ctrl_psoc);
if (!pdev->wlan_cfg_ctx) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("pdev cfg_attach failed"));
qdf_mem_free(pdev->invalid_peer);
qdf_mem_free(pdev);
goto fail0;
}
/*
* set nss pdev config based on soc config
*/
nss_cfg = wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx);
wlan_cfg_set_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx,
(nss_cfg & (1 << pdev_id)));
pdev->soc = soc;
pdev->pdev_id = pdev_id;
soc->pdev_list[pdev_id] = pdev;
pdev->lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, pdev_id);
soc->pdev_count++;
TAILQ_INIT(&pdev->vdev_list);
qdf_spinlock_create(&pdev->vdev_list_lock);
pdev->vdev_count = 0;
qdf_spinlock_create(&pdev->tx_mutex);
qdf_spinlock_create(&pdev->neighbour_peer_mutex);
TAILQ_INIT(&pdev->neighbour_peers_list);
pdev->neighbour_peers_added = false;
pdev->monitor_configured = false;
if (dp_soc_cmn_setup(soc)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_soc_cmn_setup failed"));
goto fail1;
}
/* Setup per PDEV TCL rings if configured */
if (wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
ring_size =
wlan_cfg_tx_ring_size(soc_cfg_ctx);
if (dp_srng_setup(soc, &soc->tcl_data_ring[pdev_id], TCL_DATA,
pdev_id, pdev_id, ring_size, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tcl_data_ring"));
goto fail1;
}
ring_size =
wlan_cfg_tx_comp_ring_size(soc_cfg_ctx);
if (dp_srng_setup(soc, &soc->tx_comp_ring[pdev_id],
WBM2SW_RELEASE, pdev_id, pdev_id,
ring_size, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tx_comp_ring"));
goto fail1;
}
soc->num_tcl_data_rings++;
}
/* Tx specific init */
if (dp_tx_pdev_attach(pdev)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_tx_pdev_attach failed"));
goto fail1;
}
ring_size = wlan_cfg_get_reo_dst_ring_size(soc->wlan_cfg_ctx);
/* Setup per PDEV REO rings if configured */
if (wlan_cfg_per_pdev_rx_ring(soc_cfg_ctx)) {
if (dp_srng_setup(soc, &soc->reo_dest_ring[pdev_id], REO_DST,
pdev_id, pdev_id, ring_size, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for reo_dest_ringn"));
goto fail1;
}
soc->num_reo_dest_rings++;
}
ring_size =
wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc->wlan_cfg_ctx);
if (dp_srng_setup(soc, &pdev->rx_refill_buf_ring, RXDMA_BUF, 0, pdev_id,
ring_size, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed rx refill ring"));
goto fail1;
}
if (dp_rxdma_ring_setup(soc, pdev)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("RXDMA ring config failed"));
goto fail1;
}
if (dp_mon_rings_setup(soc, pdev)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("MONITOR rings setup failed"));
goto fail1;
}
entries = wlan_cfg_get_dp_soc_rxdma_err_dst_ring_size(soc_cfg_ctx);
if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
if (dp_srng_setup(soc, &pdev->rxdma_err_dst_ring[0], RXDMA_DST,
0, pdev_id, entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_err_dst_ring"));
goto fail1;
}
}
if (dp_setup_ipa_rx_refill_buf_ring(soc, pdev))
goto fail1;
if (dp_ipa_ring_resource_setup(soc, pdev))
goto fail1;
if (dp_ipa_uc_attach(soc, pdev) != QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_ipa_uc_attach failed"));
goto fail1;
}
/* Rx specific init */
if (dp_rx_pdev_attach(pdev)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_rx_pdev_attach failed"));
goto fail2;
}
DP_STATS_INIT(pdev);
/* Monitor filter init */
pdev->mon_filter_mode = MON_FILTER_ALL;
pdev->fp_mgmt_filter = FILTER_MGMT_ALL;
pdev->fp_ctrl_filter = FILTER_CTRL_ALL;
pdev->fp_data_filter = FILTER_DATA_ALL;
pdev->mo_mgmt_filter = FILTER_MGMT_ALL;
pdev->mo_ctrl_filter = FILTER_CTRL_ALL;
pdev->mo_data_filter = FILTER_DATA_ALL;
dp_local_peer_id_pool_init(pdev);
dp_dscp_tid_map_setup(pdev);
dp_pcp_tid_map_setup(pdev);
/* Rx monitor mode specific init */
if (dp_rx_pdev_mon_attach(pdev)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"dp_rx_pdev_mon_attach failed");
goto fail2;
}
if (dp_wdi_event_attach(pdev)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"dp_wdi_evet_attach failed");
goto wdi_attach_fail;
}
/* set the reo destination during initialization */
pdev->reo_dest = pdev->pdev_id + 1;
/*
* initialize ppdu tlv list
*/
TAILQ_INIT(&pdev->ppdu_info_list);
pdev->tlv_count = 0;
pdev->list_depth = 0;
qdf_mem_zero(&pdev->sojourn_stats, sizeof(struct cdp_tx_sojourn_stats));
pdev->sojourn_buf = qdf_nbuf_alloc(pdev->soc->osdev,
sizeof(struct cdp_tx_sojourn_stats), 0, 4,
TRUE);
if (pdev->sojourn_buf) {
sojourn_buf = qdf_nbuf_data(pdev->sojourn_buf);
qdf_mem_zero(sojourn_buf, sizeof(struct cdp_tx_sojourn_stats));
}
/* initlialize cal client timer */
dp_cal_client_attach(&pdev->cal_client_ctx,
dp_pdev_to_cdp_pdev(pdev),
pdev->soc->osdev,
&dp_iterate_update_peer_list);
qdf_event_create(&pdev->fw_peer_stats_event);
pdev->num_tx_allowed = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
dp_init_tso_stats(pdev);
if (dp_htt_ppdu_stats_attach(pdev) != QDF_STATUS_SUCCESS)
goto fail1;
dp_tx_ppdu_stats_attach(pdev);
return (struct cdp_pdev *)pdev;
wdi_attach_fail:
/*
* dp_mon_link_desc_pool_cleanup is done in dp_pdev_detach
* and hence need not to be done here.
*/
dp_rx_pdev_mon_detach(pdev);
fail2:
dp_rx_pdev_detach(pdev);
fail1:
if (pdev->invalid_peer)
qdf_mem_free(pdev->invalid_peer);
dp_pdev_detach((struct cdp_pdev *)pdev, 0);
fail0:
return NULL;
}
/*
* dp_rxdma_ring_cleanup() - configure the RX DMA rings
* @soc: data path SoC handle
* @pdev: Physical device handle
*
* Return: void
*/
#ifdef QCA_HOST2FW_RXBUF_RING
static void dp_rxdma_ring_cleanup(struct dp_soc *soc,
struct dp_pdev *pdev)
{
int i;
for (i = 0; i < MAX_RX_MAC_RINGS; i++)
dp_srng_cleanup(soc, &pdev->rx_mac_buf_ring[i],
RXDMA_BUF, 1);
if (soc->reap_timer_init) {
qdf_timer_free(&soc->mon_reap_timer);
soc->reap_timer_init = 0;
}
}
#else
static void dp_rxdma_ring_cleanup(struct dp_soc *soc,
struct dp_pdev *pdev)
{
}
#endif
/*
* dp_neighbour_peers_detach() - Detach neighbour peers(nac clients)
* @pdev: device object
*
* Return: void
*/
static void dp_neighbour_peers_detach(struct dp_pdev *pdev)
{
struct dp_neighbour_peer *peer = NULL;
struct dp_neighbour_peer *temp_peer = NULL;
TAILQ_FOREACH_SAFE(peer, &pdev->neighbour_peers_list,
neighbour_peer_list_elem, temp_peer) {
/* delete this peer from the list */
TAILQ_REMOVE(&pdev->neighbour_peers_list,
peer, neighbour_peer_list_elem);
qdf_mem_free(peer);
}
qdf_spinlock_destroy(&pdev->neighbour_peer_mutex);
}
/**
* dp_htt_ppdu_stats_detach() - detach stats resources
* @pdev: Datapath PDEV handle
*
* Return: void
*/
static void dp_htt_ppdu_stats_detach(struct dp_pdev *pdev)
{
struct ppdu_info *ppdu_info, *ppdu_info_next;
TAILQ_FOREACH_SAFE(ppdu_info, &pdev->ppdu_info_list,
ppdu_info_list_elem, ppdu_info_next) {
if (!ppdu_info)
break;
qdf_assert_always(ppdu_info->nbuf);
qdf_nbuf_free(ppdu_info->nbuf);
qdf_mem_free(ppdu_info);
}
if (pdev->ppdu_tlv_buf)
qdf_mem_free(pdev->ppdu_tlv_buf);
}
#if !defined(DISABLE_MON_CONFIG)
static
void dp_mon_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev,
int mac_id)
{
if (soc->wlan_cfg_ctx->rxdma1_enable) {
dp_srng_cleanup(soc,
&pdev->rxdma_mon_buf_ring[mac_id],
RXDMA_MONITOR_BUF, 0);
dp_srng_cleanup(soc,
&pdev->rxdma_mon_dst_ring[mac_id],
RXDMA_MONITOR_DST, 0);
dp_srng_cleanup(soc,
&pdev->rxdma_mon_status_ring[mac_id],
RXDMA_MONITOR_STATUS, 0);
dp_srng_cleanup(soc,
&pdev->rxdma_mon_desc_ring[mac_id],
RXDMA_MONITOR_DESC, 0);
dp_srng_cleanup(soc,
&pdev->rxdma_err_dst_ring[mac_id],
RXDMA_DST, 0);
} else {
dp_srng_cleanup(soc,
&pdev->rxdma_mon_status_ring[mac_id],
RXDMA_MONITOR_STATUS, 0);
dp_srng_cleanup(soc,
&pdev->rxdma_err_dst_ring[mac_id],
RXDMA_DST, 0);
}
}
#else
static void dp_mon_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev,
int mac_id)
{
}
#endif
/**
* dp_mon_ring_deinit() - Placeholder to deinitialize Monitor rings
*
* @soc: soc handle
* @pdev: datapath physical dev handle
* @mac_id: mac number
*
* Return: None
*/
static void dp_mon_ring_deinit(struct dp_soc *soc, struct dp_pdev *pdev,
int mac_id)
{
}
/**
* dp_pdev_mem_reset() - Reset txrx pdev memory
* @pdev: dp pdev handle
*
* Return: None
*/
static void dp_pdev_mem_reset(struct dp_pdev *pdev)
{
uint16_t len = 0;
uint8_t *dp_pdev_offset = (uint8_t *)pdev;
len = sizeof(struct dp_pdev) -
offsetof(struct dp_pdev, pdev_deinit) -
sizeof(pdev->pdev_deinit);
dp_pdev_offset = dp_pdev_offset +
offsetof(struct dp_pdev, pdev_deinit) +
sizeof(pdev->pdev_deinit);
qdf_mem_zero(dp_pdev_offset, len);
}
#ifdef WLAN_DP_PENDING_MEM_FLUSH
/**
* dp_pdev_flush_pending_vdevs() - Flush all delete pending vdevs in pdev
* @pdev: Datapath PDEV handle
*
* This is the last chance to flush all pending dp vdevs/peers,
* some peer/vdev leak case like Non-SSR + peer unmap missing
* will be covered here.
*
* Return: None
*/
static void dp_pdev_flush_pending_vdevs(struct dp_pdev *pdev)
{
struct dp_vdev *vdev = NULL;
while (true) {
qdf_spin_lock_bh(&pdev->vdev_list_lock);
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
if (vdev->delete.pending)
break;
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
/*
* vdev will be freed when all peers get cleanup,
* dp_delete_pending_vdev will remove vdev from vdev_list
* in pdev.
*/
if (vdev)
dp_vdev_flush_peers((struct cdp_vdev *)vdev, 0);
else
break;
}
}
#else
static void dp_pdev_flush_pending_vdevs(struct dp_pdev *pdev)
{
}
#endif
/**
* dp_pdev_deinit() - Deinit txrx pdev
* @txrx_pdev: Datapath PDEV handle
* @force: Force deinit
*
* Return: None
*/
static void dp_pdev_deinit(struct cdp_pdev *txrx_pdev, int force)
{
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
struct dp_soc *soc = pdev->soc;
qdf_nbuf_t curr_nbuf, next_nbuf;
int mac_id;
/*
* Prevent double pdev deinitialization during radio detach
* execution .i.e. in the absence of any vdev
*/
if (pdev->pdev_deinit)
return;
pdev->pdev_deinit = 1;
dp_wdi_event_detach(pdev);
dp_pdev_flush_pending_vdevs(pdev);
dp_tx_pdev_detach(pdev);
if (wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
dp_srng_deinit(soc, &soc->tcl_data_ring[pdev->pdev_id],
TCL_DATA, pdev->pdev_id);
dp_srng_deinit(soc, &soc->tx_comp_ring[pdev->pdev_id],
WBM2SW_RELEASE, pdev->pdev_id);
}
dp_pktlogmod_exit(pdev);
dp_rx_fst_detach(soc, pdev);
dp_rx_pdev_detach(pdev);
dp_rx_pdev_mon_detach(pdev);
dp_neighbour_peers_detach(pdev);
qdf_spinlock_destroy(&pdev->tx_mutex);
qdf_spinlock_destroy(&pdev->vdev_list_lock);
dp_ipa_uc_detach(soc, pdev);
dp_cleanup_ipa_rx_refill_buf_ring(soc, pdev);
/* Cleanup per PDEV REO rings if configured */
if (wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) {
dp_srng_deinit(soc, &soc->reo_dest_ring[pdev->pdev_id],
REO_DST, pdev->pdev_id);
}
dp_srng_deinit(soc, &pdev->rx_refill_buf_ring, RXDMA_BUF, 0);
dp_rxdma_ring_cleanup(soc, pdev);
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
dp_mon_ring_deinit(soc, pdev, mac_id);
dp_srng_deinit(soc, &pdev->rxdma_err_dst_ring[mac_id],
RXDMA_DST, 0);
}
curr_nbuf = pdev->invalid_peer_head_msdu;
while (curr_nbuf) {
next_nbuf = qdf_nbuf_next(curr_nbuf);
qdf_nbuf_free(curr_nbuf);
curr_nbuf = next_nbuf;
}
pdev->invalid_peer_head_msdu = NULL;
pdev->invalid_peer_tail_msdu = NULL;
dp_htt_ppdu_stats_detach(pdev);
dp_tx_ppdu_stats_detach(pdev);
qdf_nbuf_free(pdev->sojourn_buf);
qdf_nbuf_queue_free(&pdev->rx_ppdu_buf_q);
dp_cal_client_detach(&pdev->cal_client_ctx);
soc->pdev_count--;
/* only do soc common cleanup when last pdev do detach */
if (!(soc->pdev_count))
dp_soc_cmn_cleanup(soc);
wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
if (pdev->invalid_peer)
qdf_mem_free(pdev->invalid_peer);
qdf_mem_free(pdev->dp_txrx_handle);
dp_pdev_mem_reset(pdev);
}
/**
* dp_pdev_deinit_wifi3() - Deinit txrx pdev
* @txrx_pdev: Datapath PDEV handle
* @force: Force deinit
*
* Return: None
*/
static void dp_pdev_deinit_wifi3(struct cdp_pdev *txrx_pdev, int force)
{
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
struct dp_soc *soc = pdev->soc;
soc->dp_soc_reinit = TRUE;
dp_pdev_deinit(txrx_pdev, force);
}
/*
* dp_pdev_detach() - Complete rest of pdev detach
* @txrx_pdev: Datapath PDEV handle
* @force: Force deinit
*
* Return: None
*/
static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force)
{
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
struct dp_soc *soc = pdev->soc;
struct rx_desc_pool *rx_desc_pool;
int mac_id, mac_for_pdev;
if (wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
dp_srng_cleanup(soc, &soc->tcl_data_ring[pdev->pdev_id],
TCL_DATA, pdev->pdev_id);
dp_srng_cleanup(soc, &soc->tx_comp_ring[pdev->pdev_id],
WBM2SW_RELEASE, pdev->pdev_id);
}
dp_mon_link_free(pdev);
/* Cleanup per PDEV REO rings if configured */
if (wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) {
dp_srng_cleanup(soc, &soc->reo_dest_ring[pdev->pdev_id],
REO_DST, pdev->pdev_id);
}
dp_rxdma_ring_cleanup(soc, pdev);
wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
dp_srng_cleanup(soc, &pdev->rx_refill_buf_ring, RXDMA_BUF, 0);
dp_cleanup_ipa_rx_refill_buf_ring(soc, pdev);
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
dp_mon_ring_cleanup(soc, pdev, mac_id);
dp_srng_cleanup(soc, &pdev->rxdma_err_dst_ring[mac_id],
RXDMA_DST, 0);
if (dp_is_soc_reinit(soc)) {
mac_for_pdev = dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
rx_desc_pool = &soc->rx_desc_status[mac_for_pdev];
dp_rx_desc_pool_free(soc, rx_desc_pool);
rx_desc_pool = &soc->rx_desc_mon[mac_for_pdev];
dp_rx_desc_pool_free(soc, rx_desc_pool);
}
}
if (dp_is_soc_reinit(soc)) {
rx_desc_pool = &soc->rx_desc_buf[pdev->pdev_id];
dp_rx_desc_pool_free(soc, rx_desc_pool);
}
soc->pdev_list[pdev->pdev_id] = NULL;
qdf_minidump_remove(pdev);
qdf_mem_free(pdev);
}
/*
* dp_pdev_detach_wifi3() - detach txrx pdev
* @txrx_pdev: Datapath PDEV handle
* @force: Force detach
*
* Return: None
*/
static void dp_pdev_detach_wifi3(struct cdp_pdev *txrx_pdev, int force)
{
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
struct dp_soc *soc = pdev->soc;
if (dp_is_soc_reinit(soc)) {
dp_pdev_detach(txrx_pdev, force);
} else {
dp_pdev_deinit(txrx_pdev, force);
dp_pdev_detach(txrx_pdev, force);
}
}
/*
* dp_reo_desc_freelist_destroy() - Flush REO descriptors from deferred freelist
* @soc: DP SOC handle
*/
static inline void dp_reo_desc_freelist_destroy(struct dp_soc *soc)
{
struct reo_desc_list_node *desc;
struct dp_rx_tid *rx_tid;
qdf_spin_lock_bh(&soc->reo_desc_freelist_lock);
while (qdf_list_remove_front(&soc->reo_desc_freelist,
(qdf_list_node_t **)&desc) == QDF_STATUS_SUCCESS) {
rx_tid = &desc->rx_tid;
qdf_mem_unmap_nbytes_single(soc->osdev,
rx_tid->hw_qdesc_paddr,
QDF_DMA_BIDIRECTIONAL,
rx_tid->hw_qdesc_alloc_size);
qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned);
qdf_mem_free(desc);
}
qdf_spin_unlock_bh(&soc->reo_desc_freelist_lock);
qdf_list_destroy(&soc->reo_desc_freelist);
qdf_spinlock_destroy(&soc->reo_desc_freelist_lock);
}
/**
* dp_soc_mem_reset() - Reset Dp Soc memory
* @soc: DP handle
*
* Return: None
*/
static void dp_soc_mem_reset(struct dp_soc *soc)
{
uint16_t len = 0;
uint8_t *dp_soc_offset = (uint8_t *)soc;
len = sizeof(struct dp_soc) -
offsetof(struct dp_soc, dp_soc_reinit) -
sizeof(soc->dp_soc_reinit);
dp_soc_offset = dp_soc_offset +
offsetof(struct dp_soc, dp_soc_reinit) +
sizeof(soc->dp_soc_reinit);
qdf_mem_zero(dp_soc_offset, len);
}
/**
* dp_soc_deinit() - Deinitialize txrx SOC
* @txrx_soc: Opaque DP SOC handle
*
* Return: None
*/
static void dp_soc_deinit(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i;
qdf_atomic_set(&soc->cmn_init_done, 0);
for (i = 0; i < MAX_PDEV_CNT; i++) {
if (soc->pdev_list[i])
dp_pdev_deinit((struct cdp_pdev *)
soc->pdev_list[i], 1);
}
qdf_flush_work(&soc->htt_stats.work);
qdf_disable_work(&soc->htt_stats.work);
/* Free pending htt stats messages */
qdf_nbuf_queue_free(&soc->htt_stats.msg);
dp_peer_find_detach(soc);
/* Free the ring memories */
/* Common rings */
dp_srng_deinit(soc, &soc->wbm_desc_rel_ring, SW2WBM_RELEASE, 0);
/* Tx data rings */
if (!wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
for (i = 0; i < soc->num_tcl_data_rings; i++) {
dp_srng_deinit(soc, &soc->tcl_data_ring[i],
TCL_DATA, i);
dp_srng_deinit(soc, &soc->tx_comp_ring[i],
WBM2SW_RELEASE, i);
}
}
/* TCL command and status rings */
dp_srng_deinit(soc, &soc->tcl_cmd_ring, TCL_CMD, 0);
dp_srng_deinit(soc, &soc->tcl_status_ring, TCL_STATUS, 0);
/* Rx data rings */
if (!wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) {
soc->num_reo_dest_rings =
wlan_cfg_num_reo_dest_rings(soc->wlan_cfg_ctx);
for (i = 0; i < soc->num_reo_dest_rings; i++) {
/* TODO: Get number of rings and ring sizes
* from wlan_cfg
*/
dp_srng_deinit(soc, &soc->reo_dest_ring[i],
REO_DST, i);
}
}
/* REO reinjection ring */
dp_srng_deinit(soc, &soc->reo_reinject_ring, REO_REINJECT, 0);
/* Rx release ring */
dp_srng_deinit(soc, &soc->rx_rel_ring, WBM2SW_RELEASE, 0);
/* Rx exception ring */
/* TODO: Better to store ring_type and ring_num in
* dp_srng during setup
*/
dp_srng_deinit(soc, &soc->reo_exception_ring, REO_EXCEPTION, 0);
/* REO command and status rings */
dp_srng_deinit(soc, &soc->reo_cmd_ring, REO_CMD, 0);
dp_srng_deinit(soc, &soc->reo_status_ring, REO_STATUS, 0);
dp_soc_wds_detach(soc);
qdf_spinlock_destroy(&soc->peer_ref_mutex);
qdf_spinlock_destroy(&soc->htt_stats.lock);
htt_soc_htc_dealloc(soc->htt_handle);
dp_reo_desc_freelist_destroy(soc);
qdf_spinlock_destroy(&soc->ast_lock);
dp_soc_mem_reset(soc);
}
/**
* dp_soc_deinit_wifi3() - Deinitialize txrx SOC
* @txrx_soc: Opaque DP SOC handle
*
* Return: None
*/
static void dp_soc_deinit_wifi3(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
soc->dp_soc_reinit = 1;
dp_soc_deinit(txrx_soc);
}
/*
* dp_soc_detach() - Detach rest of txrx SOC
* @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
*
* Return: None
*/
static void dp_soc_detach(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i;
qdf_atomic_set(&soc->cmn_init_done, 0);
/* TBD: Call Tx and Rx cleanup functions to free buffers and
* SW descriptors
*/
for (i = 0; i < MAX_PDEV_CNT; i++) {
if (soc->pdev_list[i])
dp_pdev_detach((struct cdp_pdev *)
soc->pdev_list[i], 1);
}
/* Free the ring memories */
/* Common rings */
qdf_minidump_remove(soc->wbm_desc_rel_ring.base_vaddr_unaligned);
dp_srng_cleanup(soc, &soc->wbm_desc_rel_ring, SW2WBM_RELEASE, 0);
/* Tx data rings */
if (!wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
for (i = 0; i < soc->num_tcl_data_rings; i++) {
dp_srng_cleanup(soc, &soc->tcl_data_ring[i],
TCL_DATA, i);
dp_srng_cleanup(soc, &soc->tx_comp_ring[i],
WBM2SW_RELEASE, i);
}
}
/* TCL command and status rings */
dp_srng_cleanup(soc, &soc->tcl_cmd_ring, TCL_CMD, 0);
dp_srng_cleanup(soc, &soc->tcl_status_ring, TCL_STATUS, 0);
/* Rx data rings */
if (!wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) {
soc->num_reo_dest_rings =
wlan_cfg_num_reo_dest_rings(soc->wlan_cfg_ctx);
for (i = 0; i < soc->num_reo_dest_rings; i++) {
/* TODO: Get number of rings and ring sizes
* from wlan_cfg
*/
dp_srng_cleanup(soc, &soc->reo_dest_ring[i],
REO_DST, i);
}
}
/* REO reinjection ring */
dp_srng_cleanup(soc, &soc->reo_reinject_ring, REO_REINJECT, 0);
/* Rx release ring */
dp_srng_cleanup(soc, &soc->rx_rel_ring, WBM2SW_RELEASE, 0);
dp_srng_cleanup(soc, &soc->rx_rel_ring, WBM2SW_RELEASE, 3);
/* Rx exception ring */
/* TODO: Better to store ring_type and ring_num in
* dp_srng during setup
*/
dp_srng_cleanup(soc, &soc->reo_exception_ring, REO_EXCEPTION, 0);
/* REO command and status rings */
dp_srng_cleanup(soc, &soc->reo_cmd_ring, REO_CMD, 0);
dp_srng_cleanup(soc, &soc->reo_status_ring, REO_STATUS, 0);
dp_hw_link_desc_pool_cleanup(soc);
htt_soc_detach(soc->htt_handle);
soc->dp_soc_reinit = 0;
wlan_cfg_soc_detach(soc->wlan_cfg_ctx);
qdf_minidump_remove(soc);
qdf_mem_free(soc);
}
/*
* dp_soc_detach_wifi3() - Detach txrx SOC
* @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
*
* Return: None
*/
static void dp_soc_detach_wifi3(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
if (dp_is_soc_reinit(soc)) {
dp_soc_detach(txrx_soc);
} else {
dp_soc_deinit(txrx_soc);
dp_soc_detach(txrx_soc);
}
}
#if !defined(DISABLE_MON_CONFIG)
/**
* dp_mon_htt_srng_setup() - Prepare HTT messages for Monitor rings
* @soc: soc handle
* @pdev: physical device handle
* @mac_id: ring number
* @mac_for_pdev: mac_id
*
* Return: non-zero for failure, zero for success
*/
static QDF_STATUS dp_mon_htt_srng_setup(struct dp_soc *soc,
struct dp_pdev *pdev,
int mac_id,
int mac_for_pdev)
{
QDF_STATUS status = QDF_STATUS_SUCCESS;
if (soc->wlan_cfg_ctx->rxdma1_enable) {
status = htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_buf_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_BUF);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt srng setup message for Rxdma mon buf ring");
return status;
}
status = htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_dst_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_DST);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt srng setup message for Rxdma mon dst ring");
return status;
}
status = htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_STATUS);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt srng setup message for Rxdma mon status ring");
return status;
}
status = htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_desc_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_DESC);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt srng message for Rxdma mon desc ring");
return status;
}
} else {
status = htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_STATUS);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt srng setup message for Rxdma mon status ring");
return status;
}
}
return status;
}
#else
static QDF_STATUS dp_mon_htt_srng_setup(struct dp_soc *soc,
struct dp_pdev *pdev,
int mac_id,
int mac_for_pdev)
{
return QDF_STATUS_SUCCESS;
}
#endif
/*
* dp_rxdma_ring_config() - configure the RX DMA rings
*
* This function is used to configure the MAC rings.
* On MCL host provides buffers in Host2FW ring
* FW refills (copies) buffers to the ring and updates
* ring_idx in register
*
* @soc: data path SoC handle
*
* Return: zero on success, non-zero on failure
*/
#ifdef QCA_HOST2FW_RXBUF_RING
static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc)
{
int i;
QDF_STATUS status = QDF_STATUS_SUCCESS;
for (i = 0; i < MAX_PDEV_CNT; i++) {
struct dp_pdev *pdev = soc->pdev_list[i];
if (pdev) {
int mac_id;
bool dbs_enable = 0;
int max_mac_rings =
wlan_cfg_get_num_mac_rings
(pdev->wlan_cfg_ctx);
htt_srng_setup(soc->htt_handle, 0,
pdev->rx_refill_buf_ring.hal_srng,
RXDMA_BUF);
if (pdev->rx_refill_buf_ring2.hal_srng)
htt_srng_setup(soc->htt_handle, 0,
pdev->rx_refill_buf_ring2.hal_srng,
RXDMA_BUF);
if (soc->cdp_soc.ol_ops->
is_hw_dbs_2x2_capable) {
dbs_enable = soc->cdp_soc.ol_ops->
is_hw_dbs_2x2_capable(
(void *)soc->ctrl_psoc);
}
if (dbs_enable) {
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
FL("DBS enabled max_mac_rings %d"),
max_mac_rings);
} else {
max_mac_rings = 1;
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
FL("DBS disabled, max_mac_rings %d"),
max_mac_rings);
}
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
FL("pdev_id %d max_mac_rings %d"),
pdev->pdev_id, max_mac_rings);
for (mac_id = 0; mac_id < max_mac_rings; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(
mac_id, pdev->pdev_id);
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
FL("mac_id %d"), mac_for_pdev);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rx_mac_buf_ring[mac_id]
.hal_srng,
RXDMA_BUF);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_err_dst_ring[mac_id]
.hal_srng,
RXDMA_DST);
/* Configure monitor mode rings */
status = dp_mon_htt_srng_setup(soc, pdev,
mac_id,
mac_for_pdev);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt monitor messages to target");
return status;
}
}
}
}
/*
* Timer to reap rxdma status rings.
* Needed until we enable ppdu end interrupts
*/
qdf_timer_init(soc->osdev, &soc->mon_reap_timer,
dp_service_mon_rings, (void *)soc,
QDF_TIMER_TYPE_WAKE_APPS);
soc->reap_timer_init = 1;
return status;
}
#else
/* This is only for WIN */
static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc)
{
int i;
int mac_id;
QDF_STATUS status = QDF_STATUS_SUCCESS;
for (i = 0; i < MAX_PDEV_CNT; i++) {
struct dp_pdev *pdev = soc->pdev_list[i];
if (!pdev)
continue;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id, i);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rx_refill_buf_ring.hal_srng, RXDMA_BUF);
#ifndef DISABLE_MON_CONFIG
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_buf_ring[mac_id].hal_srng,
RXDMA_MONITOR_BUF);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_dst_ring[mac_id].hal_srng,
RXDMA_MONITOR_DST);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id].hal_srng,
RXDMA_MONITOR_STATUS);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_desc_ring[mac_id].hal_srng,
RXDMA_MONITOR_DESC);
#endif
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_err_dst_ring[mac_id].hal_srng,
RXDMA_DST);
}
}
return status;
}
#endif
#ifdef NO_RX_PKT_HDR_TLV
static QDF_STATUS
dp_rxdma_ring_sel_cfg(struct dp_soc *soc)
{
int i;
int mac_id;
struct htt_rx_ring_tlv_filter htt_tlv_filter = {0};
QDF_STATUS status = QDF_STATUS_SUCCESS;
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 1;
htt_tlv_filter.mpdu_end = 1;
htt_tlv_filter.msdu_end = 1;
htt_tlv_filter.attention = 1;
htt_tlv_filter.packet = 1;
htt_tlv_filter.packet_header = 0;
htt_tlv_filter.ppdu_start = 0;
htt_tlv_filter.ppdu_end = 0;
htt_tlv_filter.ppdu_end_user_stats = 0;
htt_tlv_filter.ppdu_end_user_stats_ext = 0;
htt_tlv_filter.ppdu_end_status_done = 0;
htt_tlv_filter.enable_fp = 1;
htt_tlv_filter.enable_md = 0;
htt_tlv_filter.enable_md = 0;
htt_tlv_filter.enable_mo = 0;
htt_tlv_filter.fp_mgmt_filter = 0;
htt_tlv_filter.fp_ctrl_filter = FILTER_CTRL_BA_REQ;
htt_tlv_filter.fp_data_filter = (FILTER_DATA_UCAST |
FILTER_DATA_MCAST |
FILTER_DATA_DATA);
htt_tlv_filter.mo_mgmt_filter = 0;
htt_tlv_filter.mo_ctrl_filter = 0;
htt_tlv_filter.mo_data_filter = 0;
htt_tlv_filter.md_data_filter = 0;
htt_tlv_filter.offset_valid = true;
htt_tlv_filter.rx_packet_offset = RX_PKT_TLVS_LEN;
/*Not subscribing rx_pkt_header*/
htt_tlv_filter.rx_header_offset = 0;
htt_tlv_filter.rx_mpdu_start_offset =
HAL_RX_PKT_TLV_MPDU_START_OFFSET(soc->hal_soc);
htt_tlv_filter.rx_mpdu_end_offset =
HAL_RX_PKT_TLV_MPDU_END_OFFSET(soc->hal_soc);
htt_tlv_filter.rx_msdu_start_offset =
HAL_RX_PKT_TLV_MSDU_START_OFFSET(soc->hal_soc);
htt_tlv_filter.rx_msdu_end_offset =
HAL_RX_PKT_TLV_MSDU_END_OFFSET(soc->hal_soc);
htt_tlv_filter.rx_attn_offset =
HAL_RX_PKT_TLV_ATTN_OFFSET(soc->hal_soc);
for (i = 0; i < MAX_PDEV_CNT; i++) {
struct dp_pdev *pdev = soc->pdev_list[i];
if (!pdev)
continue;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
pdev->rx_refill_buf_ring.hal_srng,
RXDMA_BUF, RX_BUFFER_SIZE,
&htt_tlv_filter);
}
}
return status;
}
#else
static QDF_STATUS
dp_rxdma_ring_sel_cfg(struct dp_soc *soc)
{
return QDF_STATUS_SUCCESS;
}
#endif
/*
* dp_rx_target_fst_config() - configure the RXOLE Flow Search Engine
*
* This function is used to configure the FSE HW block in RX OLE on a
* per pdev basis. Here, we will be programming parameters related to
* the Flow Search Table.
*
* @soc: data path SoC handle
*
* Return: zero on success, non-zero on failure
*/
#ifdef WLAN_SUPPORT_RX_FLOW_TAG
static QDF_STATUS
dp_rx_target_fst_config(struct dp_soc *soc)
{
int i;
QDF_STATUS status = QDF_STATUS_SUCCESS;
for (i = 0; i < MAX_PDEV_CNT; i++) {
struct dp_pdev *pdev = soc->pdev_list[i];
/* Flow search is not enabled if NSS offload is enabled */
if (pdev &&
!wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
status = dp_rx_flow_send_fst_fw_setup(pdev->soc, pdev);
if (status != QDF_STATUS_SUCCESS)
break;
}
}
return status;
}
#else
/**
* dp_rx_target_fst_config() - Configure RX OLE FSE engine in HW
* @soc: SoC handle
*
* Return: Success
*/
static inline QDF_STATUS
dp_rx_target_fst_config(struct dp_soc *soc)
{
return QDF_STATUS_SUCCESS;
}
#endif /* WLAN_SUPPORT_RX_FLOW_TAG */
/*
* dp_soc_attach_target_wifi3() - SOC initialization in the target
* @cdp_soc: Opaque Datapath SOC handle
*
* Return: zero on success, non-zero on failure
*/
static QDF_STATUS
dp_soc_attach_target_wifi3(struct cdp_soc_t *cdp_soc)
{
struct dp_soc *soc = (struct dp_soc *)cdp_soc;
QDF_STATUS status = QDF_STATUS_SUCCESS;
htt_soc_attach_target(soc->htt_handle);
status = dp_rxdma_ring_config(soc);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt srng setup messages to target");
return status;
}
status = dp_rxdma_ring_sel_cfg(soc);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt ring config message to target");
return status;
}
status = dp_rx_target_fst_config(soc);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt fst setup config message to target");
return status;
}
DP_STATS_INIT(soc);
/* initialize work queue for stats processing */
qdf_create_work(0, &soc->htt_stats.work, htt_t2h_stats_handler, soc);
qdf_minidump_log(soc, sizeof(*soc), "dp_soc");
return QDF_STATUS_SUCCESS;
}
/*
* dp_soc_get_nss_cfg_wifi3() - SOC get nss config
* @txrx_soc: Datapath SOC handle
*/
static int dp_soc_get_nss_cfg_wifi3(struct cdp_soc_t *cdp_soc)
{
struct dp_soc *dsoc = (struct dp_soc *)cdp_soc;
return wlan_cfg_get_dp_soc_nss_cfg(dsoc->wlan_cfg_ctx);
}
/*
* dp_soc_set_nss_cfg_wifi3() - SOC set nss config
* @txrx_soc: Datapath SOC handle
* @nss_cfg: nss config
*/
static void dp_soc_set_nss_cfg_wifi3(struct cdp_soc_t *cdp_soc, int config)
{
struct dp_soc *dsoc = (struct dp_soc *)cdp_soc;
struct wlan_cfg_dp_soc_ctxt *wlan_cfg_ctx = dsoc->wlan_cfg_ctx;
wlan_cfg_set_dp_soc_nss_cfg(wlan_cfg_ctx, config);
/*
* TODO: masked out based on the per offloaded radio
*/
switch (config) {
case dp_nss_cfg_default:
break;
case dp_nss_cfg_first_radio:
/*
* This configuration is valid for single band radio which
* is also NSS offload.
*/
case dp_nss_cfg_dbdc:
case dp_nss_cfg_dbtc:
wlan_cfg_set_num_tx_desc_pool(wlan_cfg_ctx, 0);
wlan_cfg_set_num_tx_ext_desc_pool(wlan_cfg_ctx, 0);
wlan_cfg_set_num_tx_desc(wlan_cfg_ctx, 0);
wlan_cfg_set_num_tx_ext_desc(wlan_cfg_ctx, 0);
break;
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid offload config %d", config);
}
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
FL("nss-wifi<0> nss config is enabled"));
}
/*
* dp_vdev_attach_wifi3() - attach txrx vdev
* @txrx_pdev: Datapath PDEV handle
* @vdev_mac_addr: MAC address of the virtual interface
* @vdev_id: VDEV Id
* @wlan_op_mode: VDEV operating mode
* @subtype: VDEV operating subtype
*
* Return: DP VDEV handle on success, NULL on failure
*/
static struct cdp_vdev *dp_vdev_attach_wifi3(struct cdp_pdev *txrx_pdev,
uint8_t *vdev_mac_addr, uint8_t vdev_id, enum wlan_op_mode op_mode,
enum wlan_op_subtype subtype)
{
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
struct dp_soc *soc = pdev->soc;
struct dp_vdev *vdev = qdf_mem_malloc(sizeof(*vdev));
if (!vdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("DP VDEV memory allocation failed"));
goto fail0;
}
vdev->pdev = pdev;
vdev->vdev_id = vdev_id;
vdev->opmode = op_mode;
vdev->subtype = subtype;
vdev->osdev = soc->osdev;
vdev->osif_rx = NULL;
vdev->osif_rsim_rx_decap = NULL;
vdev->osif_get_key = NULL;
vdev->osif_rx_mon = NULL;
vdev->osif_tx_free_ext = NULL;
vdev->osif_vdev = NULL;
vdev->delete.pending = 0;
vdev->safemode = 0;
vdev->drop_unenc = 1;
vdev->sec_type = cdp_sec_type_none;
#ifdef notyet
vdev->filters_num = 0;
#endif
qdf_mem_copy(
&vdev->mac_addr.raw[0], vdev_mac_addr, QDF_MAC_ADDR_SIZE);
/* TODO: Initialize default HTT meta data that will be used in
* TCL descriptors for packets transmitted from this VDEV
*/
TAILQ_INIT(&vdev->peer_list);
dp_peer_multipass_list_init(vdev);
if ((soc->intr_mode == DP_INTR_POLL) &&
wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx) != 0) {
if ((pdev->vdev_count == 0) ||
(wlan_op_mode_monitor == vdev->opmode))
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
}
soc->vdev_id_map[vdev_id] = vdev;
if (wlan_op_mode_monitor == vdev->opmode) {
pdev->monitor_vdev = vdev;
return (struct cdp_vdev *)vdev;
}
vdev->tx_encap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
vdev->rx_decap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
vdev->dscp_tid_map_id = 0;
vdev->mcast_enhancement_en = 0;
vdev->raw_mode_war = wlan_cfg_get_raw_mode_war(soc->wlan_cfg_ctx);
vdev->prev_tx_enq_tstamp = 0;
vdev->prev_rx_deliver_tstamp = 0;
qdf_spin_lock_bh(&pdev->vdev_list_lock);
/* add this vdev into the pdev's list */
TAILQ_INSERT_TAIL(&pdev->vdev_list, vdev, vdev_list_elem);
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
pdev->vdev_count++;
if (wlan_op_mode_sta != vdev->opmode)
vdev->ap_bridge_enabled = true;
else
vdev->ap_bridge_enabled = false;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s: wlan_cfg_ap_bridge_enabled %d",
__func__, vdev->ap_bridge_enabled);
dp_tx_vdev_attach(vdev);
if (pdev->vdev_count == 1)
dp_lro_hash_setup(soc, pdev);
dp_info("Created vdev %pK (%pM)", vdev, vdev->mac_addr.raw);
DP_STATS_INIT(vdev);
if (wlan_op_mode_sta == vdev->opmode)
dp_peer_create_wifi3((struct cdp_vdev *)vdev,
vdev->mac_addr.raw);
return (struct cdp_vdev *)vdev;
fail0:
return NULL;
}
/**
* dp_vdev_register_wifi3() - Register VDEV operations from osif layer
* @vdev: Datapath VDEV handle
* @osif_vdev: OSIF vdev handle
* @ctrl_vdev: UMAC vdev handle
* @txrx_ops: Tx and Rx operations
*
* Return: DP VDEV handle on success, NULL on failure
*/
static void dp_vdev_register_wifi3(struct cdp_vdev *vdev_handle,
void *osif_vdev, struct ol_txrx_ops *txrx_ops)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->osif_vdev = osif_vdev;
vdev->osif_rx = txrx_ops->rx.rx;
vdev->osif_rx_stack = txrx_ops->rx.rx_stack;
vdev->osif_rx_flush = txrx_ops->rx.rx_flush;
vdev->osif_gro_flush = txrx_ops->rx.rx_gro_flush;
vdev->osif_rsim_rx_decap = txrx_ops->rx.rsim_rx_decap;
vdev->osif_get_key = txrx_ops->get_key;
vdev->osif_rx_mon = txrx_ops->rx.mon;
vdev->osif_tx_free_ext = txrx_ops->tx.tx_free_ext;
vdev->tx_comp = txrx_ops->tx.tx_comp;
#ifdef notyet
#if ATH_SUPPORT_WAPI
vdev->osif_check_wai = txrx_ops->rx.wai_check;
#endif
#endif
#ifdef UMAC_SUPPORT_PROXY_ARP
vdev->osif_proxy_arp = txrx_ops->proxy_arp;
#endif
vdev->me_convert = txrx_ops->me_convert;
/* TODO: Enable the following once Tx code is integrated */
if (vdev->mesh_vdev)
txrx_ops->tx.tx = dp_tx_send_mesh;
else
txrx_ops->tx.tx = dp_tx_send;
txrx_ops->tx.tx_exception = dp_tx_send_exception;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW,
"DP Vdev Register success");
}
/**
* dp_peer_flush_ast_entry() - Forcibily flush all AST entry of peer
* @soc: Datapath soc handle
* @peer: Datapath peer handle
* @peer_id: Peer ID
* @vdev_id: Vdev ID
*
* Return: void
*/
static void dp_peer_flush_ast_entry(struct dp_soc *soc,
struct dp_peer *peer,
uint16_t peer_id,
uint8_t vdev_id)
{
struct dp_ast_entry *ase, *tmp_ase;
if (soc->is_peer_map_unmap_v2) {
DP_PEER_ITERATE_ASE_LIST(peer, ase, tmp_ase) {
dp_rx_peer_unmap_handler
(soc, peer_id,
vdev_id,
ase->mac_addr.raw,
1);
}
}
}
/**
* dp_vdev_flush_peers() - Forcibily Flush peers of vdev
* @vdev: Datapath VDEV handle
* @unmap_only: Flag to indicate "only unmap"
*
* Return: void
*/
static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle, bool unmap_only)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev = vdev->pdev;
struct dp_soc *soc = pdev->soc;
struct dp_peer *peer;
uint16_t *peer_ids;
struct dp_peer **peer_array = NULL;
uint8_t i = 0, j = 0;
uint8_t m = 0, n = 0;
peer_ids = qdf_mem_malloc(soc->max_peers * sizeof(peer_ids[0]));
if (!peer_ids) {
dp_err("DP alloc failure - unable to flush peers");
return;
}
if (!unmap_only) {
peer_array = qdf_mem_malloc(
soc->max_peers * sizeof(struct dp_peer *));
if (!peer_array) {
qdf_mem_free(peer_ids);
dp_err("DP alloc failure - unable to flush peers");
return;
}
}
qdf_spin_lock_bh(&soc->peer_ref_mutex);
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
if (!unmap_only && n < soc->max_peers)
peer_array[n++] = peer;
for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++)
if (peer->peer_ids[i] != HTT_INVALID_PEER)
if (j < soc->max_peers)
peer_ids[j++] = peer->peer_ids[i];
}
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
/*
* If peer id is invalid, need to flush the peer if
* peer valid flag is true, this is needed for NAN + SSR case.
*/
if (!unmap_only) {
for (m = 0; m < n ; m++) {
peer = peer_array[m];
dp_info("peer: %pM is getting deleted",
peer->mac_addr.raw);
/* only if peer valid is true */
if (peer->valid)
dp_peer_delete_wifi3(peer, 0);
}
qdf_mem_free(peer_array);
}
for (i = 0; i < j ; i++) {
peer = __dp_peer_find_by_id(soc, peer_ids[i]);
if (!peer)
continue;
dp_info("peer: %pM is getting unmap",
peer->mac_addr.raw);
/* free AST entries of peer */
dp_peer_flush_ast_entry(soc, peer,
peer_ids[i],
vdev->vdev_id);
dp_rx_peer_unmap_handler(soc, peer_ids[i],
vdev->vdev_id,
peer->mac_addr.raw, 0);
}
qdf_mem_free(peer_ids);
dp_info("Flushed peers for vdev object %pK ", vdev);
}
/*
* dp_vdev_detach_wifi3() - Detach txrx vdev
* @txrx_vdev: Datapath VDEV handle
* @callback: Callback OL_IF on completion of detach
* @cb_context: Callback context
*
*/
static void dp_vdev_detach_wifi3(struct cdp_vdev *vdev_handle,
ol_txrx_vdev_delete_cb callback, void *cb_context)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
struct dp_soc *soc;
struct dp_neighbour_peer *peer = NULL;
struct dp_neighbour_peer *temp_peer = NULL;
/* preconditions */
qdf_assert_always(vdev);
pdev = vdev->pdev;
soc = pdev->soc;
soc->vdev_id_map[vdev->vdev_id] = NULL;
if (wlan_op_mode_sta == vdev->opmode)
dp_peer_delete_wifi3(vdev->vap_self_peer, 0);
/*
* If Target is hung, flush all peers before detaching vdev
* this will free all references held due to missing
* unmap commands from Target
*/
if (!hif_is_target_ready(HIF_GET_SOFTC(soc->hif_handle)))
dp_vdev_flush_peers((struct cdp_vdev *)vdev, false);
/*
* Use peer_ref_mutex while accessing peer_list, in case
* a peer is in the process of being removed from the list.
*/
qdf_spin_lock_bh(&soc->peer_ref_mutex);
/* check that the vdev has no peers allocated */
if (!TAILQ_EMPTY(&vdev->peer_list)) {
/* debug print - will be removed later */
dp_warn("not deleting vdev object %pK (%pM) until deletion finishes for all its peers",
vdev, vdev->mac_addr.raw);
/* indicate that the vdev needs to be deleted */
vdev->delete.pending = 1;
vdev->delete.callback = callback;
vdev->delete.context = cb_context;
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
return;
}
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
if (wlan_op_mode_monitor == vdev->opmode)
goto free_vdev;
qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
if (!soc->hw_nac_monitor_support) {
TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
neighbour_peer_list_elem) {
QDF_ASSERT(peer->vdev != vdev);
}
} else {
TAILQ_FOREACH_SAFE(peer, &pdev->neighbour_peers_list,
neighbour_peer_list_elem, temp_peer) {
if (peer->vdev == vdev) {
TAILQ_REMOVE(&pdev->neighbour_peers_list, peer,
neighbour_peer_list_elem);
qdf_mem_free(peer);
}
}
}
qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
qdf_spin_lock_bh(&pdev->vdev_list_lock);
dp_tx_vdev_detach(vdev);
dp_rx_vdev_detach(vdev);
/* remove the vdev from its parent pdev's list */
TAILQ_REMOVE(&pdev->vdev_list, vdev, vdev_list_elem);
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
free_vdev:
if (wlan_op_mode_monitor == vdev->opmode)
pdev->monitor_vdev = NULL;
dp_info("deleting vdev object %pK (%pM)", vdev, vdev->mac_addr.raw);
qdf_mem_free(vdev);
if (callback)
callback(cb_context);
}
#ifdef FEATURE_AST
/*
* dp_peer_delete_ast_entries(): Delete all AST entries for a peer
* @soc - datapath soc handle
* @peer - datapath peer handle
*
* Delete the AST entries belonging to a peer
*/
static inline void dp_peer_delete_ast_entries(struct dp_soc *soc,
struct dp_peer *peer)
{
struct dp_ast_entry *ast_entry, *temp_ast_entry;
DP_PEER_ITERATE_ASE_LIST(peer, ast_entry, temp_ast_entry)
dp_peer_del_ast(soc, ast_entry);
peer->self_ast_entry = NULL;
}
#else
static inline void dp_peer_delete_ast_entries(struct dp_soc *soc,
struct dp_peer *peer)
{
}
#endif
#if ATH_SUPPORT_WRAP
static inline struct dp_peer *dp_peer_can_reuse(struct dp_vdev *vdev,
uint8_t *peer_mac_addr)
{
struct dp_peer *peer;
peer = dp_peer_find_hash_find(vdev->pdev->soc, peer_mac_addr,
0, vdev->vdev_id);
if (!peer)
return NULL;
if (peer->bss_peer)
return peer;
dp_peer_unref_delete(peer);
return NULL;
}
#else
static inline struct dp_peer *dp_peer_can_reuse(struct dp_vdev *vdev,
uint8_t *peer_mac_addr)
{
struct dp_peer *peer;
peer = dp_peer_find_hash_find(vdev->pdev->soc, peer_mac_addr,
0, vdev->vdev_id);
if (!peer)
return NULL;
if (peer->bss_peer && (peer->vdev->vdev_id == vdev->vdev_id))
return peer;
dp_peer_unref_delete(peer);
return NULL;
}
#endif
#ifdef FEATURE_AST
static inline void dp_peer_ast_handle_roam_del(struct dp_soc *soc,
struct dp_pdev *pdev,
uint8_t *peer_mac_addr)
{
struct dp_ast_entry *ast_entry;
qdf_spin_lock_bh(&soc->ast_lock);
if (soc->ast_override_support)
ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, peer_mac_addr,
pdev->pdev_id);
else
ast_entry = dp_peer_ast_hash_find_soc(soc, peer_mac_addr);
if (ast_entry && ast_entry->next_hop && !ast_entry->delete_in_progress)
dp_peer_del_ast(soc, ast_entry);
qdf_spin_unlock_bh(&soc->ast_lock);
}
#endif
#ifdef PEER_CACHE_RX_PKTS
static inline void dp_peer_rx_bufq_resources_init(struct dp_peer *peer)
{
qdf_spinlock_create(&peer->bufq_info.bufq_lock);
peer->bufq_info.thresh = DP_RX_CACHED_BUFQ_THRESH;
qdf_list_create(&peer->bufq_info.cached_bufq, DP_RX_CACHED_BUFQ_THRESH);
}
#else
static inline void dp_peer_rx_bufq_resources_init(struct dp_peer *peer)
{
}
#endif
/*
* dp_peer_create_wifi3() - attach txrx peer
* @txrx_vdev: Datapath VDEV handle
* @peer_mac_addr: Peer MAC address
*
* Return: DP peeer handle on success, NULL on failure
*/
static void *dp_peer_create_wifi3(struct cdp_vdev *vdev_handle,
uint8_t *peer_mac_addr)
{
struct dp_peer *peer;
int i;
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
struct dp_soc *soc;
struct cdp_peer_cookie peer_cookie;
enum cdp_txrx_ast_entry_type ast_type = CDP_TXRX_AST_TYPE_STATIC;
/* preconditions */
qdf_assert(vdev);
qdf_assert(peer_mac_addr);
pdev = vdev->pdev;
soc = pdev->soc;
/*
* If a peer entry with given MAC address already exists,
* reuse the peer and reset the state of peer.
*/
peer = dp_peer_can_reuse(vdev, peer_mac_addr);
if (peer) {
qdf_atomic_init(&peer->is_default_route_set);
dp_peer_cleanup(vdev, peer, true);
qdf_spin_lock_bh(&soc->ast_lock);
dp_peer_delete_ast_entries(soc, peer);
peer->delete_in_progress = false;
qdf_spin_unlock_bh(&soc->ast_lock);
if ((vdev->opmode == wlan_op_mode_sta) &&
!qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0],
QDF_MAC_ADDR_SIZE)) {
ast_type = CDP_TXRX_AST_TYPE_SELF;
}
dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0);
/*
* Control path maintains a node count which is incremented
* for every new peer create command. Since new peer is not being
* created and earlier reference is reused here,
* peer_unref_delete event is sent to control path to
* increment the count back.
*/
if (soc->cdp_soc.ol_ops->peer_unref_delete) {
soc->cdp_soc.ol_ops->peer_unref_delete(
soc->ctrl_psoc,
pdev->pdev_id,
peer->mac_addr.raw, vdev->mac_addr.raw,
vdev->opmode);
}
dp_local_peer_id_alloc(pdev, peer);
qdf_spinlock_create(&peer->peer_info_lock);
dp_peer_rx_bufq_resources_init(peer);
DP_STATS_INIT(peer);
DP_STATS_UPD(peer, rx.avg_rssi, INVALID_RSSI);
return (void *)peer;
} else {
/*
* When a STA roams from RPTR AP to ROOT AP and vice versa, we
* need to remove the AST entry which was earlier added as a WDS
* entry.
* If an AST entry exists, but no peer entry exists with a given
* MAC addresses, we could deduce it as a WDS entry
*/
dp_peer_ast_handle_roam_del(soc, pdev, peer_mac_addr);
}
#ifdef notyet
peer = (struct dp_peer *)qdf_mempool_alloc(soc->osdev,
soc->mempool_ol_ath_peer);
#else
peer = (struct dp_peer *)qdf_mem_malloc(sizeof(*peer));
#endif
if (!peer)
return NULL; /* failure */
qdf_mem_zero(peer, sizeof(struct dp_peer));
TAILQ_INIT(&peer->ast_entry_list);
/* store provided params */
peer->vdev = vdev;
if ((vdev->opmode == wlan_op_mode_sta) &&
!qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0],
QDF_MAC_ADDR_SIZE)) {
ast_type = CDP_TXRX_AST_TYPE_SELF;
}
dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0);
qdf_spinlock_create(&peer->peer_info_lock);
dp_peer_rx_bufq_resources_init(peer);
qdf_mem_copy(
&peer->mac_addr.raw[0], peer_mac_addr, QDF_MAC_ADDR_SIZE);
/* initialize the peer_id */
for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++)
peer->peer_ids[i] = HTT_INVALID_PEER;
qdf_spin_lock_bh(&soc->peer_ref_mutex);
qdf_atomic_init(&peer->ref_cnt);
/* keep one reference for attach */
qdf_atomic_inc(&peer->ref_cnt);
/* add this peer into the vdev's list */
if (wlan_op_mode_sta == vdev->opmode)
TAILQ_INSERT_HEAD(&vdev->peer_list, peer, peer_list_elem);
else
TAILQ_INSERT_TAIL(&vdev->peer_list, peer, peer_list_elem);
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
/* TODO: See if hash based search is required */
dp_peer_find_hash_add(soc, peer);
/* Initialize the peer state */
peer->state = OL_TXRX_PEER_STATE_DISC;
dp_info("vdev %pK created peer %pK (%pM) ref_cnt: %d",
vdev, peer, peer->mac_addr.raw,
qdf_atomic_read(&peer->ref_cnt));
/*
* For every peer MAp message search and set if bss_peer
*/
if (qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw,
QDF_MAC_ADDR_SIZE) == 0 &&
(wlan_op_mode_sta != vdev->opmode)) {
dp_info("vdev bss_peer!!");
peer->bss_peer = 1;
vdev->vap_bss_peer = peer;
}
if (wlan_op_mode_sta == vdev->opmode &&
qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw,
QDF_MAC_ADDR_SIZE) == 0) {
vdev->vap_self_peer = peer;
}
for (i = 0; i < DP_MAX_TIDS; i++)
qdf_spinlock_create(&peer->rx_tid[i].tid_lock);
peer->valid = 1;
dp_local_peer_id_alloc(pdev, peer);
DP_STATS_INIT(peer);
DP_STATS_UPD(peer, rx.avg_rssi, INVALID_RSSI);
qdf_mem_copy(peer_cookie.mac_addr, peer->mac_addr.raw,
QDF_MAC_ADDR_SIZE);
peer_cookie.ctx = NULL;
peer_cookie.cookie = pdev->next_peer_cookie++;
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
dp_wdi_event_handler(WDI_EVENT_PEER_CREATE, pdev->soc,
(void *)&peer_cookie,
peer->peer_ids[0], WDI_NO_VAL, pdev->pdev_id);
#endif
if (soc->wlanstats_enabled) {
if (!peer_cookie.ctx) {
pdev->next_peer_cookie--;
qdf_err("Failed to initialize peer rate stats");
} else {
peer->wlanstats_ctx = (struct cdp_peer_rate_stats_ctx *)
peer_cookie.ctx;
}
}
return (void *)peer;
}
/*
* dp_vdev_get_default_reo_hash() - get reo dest ring and hash values for a vdev
* @vdev: Datapath VDEV handle
* @reo_dest: pointer to default reo_dest ring for vdev to be populated
* @hash_based: pointer to hash value (enabled/disabled) to be populated
*
* Return: None
*/
static
void dp_vdev_get_default_reo_hash(struct dp_vdev *vdev,
enum cdp_host_reo_dest_ring *reo_dest,
bool *hash_based)
{
struct dp_soc *soc;
struct dp_pdev *pdev;
pdev = vdev->pdev;
soc = pdev->soc;
/*
* hash based steering is disabled for Radios which are offloaded
* to NSS
*/
if (!wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx))
*hash_based = wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx);
/*
* Below line of code will ensure the proper reo_dest ring is chosen
* for cases where toeplitz hash cannot be generated (ex: non TCP/UDP)
*/
*reo_dest = pdev->reo_dest;
}
#ifdef IPA_OFFLOAD
/**
* dp_is_vdev_subtype_p2p() - Check if the subtype for vdev is P2P
* @vdev: Virtual device
*
* Return: true if the vdev is of subtype P2P
* false if the vdev is of any other subtype
*/
static inline bool dp_is_vdev_subtype_p2p(struct dp_vdev *vdev)
{
if (vdev->subtype == wlan_op_subtype_p2p_device ||
vdev->subtype == wlan_op_subtype_p2p_cli ||
vdev->subtype == wlan_op_subtype_p2p_go)
return true;
return false;
}
/*
* dp_peer_setup_get_reo_hash() - get reo dest ring and hash values for a peer
* @vdev: Datapath VDEV handle
* @reo_dest: pointer to default reo_dest ring for vdev to be populated
* @hash_based: pointer to hash value (enabled/disabled) to be populated
*
* If IPA is enabled in ini, for SAP mode, disable hash based
* steering, use default reo_dst ring for RX. Use config values for other modes.
* Return: None
*/
static void dp_peer_setup_get_reo_hash(struct dp_vdev *vdev,
enum cdp_host_reo_dest_ring *reo_dest,
bool *hash_based)
{
struct dp_soc *soc;
struct dp_pdev *pdev;
pdev = vdev->pdev;
soc = pdev->soc;
dp_vdev_get_default_reo_hash(vdev, reo_dest, hash_based);
/* For P2P-GO interfaces we do not need to change the REO
* configuration even if IPA config is enabled
*/
if (dp_is_vdev_subtype_p2p(vdev))
return;
/*
* If IPA is enabled, disable hash-based flow steering and set
* reo_dest_ring_4 as the REO ring to receive packets on.
* IPA is configured to reap reo_dest_ring_4.
*
* Note - REO DST indexes are from 0 - 3, while cdp_host_reo_dest_ring
* value enum value is from 1 - 4.
* Hence, *reo_dest = IPA_REO_DEST_RING_IDX + 1
*/
if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
if (vdev->opmode == wlan_op_mode_ap) {
*reo_dest = IPA_REO_DEST_RING_IDX + 1;
*hash_based = 0;
} else if (vdev->opmode == wlan_op_mode_sta &&
dp_ipa_is_mdm_platform()) {
*reo_dest = IPA_REO_DEST_RING_IDX + 1;
}
}
}
#else
/*
* dp_peer_setup_get_reo_hash() - get reo dest ring and hash values for a peer
* @vdev: Datapath VDEV handle
* @reo_dest: pointer to default reo_dest ring for vdev to be populated
* @hash_based: pointer to hash value (enabled/disabled) to be populated
*
* Use system config values for hash based steering.
* Return: None
*/
static void dp_peer_setup_get_reo_hash(struct dp_vdev *vdev,
enum cdp_host_reo_dest_ring *reo_dest,
bool *hash_based)
{
dp_vdev_get_default_reo_hash(vdev, reo_dest, hash_based);
}
#endif /* IPA_OFFLOAD */
/*
* dp_peer_setup_wifi3() - initialize the peer
* @vdev_hdl: virtual device object
* @peer: Peer object
*
* Return: void
*/
static void dp_peer_setup_wifi3(struct cdp_vdev *vdev_hdl, void *peer_hdl)
{
struct dp_peer *peer = (struct dp_peer *)peer_hdl;
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
struct dp_pdev *pdev;
struct dp_soc *soc;
bool hash_based = 0;
enum cdp_host_reo_dest_ring reo_dest;
/* preconditions */
qdf_assert(vdev);
qdf_assert(peer);
pdev = vdev->pdev;
soc = pdev->soc;
dp_peer_setup_get_reo_hash(vdev, &reo_dest, &hash_based);
dp_info("pdev: %d vdev :%d opmode:%u hash-based-steering:%d default-reo_dest:%u",
pdev->pdev_id, vdev->vdev_id,
vdev->opmode, hash_based, reo_dest);
/*
* There are corner cases where the AD1 = AD2 = "VAPs address"
* i.e both the devices have same MAC address. In these
* cases we want such pkts to be processed in NULL Q handler
* which is REO2TCL ring. for this reason we should
* not setup reo_queues and default route for bss_peer.
*/
if (peer->bss_peer && vdev->opmode == wlan_op_mode_ap)
return;
if (soc->cdp_soc.ol_ops->peer_set_default_routing) {
/* TODO: Check the destination ring number to be passed to FW */
soc->cdp_soc.ol_ops->peer_set_default_routing(
soc->ctrl_psoc,
peer->vdev->pdev->pdev_id,
peer->mac_addr.raw,
peer->vdev->vdev_id, hash_based, reo_dest);
}
qdf_atomic_set(&peer->is_default_route_set, 1);
dp_peer_rx_init(pdev, peer);
dp_peer_tx_init(pdev, peer);
dp_peer_ppdu_delayed_ba_init(peer);
return;
}
/*
* dp_cp_peer_del_resp_handler - Handle the peer delete response
* @soc_hdl: Datapath SOC handle
* @vdev_hdl: virtual device object
* @mac_addr: Mac address of the peer
*
* Return: void
*/
static void dp_cp_peer_del_resp_handler(struct cdp_soc_t *soc_hdl,
struct cdp_vdev *vdev_hdl,
uint8_t *mac_addr)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_ast_entry *ast_entry = NULL;
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
txrx_ast_free_cb cb = NULL;
void *cookie;
qdf_spin_lock_bh(&soc->ast_lock);
if (soc->ast_override_support)
ast_entry =
dp_peer_ast_hash_find_by_pdevid(soc, mac_addr,
vdev->pdev->pdev_id);
else
ast_entry = dp_peer_ast_hash_find_soc(soc, mac_addr);
/* in case of qwrap we have multiple BSS peers
* with same mac address
*
* AST entry for this mac address will be created
* only for one peer hence it will be NULL here
*/
if (!ast_entry || ast_entry->peer || !ast_entry->delete_in_progress) {
qdf_spin_unlock_bh(&soc->ast_lock);
return;
}
if (ast_entry->is_mapped)
soc->ast_table[ast_entry->ast_idx] = NULL;
DP_STATS_INC(soc, ast.deleted, 1);
dp_peer_ast_hash_remove(soc, ast_entry);
cb = ast_entry->callback;
cookie = ast_entry->cookie;
ast_entry->callback = NULL;
ast_entry->cookie = NULL;
soc->num_ast_entries--;
qdf_spin_unlock_bh(&soc->ast_lock);
if (cb) {
cb(soc->ctrl_psoc,
dp_soc_to_cdp_soc(soc),
cookie,
CDP_TXRX_AST_DELETED);
}
qdf_mem_free(ast_entry);
}
/*
* dp_set_vdev_tx_encap_type() - set the encap type of the vdev
* @vdev_handle: virtual device object
* @htt_pkt_type: type of pkt
*
* Return: void
*/
static void dp_set_vdev_tx_encap_type(struct cdp_vdev *vdev_handle,
enum htt_cmn_pkt_type val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->tx_encap_type = val;
}
/*
* dp_set_vdev_rx_decap_type() - set the decap type of the vdev
* @vdev_handle: virtual device object
* @htt_pkt_type: type of pkt
*
* Return: void
*/
static void dp_set_vdev_rx_decap_type(struct cdp_vdev *vdev_handle,
enum htt_cmn_pkt_type val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->rx_decap_type = val;
}
/*
* dp_set_ba_aging_timeout() - set ba aging timeout per AC
* @txrx_soc: cdp soc handle
* @ac: Access category
* @value: timeout value in millisec
*
* Return: void
*/
static void dp_set_ba_aging_timeout(struct cdp_soc_t *txrx_soc,
uint8_t ac, uint32_t value)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
hal_set_ba_aging_timeout(soc->hal_soc, ac, value);
}
/*
* dp_get_ba_aging_timeout() - get ba aging timeout per AC
* @txrx_soc: cdp soc handle
* @ac: access category
* @value: timeout value in millisec
*
* Return: void
*/
static void dp_get_ba_aging_timeout(struct cdp_soc_t *txrx_soc,
uint8_t ac, uint32_t *value)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
hal_get_ba_aging_timeout(soc->hal_soc, ac, value);
}
/*
* dp_set_pdev_reo_dest() - set the reo destination ring for this pdev
* @pdev_handle: physical device object
* @val: reo destination ring index (1 - 4)
*
* Return: void
*/
static void dp_set_pdev_reo_dest(struct cdp_pdev *pdev_handle,
enum cdp_host_reo_dest_ring val)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
if (pdev)
pdev->reo_dest = val;
}
/*
* dp_get_pdev_reo_dest() - get the reo destination for this pdev
* @pdev_handle: physical device object
*
* Return: reo destination ring index
*/
static enum cdp_host_reo_dest_ring
dp_get_pdev_reo_dest(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
if (pdev)
return pdev->reo_dest;
else
return cdp_host_reo_dest_ring_unknown;
}
/*
* dp_set_filter_neighbour_peers() - set filter neighbour peers for smart mesh
* @pdev_handle: device object
* @val: value to be set
*
* Return: void
*/
static int dp_set_filter_neighbour_peers(struct cdp_pdev *pdev_handle,
uint32_t val)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
/* Enable/Disable smart mesh filtering. This flag will be checked
* during rx processing to check if packets are from NAC clients.
*/
pdev->filter_neighbour_peers = val;
return 0;
}
/*
* dp_update_filter_neighbour_peers() - set neighbour peers(nac clients)
* address for smart mesh filtering
* @vdev_handle: virtual device object
* @cmd: Add/Del command
* @macaddr: nac client mac address
*
* Return: void
*/
static int dp_update_filter_neighbour_peers(struct cdp_vdev *vdev_handle,
uint32_t cmd, uint8_t *macaddr)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev = vdev->pdev;
struct dp_neighbour_peer *peer = NULL;
if (!macaddr)
goto fail0;
/* Store address of NAC (neighbour peer) which will be checked
* against TA of received packets.
*/
if (cmd == DP_NAC_PARAM_ADD) {
peer = (struct dp_neighbour_peer *) qdf_mem_malloc(
sizeof(*peer));
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("DP neighbour peer node memory allocation failed"));
goto fail0;
}
qdf_mem_copy(&peer->neighbour_peers_macaddr.raw[0],
macaddr, QDF_MAC_ADDR_SIZE);
peer->vdev = vdev;
qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
/* add this neighbour peer into the list */
TAILQ_INSERT_TAIL(&pdev->neighbour_peers_list, peer,
neighbour_peer_list_elem);
qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
/* first neighbour */
if (!pdev->neighbour_peers_added) {
pdev->neighbour_peers_added = true;
dp_ppdu_ring_cfg(pdev);
}
return 1;
} else if (cmd == DP_NAC_PARAM_DEL) {
qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
neighbour_peer_list_elem) {
if (!qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
macaddr, QDF_MAC_ADDR_SIZE)) {
/* delete this peer from the list */
TAILQ_REMOVE(&pdev->neighbour_peers_list,
peer, neighbour_peer_list_elem);
qdf_mem_free(peer);
break;
}
}
/* last neighbour deleted */
if (TAILQ_EMPTY(&pdev->neighbour_peers_list)) {
pdev->neighbour_peers_added = false;
dp_ppdu_ring_cfg(pdev);
}
qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
if (!pdev->mcopy_mode && !pdev->neighbour_peers_added &&
!pdev->enhanced_stats_en)
dp_ppdu_ring_reset(pdev);
return 1;
}
fail0:
return 0;
}
/*
* dp_get_sec_type() - Get the security type
* @peer: Datapath peer handle
* @sec_idx: Security id (mcast, ucast)
*
* return sec_type: Security type
*/
static int dp_get_sec_type(struct cdp_peer *peer, uint8_t sec_idx)
{
struct dp_peer *dpeer = (struct dp_peer *)peer;
return dpeer->security[sec_idx].sec_type;
}
/*
* dp_peer_authorize() - authorize txrx peer
* @peer_handle: Datapath peer handle
* @authorize
*
*/
static void dp_peer_authorize(struct cdp_peer *peer_handle, uint32_t authorize)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
struct dp_soc *soc;
if (peer) {
soc = peer->vdev->pdev->soc;
qdf_spin_lock_bh(&soc->peer_ref_mutex);
peer->authorize = authorize ? 1 : 0;
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
}
}
/*
* dp_vdev_reset_peer() - Update peer related member in vdev
as peer is going to free
* @vdev: datapath vdev handle
* @peer: dataptah peer handle
*
* Return: None
*/
static void dp_vdev_reset_peer(struct dp_vdev *vdev,
struct dp_peer *peer)
{
struct dp_peer *bss_peer = NULL;
if (!vdev) {
dp_err("vdev is NULL");
} else {
if (vdev->vap_bss_peer == peer)
vdev->vap_bss_peer = NULL;
if (vdev && vdev->vap_bss_peer) {
bss_peer = vdev->vap_bss_peer;
DP_UPDATE_STATS(vdev, peer);
}
}
}
/*
* dp_peer_release_mem() - free dp peer handle memory
* @soc: dataptah soc handle
* @pdev: datapath pdev handle
* @peer: datapath peer handle
* @vdev_opmode: Vdev operation mode
* @vdev_mac_addr: Vdev Mac address
*
* Return: None
*/
static void dp_peer_release_mem(struct dp_soc *soc,
struct dp_pdev *pdev,
struct dp_peer *peer,
enum wlan_op_mode vdev_opmode,
uint8_t *vdev_mac_addr)
{
if (soc->cdp_soc.ol_ops->peer_unref_delete)
soc->cdp_soc.ol_ops->peer_unref_delete(
soc->ctrl_psoc,
pdev->pdev_id,
peer->mac_addr.raw, vdev_mac_addr,
vdev_opmode);
/*
* Peer AST list hast to be empty here
*/
DP_AST_ASSERT(TAILQ_EMPTY(&peer->ast_entry_list));
qdf_mem_free(peer);
}
/**
* dp_delete_pending_vdev() - check and process vdev delete
* @pdev: DP specific pdev pointer
* @vdev: DP specific vdev pointer
* @vdev_id: vdev id corresponding to vdev
*
* This API does following:
* 1) It releases tx flow pools buffers as vdev is
* going down and no peers are associated.
* 2) It also detaches vdev before cleaning vdev (struct dp_vdev) memory
*/
static void dp_delete_pending_vdev(struct dp_pdev *pdev, struct dp_vdev *vdev,
uint8_t vdev_id)
{
ol_txrx_vdev_delete_cb vdev_delete_cb = NULL;
void *vdev_delete_context = NULL;
vdev_delete_cb = vdev->delete.callback;
vdev_delete_context = vdev->delete.context;
dp_info("deleting vdev object %pK (%pM)- its last peer is done",
vdev, vdev->mac_addr.raw);
/* all peers are gone, go ahead and delete it */
dp_tx_flow_pool_unmap_handler(pdev, vdev_id,
FLOW_TYPE_VDEV, vdev_id);
dp_tx_vdev_detach(vdev);
pdev->soc->vdev_id_map[vdev_id] = NULL;
if (wlan_op_mode_monitor == vdev->opmode) {
pdev->monitor_vdev = NULL;
} else {
qdf_spin_lock_bh(&pdev->vdev_list_lock);
TAILQ_REMOVE(&pdev->vdev_list, vdev, vdev_list_elem);
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
}
dp_info("deleting vdev object %pK (%pM)",
vdev, vdev->mac_addr.raw);
qdf_mem_free(vdev);
vdev = NULL;
if (vdev_delete_cb)
vdev_delete_cb(vdev_delete_context);
}
/*
* dp_peer_unref_delete() - unref and delete peer
* @peer_handle: Datapath peer handle
*
*/
void dp_peer_unref_delete(struct dp_peer *peer)
{
struct dp_vdev *vdev = peer->vdev;
struct dp_pdev *pdev = vdev->pdev;
struct dp_soc *soc = pdev->soc;
struct dp_peer *tmppeer;
int found = 0;
uint16_t peer_id;
uint16_t vdev_id;
bool vdev_delete = false;
struct cdp_peer_cookie peer_cookie;
enum wlan_op_mode vdev_opmode;
uint8_t vdev_mac_addr[QDF_MAC_ADDR_SIZE];
/*
* Hold the lock all the way from checking if the peer ref count
* is zero until the peer references are removed from the hash
* table and vdev list (if the peer ref count is zero).
* This protects against a new HL tx operation starting to use the
* peer object just after this function concludes it's done being used.
* Furthermore, the lock needs to be held while checking whether the
* vdev's list of peers is empty, to make sure that list is not modified
* concurrently with the empty check.
*/
qdf_spin_lock_bh(&soc->peer_ref_mutex);
if (qdf_atomic_dec_and_test(&peer->ref_cnt)) {
peer_id = peer->peer_ids[0];
vdev_id = vdev->vdev_id;
/*
* Make sure that the reference to the peer in
* peer object map is removed
*/
if (peer_id != HTT_INVALID_PEER)
soc->peer_id_to_obj_map[peer_id] = NULL;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"Deleting peer %pK (%pM)", peer, peer->mac_addr.raw);
/* remove the reference to the peer from the hash table */
dp_peer_find_hash_remove(soc, peer);
qdf_spin_lock_bh(&soc->ast_lock);
if (peer->self_ast_entry) {
dp_peer_del_ast(soc, peer->self_ast_entry);
peer->self_ast_entry = NULL;
}
qdf_spin_unlock_bh(&soc->ast_lock);
TAILQ_FOREACH(tmppeer, &peer->vdev->peer_list, peer_list_elem) {
if (tmppeer == peer) {
found = 1;
break;
}
}
if (found) {
TAILQ_REMOVE(&peer->vdev->peer_list, peer,
peer_list_elem);
} else {
/*Ignoring the remove operation as peer not found*/
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"peer:%pK not found in vdev:%pK peerlist:%pK",
peer, vdev, &peer->vdev->peer_list);
}
/* send peer destroy event to upper layer */
qdf_mem_copy(peer_cookie.mac_addr, peer->mac_addr.raw,
QDF_MAC_ADDR_SIZE);
peer_cookie.ctx = NULL;
peer_cookie.ctx = (struct cdp_stats_cookie *)
peer->wlanstats_ctx;
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
dp_wdi_event_handler(WDI_EVENT_PEER_DESTROY,
pdev->soc,
(void *)&peer_cookie,
peer->peer_ids[0],
WDI_NO_VAL,
pdev->pdev_id);
#endif
peer->wlanstats_ctx = NULL;
/* cleanup the peer data */
dp_peer_cleanup(vdev, peer, false);
/* reset this peer related info in vdev */
dp_vdev_reset_peer(vdev, peer);
/* save vdev related member in case vdev freed */
vdev_opmode = vdev->opmode;
qdf_mem_copy(vdev_mac_addr, vdev->mac_addr.raw,
QDF_MAC_ADDR_SIZE);
/*
* check whether the parent vdev is pending for deleting
* and no peers left.
*/
if (vdev->delete.pending && TAILQ_EMPTY(&vdev->peer_list))
vdev_delete = true;
/*
* Now that there are no references to the peer, we can
* release the peer reference lock.
*/
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
/*
* Invoke soc.ol_ops->peer_unref_delete out of
* peer_ref_mutex in case deadlock issue.
*/
dp_peer_release_mem(soc, pdev, peer,
vdev_opmode,
vdev_mac_addr);
/*
* Delete the vdev if it's waiting all peer deleted
* and it's chance now.
*/
if (vdev_delete)
dp_delete_pending_vdev(pdev, vdev, vdev_id);
} else {
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
}
}
#ifdef PEER_CACHE_RX_PKTS
static inline void dp_peer_rx_bufq_resources_deinit(struct dp_peer *peer)
{
dp_rx_flush_rx_cached(peer, true);
qdf_list_destroy(&peer->bufq_info.cached_bufq);
qdf_spinlock_destroy(&peer->bufq_info.bufq_lock);
}
#else
static inline void dp_peer_rx_bufq_resources_deinit(struct dp_peer *peer)
{
}
#endif
/*
* dp_peer_detach_wifi3() Detach txrx peer
* @peer_handle: Datapath peer handle
* @bitmap: bitmap indicating special handling of request.
*
*/
static void dp_peer_delete_wifi3(void *peer_handle, uint32_t bitmap)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
peer->valid = 0;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
FL("peer %pK (%pM)"), peer, peer->mac_addr.raw);
dp_local_peer_id_free(peer->vdev->pdev, peer);
dp_peer_rx_bufq_resources_deinit(peer);
qdf_spinlock_destroy(&peer->peer_info_lock);
dp_peer_multipass_list_remove(peer);
/*
* Remove the reference added during peer_attach.
* The peer will still be left allocated until the
* PEER_UNMAP message arrives to remove the other
* reference, added by the PEER_MAP message.
*/
dp_peer_unref_delete(peer_handle);
}
/*
* dp_get_vdev_mac_addr_wifi3() Detach txrx peer
* @peer_handle: Datapath peer handle
*
*/
static uint8 *dp_get_vdev_mac_addr_wifi3(struct cdp_vdev *pvdev)
{
struct dp_vdev *vdev = (struct dp_vdev *)pvdev;
return vdev->mac_addr.raw;
}
/*
* dp_vdev_set_wds() - Enable per packet stats
* @vdev_handle: DP VDEV handle
* @val: value
*
* Return: none
*/
static int dp_vdev_set_wds(void *vdev_handle, uint32_t val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->wds_enabled = val;
return 0;
}
/*
* dp_get_vdev_from_vdev_id_wifi3() Detach txrx peer
* @peer_handle: Datapath peer handle
*
*/
static struct cdp_vdev *dp_get_vdev_from_vdev_id_wifi3(struct cdp_pdev *dev,
uint8_t vdev_id)
{
struct dp_pdev *pdev = (struct dp_pdev *)dev;
struct dp_vdev *vdev = NULL;
if (qdf_unlikely(!pdev))
return NULL;
qdf_spin_lock_bh(&pdev->vdev_list_lock);
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
if (vdev->delete.pending)
continue;
if (vdev->vdev_id == vdev_id)
break;
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
return (struct cdp_vdev *)vdev;
}
/*
* dp_get_mon_vdev_from_pdev_wifi3() - Get vdev handle of monitor mode
* @dev: PDEV handle
*
* Return: VDEV handle of monitor mode
*/
static struct cdp_vdev *dp_get_mon_vdev_from_pdev_wifi3(struct cdp_pdev *dev)
{
struct dp_pdev *pdev = (struct dp_pdev *)dev;
if (qdf_unlikely(!pdev))
return NULL;
return (struct cdp_vdev *)pdev->monitor_vdev;
}
static int dp_get_opmode(struct cdp_soc_t *soc_hdl, uint8_t vdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id);
if (!vdev) {
dp_err("vdev for id %d is NULL", vdev_id);
return -EINVAL;
}
return vdev->opmode;
}
static
void dp_get_os_rx_handles_from_vdev_wifi3(struct cdp_vdev *pvdev,
ol_txrx_rx_fp *stack_fn_p,
ol_osif_vdev_handle *osif_vdev_p)
{
struct dp_vdev *vdev = dp_get_dp_vdev_from_cdp_vdev(pvdev);
qdf_assert(vdev);
*stack_fn_p = vdev->osif_rx_stack;
*osif_vdev_p = vdev->osif_vdev;
}
static struct cdp_cfg *dp_get_ctrl_pdev_from_vdev_wifi3(struct cdp_vdev *pvdev)
{
struct dp_vdev *vdev = (struct dp_vdev *)pvdev;
struct dp_pdev *pdev = vdev->pdev;
return (struct cdp_cfg *)pdev->wlan_cfg_ctx;
}
/**
* dp_monitor_mode_ring_config() - Send the tlv config to fw for monitor buffer
* ring based on target
* @soc: soc handle
* @mac_for_pdev: pdev_id
* @pdev: physical device handle
* @ring_num: mac id
* @htt_tlv_filter: tlv filter
*
* Return: zero on success, non-zero on failure
*/
static inline
QDF_STATUS dp_monitor_mode_ring_config(struct dp_soc *soc, uint8_t mac_for_pdev,
struct dp_pdev *pdev, uint8_t ring_num,
struct htt_rx_ring_tlv_filter htt_tlv_filter)
{
QDF_STATUS status;
if (soc->wlan_cfg_ctx->rxdma1_enable)
status = htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_buf_ring[ring_num]
.hal_srng,
RXDMA_MONITOR_BUF, RX_BUFFER_SIZE,
&htt_tlv_filter);
else
status = htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
pdev->rx_mac_buf_ring[ring_num]
.hal_srng,
RXDMA_BUF, RX_BUFFER_SIZE,
&htt_tlv_filter);
return status;
}
static inline void
dp_pdev_disable_mcopy_code(struct dp_pdev *pdev)
{
pdev->mcopy_mode = 0;
qdf_nbuf_queue_free(&pdev->rx_ppdu_buf_q);
}
/**
* dp_reset_monitor_mode() - Disable monitor mode
* @pdev_handle: Datapath PDEV handle
*
* Return: QDF_STATUS
*/
QDF_STATUS dp_reset_monitor_mode(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct htt_rx_ring_tlv_filter htt_tlv_filter;
struct dp_soc *soc = pdev->soc;
uint8_t pdev_id;
int mac_id;
QDF_STATUS status = QDF_STATUS_SUCCESS;
pdev_id = pdev->pdev_id;
soc = pdev->soc;
qdf_spin_lock_bh(&pdev->mon_lock);
qdf_mem_zero(&(htt_tlv_filter), sizeof(htt_tlv_filter));
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id, pdev_id);
status = dp_monitor_mode_ring_config(soc, mac_for_pdev,
pdev, mac_id,
htt_tlv_filter);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send tlv filter for monitor mode rings");
qdf_spin_unlock_bh(&pdev->mon_lock);
return status;
}
htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id].hal_srng,
RXDMA_MONITOR_STATUS, RX_BUFFER_SIZE,
&htt_tlv_filter);
}
pdev->monitor_vdev = NULL;
if (pdev->mcopy_mode)
dp_pdev_disable_mcopy_code(pdev);
pdev->monitor_configured = false;
qdf_spin_unlock_bh(&pdev->mon_lock);
return QDF_STATUS_SUCCESS;
}
/**
* dp_set_nac() - set peer_nac
* @peer_handle: Datapath PEER handle
*
* Return: void
*/
static void dp_set_nac(struct cdp_peer *peer_handle)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
peer->nac = 1;
}
/**
* dp_get_tx_pending() - read pending tx
* @pdev_handle: Datapath PDEV handle
*
* Return: outstanding tx
*/
static int dp_get_tx_pending(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
return qdf_atomic_read(&pdev->num_tx_outstanding);
}
/**
* dp_get_peer_mac_from_peer_id() - get peer mac
* @pdev_handle: Datapath PDEV handle
* @peer_id: Peer ID
* @peer_mac: MAC addr of PEER
*
* Return: void
*/
static void dp_get_peer_mac_from_peer_id(struct cdp_pdev *pdev_handle,
uint32_t peer_id, uint8_t *peer_mac)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct dp_peer *peer;
if (pdev && peer_mac) {
peer = dp_peer_find_by_id(pdev->soc, (uint16_t)peer_id);
if (peer) {
qdf_mem_copy(peer_mac, peer->mac_addr.raw,
QDF_MAC_ADDR_SIZE);
dp_peer_unref_del_find_by_id(peer);
}
}
}
/**
* dp_pdev_configure_monitor_rings() - configure monitor rings
* @vdev_handle: Datapath VDEV handle
*
* Return: QDF_STATUS
*/
QDF_STATUS dp_pdev_configure_monitor_rings(struct dp_pdev *pdev)
{
struct htt_rx_ring_tlv_filter htt_tlv_filter;
struct dp_soc *soc;
uint8_t pdev_id;
int mac_id;
QDF_STATUS status = QDF_STATUS_SUCCESS;
pdev_id = pdev->pdev_id;
soc = pdev->soc;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
"MODE[%x] FP[%02x|%02x|%02x] MO[%02x|%02x|%02x]",
pdev->mon_filter_mode, pdev->fp_mgmt_filter,
pdev->fp_ctrl_filter, pdev->fp_data_filter,
pdev->mo_mgmt_filter, pdev->mo_ctrl_filter,
pdev->mo_data_filter);
qdf_mem_zero(&(htt_tlv_filter), sizeof(htt_tlv_filter));
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 1;
htt_tlv_filter.packet = 1;
htt_tlv_filter.msdu_end = 1;
htt_tlv_filter.mpdu_end = 1;
htt_tlv_filter.packet_header = 1;
htt_tlv_filter.attention = 1;
htt_tlv_filter.ppdu_start = 0;
htt_tlv_filter.ppdu_end = 0;
htt_tlv_filter.ppdu_end_user_stats = 0;
htt_tlv_filter.ppdu_end_user_stats_ext = 0;
htt_tlv_filter.ppdu_end_status_done = 0;
htt_tlv_filter.header_per_msdu = 1;
htt_tlv_filter.enable_fp =
(pdev->mon_filter_mode & MON_FILTER_PASS) ? 1 : 0;
htt_tlv_filter.enable_md = 0;
htt_tlv_filter.enable_mo =
(pdev->mon_filter_mode & MON_FILTER_OTHER) ? 1 : 0;
htt_tlv_filter.fp_mgmt_filter = pdev->fp_mgmt_filter;
htt_tlv_filter.fp_ctrl_filter = pdev->fp_ctrl_filter;
if (pdev->mcopy_mode) {
htt_tlv_filter.fp_data_filter = 0;
htt_tlv_filter.mo_data_filter = 0;
} else {
htt_tlv_filter.fp_data_filter = pdev->fp_data_filter;
htt_tlv_filter.mo_data_filter = pdev->mo_data_filter;
}
htt_tlv_filter.mo_mgmt_filter = pdev->mo_mgmt_filter;
htt_tlv_filter.mo_ctrl_filter = pdev->mo_ctrl_filter;
htt_tlv_filter.offset_valid = false;
if ((pdev->rx_enh_capture_mode == CDP_RX_ENH_CAPTURE_MPDU) ||
(pdev->rx_enh_capture_mode == CDP_RX_ENH_CAPTURE_MPDU_MSDU)) {
htt_tlv_filter.fp_mgmt_filter = 0;
htt_tlv_filter.fp_ctrl_filter = 0;
htt_tlv_filter.fp_data_filter = 0;
htt_tlv_filter.mo_mgmt_filter = 0;
htt_tlv_filter.mo_ctrl_filter = 0;
htt_tlv_filter.mo_data_filter = 0;
}
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id, pdev_id);
status = dp_monitor_mode_ring_config(soc, mac_for_pdev,
pdev, mac_id,
htt_tlv_filter);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send tlv filter for monitor mode rings");
return status;
}
}
qdf_mem_zero(&(htt_tlv_filter), sizeof(htt_tlv_filter));
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 0;
htt_tlv_filter.packet = 0;
htt_tlv_filter.msdu_end = 0;
htt_tlv_filter.mpdu_end = 0;
if ((pdev->rx_enh_capture_mode == CDP_RX_ENH_CAPTURE_MPDU) ||
(pdev->rx_enh_capture_mode == CDP_RX_ENH_CAPTURE_MPDU_MSDU)) {
htt_tlv_filter.mpdu_end = 1;
}
htt_tlv_filter.attention = 0;
htt_tlv_filter.ppdu_start = 1;
htt_tlv_filter.ppdu_end = 1;
htt_tlv_filter.ppdu_end_user_stats = 1;
htt_tlv_filter.ppdu_end_user_stats_ext = 1;
htt_tlv_filter.ppdu_end_status_done = 1;
htt_tlv_filter.enable_fp = 1;
htt_tlv_filter.enable_md = 0;
htt_tlv_filter.enable_mo = 1;
if (pdev->mcopy_mode ||
(pdev->rx_enh_capture_mode != CDP_RX_ENH_CAPTURE_DISABLED)) {
htt_tlv_filter.packet_header = 1;
if (pdev->rx_enh_capture_mode == CDP_RX_ENH_CAPTURE_MPDU) {
htt_tlv_filter.header_per_msdu = 0;
htt_tlv_filter.enable_mo = 0;
} else if (pdev->rx_enh_capture_mode ==
CDP_RX_ENH_CAPTURE_MPDU_MSDU) {
bool is_rx_mon_proto_flow_tag_enabled =
wlan_cfg_is_rx_mon_protocol_flow_tag_enabled(
soc->wlan_cfg_ctx);
htt_tlv_filter.header_per_msdu = 1;
htt_tlv_filter.enable_mo = 0;
if (pdev->is_rx_enh_capture_trailer_enabled ||
is_rx_mon_proto_flow_tag_enabled)
htt_tlv_filter.msdu_end = 1;
}
}
htt_tlv_filter.fp_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.fp_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.fp_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.mo_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.mo_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.mo_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.offset_valid = false;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id].hal_srng,
RXDMA_MONITOR_STATUS, RX_BUFFER_SIZE, &htt_tlv_filter);
}
return status;
}
/**
* dp_vdev_set_monitor_mode() - Set DP VDEV to monitor mode
* @vdev_handle: Datapath VDEV handle
* @smart_monitor: Flag to denote if its smart monitor mode
*
* Return: 0 on success, not 0 on failure
*/
static QDF_STATUS dp_vdev_set_monitor_mode(struct cdp_vdev *vdev_handle,
uint8_t special_monitor)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
qdf_assert(vdev);
pdev = vdev->pdev;
pdev->monitor_vdev = vdev;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_WARN,
"pdev=%pK, pdev_id=%d, soc=%pK vdev=%pK\n",
pdev, pdev->pdev_id, pdev->soc, vdev);
/*
* do not configure monitor buf ring and filter for smart and
* lite monitor
* for smart monitor filters are added along with first NAC
* for lite monitor required configuration done through
* dp_set_pdev_param
*/
if (special_monitor)
return QDF_STATUS_SUCCESS;
/*Check if current pdev's monitor_vdev exists */
if (pdev->monitor_configured) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
"monitor vap already created vdev=%pK\n", vdev);
return QDF_STATUS_E_RESOURCES;
}
pdev->monitor_configured = true;
dp_mon_buf_delayed_replenish(pdev);
return dp_pdev_configure_monitor_rings(pdev);
}
/**
* dp_pdev_set_advance_monitor_filter() - Set DP PDEV monitor filter
* @pdev_handle: Datapath PDEV handle
* @filter_val: Flag to select Filter for monitor mode
* Return: 0 on success, not 0 on failure
*/
static QDF_STATUS
dp_pdev_set_advance_monitor_filter(struct cdp_pdev *pdev_handle,
struct cdp_monitor_filter *filter_val)
{
/* Many monitor VAPs can exists in a system but only one can be up at
* anytime
*/
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct dp_vdev *vdev = pdev->monitor_vdev;
struct htt_rx_ring_tlv_filter htt_tlv_filter;
struct dp_soc *soc;
uint8_t pdev_id;
int mac_id;
QDF_STATUS status = QDF_STATUS_SUCCESS;
pdev_id = pdev->pdev_id;
soc = pdev->soc;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_WARN,
"pdev=%pK, pdev_id=%d, soc=%pK vdev=%pK",
pdev, pdev_id, soc, vdev);
/*Check if current pdev's monitor_vdev exists */
if (!pdev->monitor_vdev) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"vdev=%pK", vdev);
qdf_assert(vdev);
}
/* update filter mode, type in pdev structure */
pdev->mon_filter_mode = filter_val->mode;
pdev->fp_mgmt_filter = filter_val->fp_mgmt;
pdev->fp_ctrl_filter = filter_val->fp_ctrl;
pdev->fp_data_filter = filter_val->fp_data;
pdev->mo_mgmt_filter = filter_val->mo_mgmt;
pdev->mo_ctrl_filter = filter_val->mo_ctrl;
pdev->mo_data_filter = filter_val->mo_data;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
"MODE[%x] FP[%02x|%02x|%02x] MO[%02x|%02x|%02x]",
pdev->mon_filter_mode, pdev->fp_mgmt_filter,
pdev->fp_ctrl_filter, pdev->fp_data_filter,
pdev->mo_mgmt_filter, pdev->mo_ctrl_filter,
pdev->mo_data_filter);
qdf_mem_zero(&(htt_tlv_filter), sizeof(htt_tlv_filter));
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id, pdev_id);
status = dp_monitor_mode_ring_config(soc, mac_for_pdev,
pdev, mac_id,
htt_tlv_filter);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send tlv filter for monitor mode rings");
return status;
}
htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id].hal_srng,
RXDMA_MONITOR_STATUS, RX_BUFFER_SIZE, &htt_tlv_filter);
}
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 1;
htt_tlv_filter.packet = 1;
htt_tlv_filter.msdu_end = 1;
htt_tlv_filter.mpdu_end = 1;
htt_tlv_filter.packet_header = 1;
htt_tlv_filter.attention = 1;
htt_tlv_filter.ppdu_start = 0;
htt_tlv_filter.ppdu_end = 0;
htt_tlv_filter.ppdu_end_user_stats = 0;
htt_tlv_filter.ppdu_end_user_stats_ext = 0;
htt_tlv_filter.ppdu_end_status_done = 0;
htt_tlv_filter.header_per_msdu = 1;
htt_tlv_filter.enable_fp =
(pdev->mon_filter_mode & MON_FILTER_PASS) ? 1 : 0;
htt_tlv_filter.enable_md = 0;
htt_tlv_filter.enable_mo =
(pdev->mon_filter_mode & MON_FILTER_OTHER) ? 1 : 0;
htt_tlv_filter.fp_mgmt_filter = pdev->fp_mgmt_filter;
htt_tlv_filter.fp_ctrl_filter = pdev->fp_ctrl_filter;
if (pdev->mcopy_mode)
htt_tlv_filter.fp_data_filter = 0;
else
htt_tlv_filter.fp_data_filter = pdev->fp_data_filter;
htt_tlv_filter.mo_mgmt_filter = pdev->mo_mgmt_filter;
htt_tlv_filter.mo_ctrl_filter = pdev->mo_ctrl_filter;
htt_tlv_filter.mo_data_filter = pdev->mo_data_filter;
htt_tlv_filter.offset_valid = false;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id, pdev_id);
status = dp_monitor_mode_ring_config(soc, mac_for_pdev,
pdev, mac_id,
htt_tlv_filter);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send tlv filter for monitor mode rings");
return status;
}
}
qdf_mem_zero(&(htt_tlv_filter), sizeof(htt_tlv_filter));
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 0;
htt_tlv_filter.packet = 0;
htt_tlv_filter.msdu_end = 0;
htt_tlv_filter.mpdu_end = 0;
htt_tlv_filter.attention = 0;
htt_tlv_filter.ppdu_start = 1;
htt_tlv_filter.ppdu_end = 1;
htt_tlv_filter.ppdu_end_user_stats = 1;
htt_tlv_filter.ppdu_end_user_stats_ext = 1;
htt_tlv_filter.ppdu_end_status_done = 1;
htt_tlv_filter.enable_fp = 1;
htt_tlv_filter.enable_md = 0;
htt_tlv_filter.enable_mo = 1;
if (pdev->mcopy_mode) {
htt_tlv_filter.packet_header = 1;
}
htt_tlv_filter.fp_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.fp_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.fp_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.mo_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.mo_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.mo_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.offset_valid = false;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id].hal_srng,
RXDMA_MONITOR_STATUS, RX_BUFFER_SIZE, &htt_tlv_filter);
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_pdev_set_monitor_channel() - set monitor channel num in pdev
* @pdev_handle: Datapath PDEV handle
*
* Return: None
*/
static
void dp_pdev_set_monitor_channel(struct cdp_pdev *pdev_handle, int chan_num)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
pdev->mon_chan_num = chan_num;
}
/**
* dp_deliver_tx_mgmt() - Deliver mgmt frame for tx capture
* @pdev_handle: Datapath PDEV handle
* @nbuf: Management frame buffer
*/
static void
dp_deliver_tx_mgmt(struct cdp_pdev *pdev_handle, qdf_nbuf_t nbuf)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
dp_deliver_mgmt_frm(pdev, nbuf);
}
/**
* dp_get_pdev_id_frm_pdev() - get pdev_id
* @pdev_handle: Datapath PDEV handle
*
* Return: pdev_id
*/
static
uint8_t dp_get_pdev_id_frm_pdev(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
return pdev->pdev_id;
}
/**
* dp_get_delay_stats_flag() - get delay stats flag
* @pdev_handle: Datapath PDEV handle
*
* Return: 0 if flag is disabled else 1
*/
static
bool dp_get_delay_stats_flag(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
return pdev->delay_stats_flag;
}
/**
* dp_pdev_set_chan_noise_floor() - set channel noise floor
* @pdev_handle: Datapath PDEV handle
* @chan_noise_floor: Channel Noise Floor
*
* Return: void
*/
static
void dp_pdev_set_chan_noise_floor(struct cdp_pdev *pdev_handle,
int16_t chan_noise_floor)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
pdev->chan_noise_floor = chan_noise_floor;
}
/**
* dp_vdev_get_filter_ucast_data() - get DP VDEV monitor ucast filter
* @vdev_handle: Datapath VDEV handle
* Return: true on ucast filter flag set
*/
static bool dp_vdev_get_filter_ucast_data(struct cdp_vdev *vdev_handle)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
pdev = vdev->pdev;
if ((pdev->fp_data_filter & FILTER_DATA_UCAST) ||
(pdev->mo_data_filter & FILTER_DATA_UCAST))
return true;
return false;
}
/**
* dp_vdev_get_filter_mcast_data() - get DP VDEV monitor mcast filter
* @vdev_handle: Datapath VDEV handle
* Return: true on mcast filter flag set
*/
static bool dp_vdev_get_filter_mcast_data(struct cdp_vdev *vdev_handle)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
pdev = vdev->pdev;
if ((pdev->fp_data_filter & FILTER_DATA_MCAST) ||
(pdev->mo_data_filter & FILTER_DATA_MCAST))
return true;
return false;
}
/**
* dp_vdev_get_filter_non_data() - get DP VDEV monitor non_data filter
* @vdev_handle: Datapath VDEV handle
* Return: true on non data filter flag set
*/
static bool dp_vdev_get_filter_non_data(struct cdp_vdev *vdev_handle)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
pdev = vdev->pdev;
if ((pdev->fp_mgmt_filter & FILTER_MGMT_ALL) ||
(pdev->mo_mgmt_filter & FILTER_MGMT_ALL)) {
if ((pdev->fp_ctrl_filter & FILTER_CTRL_ALL) ||
(pdev->mo_ctrl_filter & FILTER_CTRL_ALL)) {
return true;
}
}
return false;
}
#ifdef MESH_MODE_SUPPORT
void dp_peer_set_mesh_mode(struct cdp_vdev *vdev_hdl, uint32_t val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
FL("val %d"), val);
vdev->mesh_vdev = val;
}
/*
* dp_peer_set_mesh_rx_filter() - to set the mesh rx filter
* @vdev_hdl: virtual device object
* @val: value to be set
*
* Return: void
*/
void dp_peer_set_mesh_rx_filter(struct cdp_vdev *vdev_hdl, uint32_t val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
FL("val %d"), val);
vdev->mesh_rx_filter = val;
}
#endif
bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data)
{
uint8_t pdev_count;
for (pdev_count = 0; pdev_count < MAX_PDEV_CNT; pdev_count++) {
if (soc->pdev_list[pdev_count] &&
soc->pdev_list[pdev_count] == data)
return true;
}
return false;
}
/**
* dp_rx_bar_stats_cb(): BAR received stats callback
* @soc: SOC handle
* @cb_ctxt: Call back context
* @reo_status: Reo status
*
* return: void
*/
void dp_rx_bar_stats_cb(struct dp_soc *soc, void *cb_ctxt,
union hal_reo_status *reo_status)
{
struct dp_pdev *pdev = (struct dp_pdev *)cb_ctxt;
struct hal_reo_queue_status *queue_status = &(reo_status->queue_status);
if (!dp_check_pdev_exists(soc, pdev)) {
dp_err_rl("pdev doesn't exist");
return;
}
if (!qdf_atomic_read(&soc->cmn_init_done))
return;
if (queue_status->header.status != HAL_REO_CMD_SUCCESS) {
DP_PRINT_STATS("REO stats failure %d",
queue_status->header.status);
qdf_atomic_set(&(pdev->stats_cmd_complete), 1);
return;
}
pdev->stats.rx.bar_recv_cnt += queue_status->bar_rcvd_cnt;
qdf_atomic_set(&(pdev->stats_cmd_complete), 1);
}
/**
* dp_aggregate_vdev_stats(): Consolidate stats at VDEV level
* @vdev: DP VDEV handle
*
* return: void
*/
void dp_aggregate_vdev_stats(struct dp_vdev *vdev,
struct cdp_vdev_stats *vdev_stats)
{
struct dp_peer *peer = NULL;
struct dp_soc *soc = NULL;
if (!vdev || !vdev->pdev)
return;
soc = vdev->pdev->soc;
qdf_mem_copy(vdev_stats, &vdev->stats, sizeof(vdev->stats));
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem)
dp_update_vdev_stats(vdev_stats, peer);
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
vdev_stats, vdev->vdev_id,
UPDATE_VDEV_STATS, vdev->pdev->pdev_id);
#endif
}
void dp_aggregate_pdev_stats(struct dp_pdev *pdev)
{
struct dp_vdev *vdev = NULL;
struct dp_soc *soc;
struct cdp_vdev_stats *vdev_stats =
qdf_mem_malloc(sizeof(struct cdp_vdev_stats));
if (!vdev_stats) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"DP alloc failure - unable to get alloc vdev stats");
return;
}
qdf_mem_zero(&pdev->stats.tx, sizeof(pdev->stats.tx));
qdf_mem_zero(&pdev->stats.rx, sizeof(pdev->stats.rx));
qdf_mem_zero(&pdev->stats.tx_i, sizeof(pdev->stats.tx_i));
if (pdev->mcopy_mode)
DP_UPDATE_STATS(pdev, pdev->invalid_peer);
soc = pdev->soc;
qdf_spin_lock_bh(&soc->peer_ref_mutex);
qdf_spin_lock_bh(&pdev->vdev_list_lock);
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
dp_aggregate_vdev_stats(vdev, vdev_stats);
dp_update_pdev_stats(pdev, vdev_stats);
dp_update_pdev_ingress_stats(pdev, vdev);
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
qdf_mem_free(vdev_stats);
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, pdev->soc, &pdev->stats,
pdev->pdev_id, UPDATE_PDEV_STATS, pdev->pdev_id);
#endif
}
/**
* dp_vdev_getstats() - get vdev packet level stats
* @vdev_handle: Datapath VDEV handle
* @stats: cdp network device stats structure
*
* Return: void
*/
static void dp_vdev_getstats(void *vdev_handle,
struct cdp_dev_stats *stats)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
struct dp_soc *soc;
struct cdp_vdev_stats *vdev_stats;
if (!vdev)
return;
pdev = vdev->pdev;
if (!pdev)
return;
soc = pdev->soc;
vdev_stats = qdf_mem_malloc(sizeof(struct cdp_vdev_stats));
if (!vdev_stats) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"DP alloc failure - unable to get alloc vdev stats");
return;
}
qdf_spin_lock_bh(&soc->peer_ref_mutex);
dp_aggregate_vdev_stats(vdev, vdev_stats);
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
stats->tx_packets = vdev_stats->tx_i.rcvd.num;
stats->tx_bytes = vdev_stats->tx_i.rcvd.bytes;
stats->tx_errors = vdev_stats->tx.tx_failed +
vdev_stats->tx_i.dropped.dropped_pkt.num;
stats->tx_dropped = stats->tx_errors;
stats->rx_packets = vdev_stats->rx.unicast.num +
vdev_stats->rx.multicast.num +
vdev_stats->rx.bcast.num;
stats->rx_bytes = vdev_stats->rx.unicast.bytes +
vdev_stats->rx.multicast.bytes +
vdev_stats->rx.bcast.bytes;
qdf_mem_free(vdev_stats);
}
/**
* dp_pdev_getstats() - get pdev packet level stats
* @pdev_handle: Datapath PDEV handle
* @stats: cdp network device stats structure
*
* Return: void
*/
static void dp_pdev_getstats(void *pdev_handle,
struct cdp_dev_stats *stats)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
dp_aggregate_pdev_stats(pdev);
stats->tx_packets = pdev->stats.tx_i.rcvd.num;
stats->tx_bytes = pdev->stats.tx_i.rcvd.bytes;
stats->tx_errors = pdev->stats.tx.tx_failed +
pdev->stats.tx_i.dropped.dropped_pkt.num;
stats->tx_dropped = stats->tx_errors;
stats->rx_packets = pdev->stats.rx.unicast.num +
pdev->stats.rx.multicast.num +
pdev->stats.rx.bcast.num;
stats->rx_bytes = pdev->stats.rx.unicast.bytes +
pdev->stats.rx.multicast.bytes +
pdev->stats.rx.bcast.bytes;
stats->rx_errors = pdev->stats.err.desc_alloc_fail +
pdev->stats.err.ip_csum_err +
pdev->stats.err.tcp_udp_csum_err +
pdev->stats.rx.err.mic_err +
pdev->stats.rx.err.decrypt_err +
pdev->stats.err.rxdma_error +
pdev->stats.err.reo_error;
stats->rx_dropped = pdev->stats.dropped.msdu_not_done +
pdev->stats.dropped.mec +
pdev->stats.dropped.mesh_filter +
pdev->stats.dropped.wifi_parse +
pdev->stats.dropped.mon_rx_drop +
pdev->stats.dropped.mon_radiotap_update_err;
}
/**
* dp_get_device_stats() - get interface level packet stats
* @handle: device handle
* @stats: cdp network device stats structure
* @type: device type pdev/vdev
*
* Return: void
*/
static void dp_get_device_stats(void *handle,
struct cdp_dev_stats *stats, uint8_t type)
{
switch (type) {
case UPDATE_VDEV_STATS:
dp_vdev_getstats(handle, stats);
break;
case UPDATE_PDEV_STATS:
dp_pdev_getstats(handle, stats);
break;
default:
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"apstats cannot be updated for this input "
"type %d", type);
break;
}
}
const
char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type)
{
switch (ring_type) {
case REO_DST:
return "Reo_dst";
case REO_EXCEPTION:
return "Reo_exception";
case REO_CMD:
return "Reo_cmd";
case REO_REINJECT:
return "Reo_reinject";
case REO_STATUS:
return "Reo_status";
case WBM2SW_RELEASE:
return "wbm2sw_release";
case TCL_DATA:
return "tcl_data";
case TCL_CMD:
return "tcl_cmd";
case TCL_STATUS:
return "tcl_status";
case SW2WBM_RELEASE:
return "sw2wbm_release";
case RXDMA_BUF:
return "Rxdma_buf";
case RXDMA_DST:
return "Rxdma_dst";
case RXDMA_MONITOR_BUF:
return "Rxdma_monitor_buf";
case RXDMA_MONITOR_DESC:
return "Rxdma_monitor_desc";
case RXDMA_MONITOR_STATUS:
return "Rxdma_monitor_status";
default:
dp_err("Invalid ring type");
break;
}
return "Invalid";
}
/*
* dp_print_napi_stats(): NAPI stats
* @soc - soc handle
*/
void dp_print_napi_stats(struct dp_soc *soc)
{
hif_print_napi_stats(soc->hif_handle);
}
/**
* dp_txrx_host_stats_clr(): Reinitialize the txrx stats
* @vdev: DP_VDEV handle
*
* Return:void
*/
static inline void
dp_txrx_host_stats_clr(struct dp_vdev *vdev)
{
struct dp_peer *peer = NULL;
if (!vdev || !vdev->pdev)
return;
DP_STATS_CLR(vdev->pdev);
DP_STATS_CLR(vdev->pdev->soc);
DP_STATS_CLR(vdev);
hif_clear_napi_stats(vdev->pdev->soc->hif_handle);
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
if (!peer)
return;
DP_STATS_CLR(peer);
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
&peer->stats, peer->peer_ids[0],
UPDATE_PEER_STATS, vdev->pdev->pdev_id);
#endif
}
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
&vdev->stats, vdev->vdev_id,
UPDATE_VDEV_STATS, vdev->pdev->pdev_id);
#endif
}
/*
* dp_get_host_peer_stats()- function to print peer stats
* @pdev_handle: DP_PDEV handle
* @mac_addr: mac address of the peer
*
* Return: void
*/
static void
dp_get_host_peer_stats(struct cdp_pdev *pdev_handle, char *mac_addr)
{
struct dp_peer *peer;
if (!mac_addr) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"Invalid MAC address\n");
return;
}
peer = (struct dp_peer *)dp_find_peer_by_addr(pdev_handle, mac_addr);
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: Invalid peer\n", __func__);
return;
}
/* Making sure the peer is for the specific pdev */
if ((struct dp_pdev *)pdev_handle != peer->vdev->pdev) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: Peer is not for this pdev\n", __func__);
return;
}
dp_print_peer_stats(peer);
dp_peer_rxtid_stats(peer, dp_rx_tid_stats_cb, NULL);
}
/**
* dp_txrx_stats_help() - Helper function for Txrx_Stats
*
* Return: None
*/
static void dp_txrx_stats_help(void)
{
dp_info("Command: iwpriv wlan0 txrx_stats <stats_option> <mac_id>");
dp_info("stats_option:");
dp_info(" 1 -- HTT Tx Statistics");
dp_info(" 2 -- HTT Rx Statistics");
dp_info(" 3 -- HTT Tx HW Queue Statistics");
dp_info(" 4 -- HTT Tx HW Sched Statistics");
dp_info(" 5 -- HTT Error Statistics");
dp_info(" 6 -- HTT TQM Statistics");
dp_info(" 7 -- HTT TQM CMDQ Statistics");
dp_info(" 8 -- HTT TX_DE_CMN Statistics");
dp_info(" 9 -- HTT Tx Rate Statistics");
dp_info(" 10 -- HTT Rx Rate Statistics");
dp_info(" 11 -- HTT Peer Statistics");
dp_info(" 12 -- HTT Tx SelfGen Statistics");
dp_info(" 13 -- HTT Tx MU HWQ Statistics");
dp_info(" 14 -- HTT RING_IF_INFO Statistics");
dp_info(" 15 -- HTT SRNG Statistics");
dp_info(" 16 -- HTT SFM Info Statistics");
dp_info(" 17 -- HTT PDEV_TX_MU_MIMO_SCHED INFO Statistics");
dp_info(" 18 -- HTT Peer List Details");
dp_info(" 20 -- Clear Host Statistics");
dp_info(" 21 -- Host Rx Rate Statistics");
dp_info(" 22 -- Host Tx Rate Statistics");
dp_info(" 23 -- Host Tx Statistics");
dp_info(" 24 -- Host Rx Statistics");
dp_info(" 25 -- Host AST Statistics");
dp_info(" 26 -- Host SRNG PTR Statistics");
dp_info(" 27 -- Host Mon Statistics");
dp_info(" 28 -- Host REO Queue Statistics");
dp_info(" 29 -- Host Soc cfg param Statistics");
dp_info(" 30 -- Host pdev cfg param Statistics");
}
/**
* dp_print_host_stats()- Function to print the stats aggregated at host
* @vdev_handle: DP_VDEV handle
* @type: host stats type
*
* Return: 0 on success, print error message in case of failure
*/
static int
dp_print_host_stats(struct cdp_vdev *vdev_handle,
struct cdp_txrx_stats_req *req)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
enum cdp_host_txrx_stats type =
dp_stats_mapping_table[req->stats][STATS_HOST];
dp_aggregate_pdev_stats(pdev);
switch (type) {
case TXRX_CLEAR_STATS:
dp_txrx_host_stats_clr(vdev);
break;
case TXRX_RX_RATE_STATS:
dp_print_rx_rates(vdev);
break;
case TXRX_TX_RATE_STATS:
dp_print_tx_rates(vdev);
break;
case TXRX_TX_HOST_STATS:
dp_print_pdev_tx_stats(pdev);
dp_print_soc_tx_stats(pdev->soc);
break;
case TXRX_RX_HOST_STATS:
dp_print_pdev_rx_stats(pdev);
dp_print_soc_rx_stats(pdev->soc);
break;
case TXRX_AST_STATS:
dp_print_ast_stats(pdev->soc);
dp_print_peer_table(vdev);
break;
case TXRX_SRNG_PTR_STATS:
dp_print_ring_stats(pdev);
break;
case TXRX_RX_MON_STATS:
dp_print_pdev_rx_mon_stats(pdev);
break;
case TXRX_REO_QUEUE_STATS:
dp_get_host_peer_stats((struct cdp_pdev *)pdev, req->peer_addr);
break;
case TXRX_SOC_CFG_PARAMS:
dp_print_soc_cfg_params(pdev->soc);
break;
case TXRX_PDEV_CFG_PARAMS:
dp_print_pdev_cfg_params(pdev);
break;
case TXRX_NAPI_STATS:
dp_print_napi_stats(pdev->soc);
case TXRX_SOC_INTERRUPT_STATS:
dp_print_soc_interrupt_stats(pdev->soc);
break;
default:
dp_info("Wrong Input For TxRx Host Stats");
dp_txrx_stats_help();
break;
}
return 0;
}
/*
* dp_ppdu_ring_reset()- Reset PPDU Stats ring
* @pdev: DP_PDEV handle
*
* Return: void
*/
static void
dp_ppdu_ring_reset(struct dp_pdev *pdev)
{
struct htt_rx_ring_tlv_filter htt_tlv_filter;
int mac_id;
qdf_mem_zero(&(htt_tlv_filter), sizeof(htt_tlv_filter));
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(pdev->soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id].hal_srng,
RXDMA_MONITOR_STATUS, RX_BUFFER_SIZE, &htt_tlv_filter);
}
}
/*
* dp_ppdu_ring_cfg()- Configure PPDU Stats ring
* @pdev: DP_PDEV handle
*
* Return: void
*/
static void
dp_ppdu_ring_cfg(struct dp_pdev *pdev)
{
struct htt_rx_ring_tlv_filter htt_tlv_filter = {0};
int mac_id;
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 0;
htt_tlv_filter.packet = 0;
htt_tlv_filter.msdu_end = 0;
htt_tlv_filter.mpdu_end = 0;
htt_tlv_filter.attention = 0;
htt_tlv_filter.ppdu_start = 1;
htt_tlv_filter.ppdu_end = 1;
htt_tlv_filter.ppdu_end_user_stats = 1;
htt_tlv_filter.ppdu_end_user_stats_ext = 1;
htt_tlv_filter.ppdu_end_status_done = 1;
htt_tlv_filter.enable_fp = 1;
htt_tlv_filter.enable_md = 0;
if (pdev->neighbour_peers_added &&
pdev->soc->hw_nac_monitor_support) {
htt_tlv_filter.enable_md = 1;
htt_tlv_filter.packet_header = 1;
}
if (pdev->mcopy_mode) {
htt_tlv_filter.packet_header = 1;
htt_tlv_filter.enable_mo = 1;
}
htt_tlv_filter.fp_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.fp_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.fp_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.mo_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.mo_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.mo_data_filter = FILTER_DATA_ALL;
if (pdev->neighbour_peers_added &&
pdev->soc->hw_nac_monitor_support)
htt_tlv_filter.md_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.offset_valid = false;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(pdev->soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id].hal_srng,
RXDMA_MONITOR_STATUS, RX_BUFFER_SIZE, &htt_tlv_filter);
}
}
/*
* is_ppdu_txrx_capture_enabled() - API to check both pktlog and debug_sniffer
* modes are enabled or not.
* @dp_pdev: dp pdev handle.
*
* Return: bool
*/
static inline bool is_ppdu_txrx_capture_enabled(struct dp_pdev *pdev)
{
if (!pdev->pktlog_ppdu_stats && !pdev->tx_sniffer_enable &&
!pdev->mcopy_mode)
return true;
else
return false;
}
/*
*dp_set_bpr_enable() - API to enable/disable bpr feature
*@pdev_handle: DP_PDEV handle.
*@val: Provided value.
*
*Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS
dp_set_bpr_enable(struct cdp_pdev *pdev_handle, int val)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
switch (val) {
case CDP_BPR_DISABLE:
pdev->bpr_enable = CDP_BPR_DISABLE;
if (!pdev->pktlog_ppdu_stats && !pdev->enhanced_stats_en &&
!pdev->tx_sniffer_enable && !pdev->mcopy_mode) {
dp_h2t_cfg_stats_msg_send(pdev, 0, pdev->pdev_id);
} else if (pdev->enhanced_stats_en &&
!pdev->tx_sniffer_enable && !pdev->mcopy_mode &&
!pdev->pktlog_ppdu_stats) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_ENH_STATS,
pdev->pdev_id);
}
break;
case CDP_BPR_ENABLE:
pdev->bpr_enable = CDP_BPR_ENABLE;
if (!pdev->enhanced_stats_en && !pdev->tx_sniffer_enable &&
!pdev->mcopy_mode && !pdev->pktlog_ppdu_stats) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR,
pdev->pdev_id);
} else if (pdev->enhanced_stats_en &&
!pdev->tx_sniffer_enable && !pdev->mcopy_mode &&
!pdev->pktlog_ppdu_stats) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR_ENH,
pdev->pdev_id);
} else if (pdev->pktlog_ppdu_stats) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR_PKTLOG,
pdev->pdev_id);
}
break;
default:
break;
}
return QDF_STATUS_SUCCESS;
}
/*
* dp_pdev_tid_stats_ingress_inc
* @pdev: pdev handle
* @val: increase in value
*
* Return: void
*/
static void
dp_pdev_tid_stats_ingress_inc(struct cdp_pdev *pdev, uint32_t val)
{
struct dp_pdev *dp_pdev = (struct dp_pdev *)pdev;
dp_pdev->stats.tid_stats.ingress_stack += val;
}
/*
* dp_pdev_tid_stats_osif_drop
* @pdev: pdev handle
* @val: increase in value
*
* Return: void
*/
static void
dp_pdev_tid_stats_osif_drop(struct cdp_pdev *pdev, uint32_t val)
{
struct dp_pdev *dp_pdev = (struct dp_pdev *)pdev;
dp_pdev->stats.tid_stats.osif_drop += val;
}
/*
* dp_config_debug_sniffer()- API to enable/disable debug sniffer
* @pdev_handle: DP_PDEV handle
* @val: user provided value
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS
dp_config_debug_sniffer(struct cdp_pdev *pdev_handle, int val)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
QDF_STATUS status = QDF_STATUS_SUCCESS;
if (pdev->mcopy_mode)
dp_reset_monitor_mode(pdev_handle);
switch (val) {
case 0:
pdev->tx_sniffer_enable = 0;
pdev->monitor_configured = false;
if (!pdev->pktlog_ppdu_stats && !pdev->enhanced_stats_en &&
!pdev->bpr_enable) {
dp_h2t_cfg_stats_msg_send(pdev, 0, pdev->pdev_id);
dp_ppdu_ring_reset(pdev);
} else if (pdev->enhanced_stats_en && !pdev->bpr_enable) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_ENH_STATS, pdev->pdev_id);
} else if (!pdev->enhanced_stats_en && pdev->bpr_enable) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR_ENH,
pdev->pdev_id);
} else {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR,
pdev->pdev_id);
}
break;
case 1:
pdev->tx_sniffer_enable = 1;
pdev->monitor_configured = false;
if (!pdev->pktlog_ppdu_stats)
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_SNIFFER, pdev->pdev_id);
break;
case 2:
if (pdev->monitor_vdev) {
status = QDF_STATUS_E_RESOURCES;
break;
}
pdev->mcopy_mode = 1;
dp_pdev_configure_monitor_rings(pdev);
pdev->monitor_configured = true;
pdev->tx_sniffer_enable = 0;
if (!pdev->pktlog_ppdu_stats)
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_SNIFFER, pdev->pdev_id);
break;
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid value");
break;
}
return status;
}
/*
* dp_enable_enhanced_stats()- API to enable enhanced statistcs
* @pdev_handle: DP_PDEV handle
*
* Return: void
*/
static void
dp_enable_enhanced_stats(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
if (pdev->enhanced_stats_en == 0)
dp_cal_client_timer_start(pdev->cal_client_ctx);
pdev->enhanced_stats_en = 1;
if (!pdev->mcopy_mode && !pdev->neighbour_peers_added &&
!pdev->monitor_vdev)
dp_ppdu_ring_cfg(pdev);
if (is_ppdu_txrx_capture_enabled(pdev) && !pdev->bpr_enable) {
dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_ENH_STATS, pdev->pdev_id);
} else if (is_ppdu_txrx_capture_enabled(pdev) && pdev->bpr_enable) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR_ENH,
pdev->pdev_id);
}
}
/*
* dp_disable_enhanced_stats()- API to disable enhanced statistcs
* @pdev_handle: DP_PDEV handle
*
* Return: void
*/
static void
dp_disable_enhanced_stats(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
if (pdev->enhanced_stats_en == 1)
dp_cal_client_timer_stop(pdev->cal_client_ctx);
pdev->enhanced_stats_en = 0;
if (is_ppdu_txrx_capture_enabled(pdev) && !pdev->bpr_enable) {
dp_h2t_cfg_stats_msg_send(pdev, 0, pdev->pdev_id);
} else if (is_ppdu_txrx_capture_enabled(pdev) && pdev->bpr_enable) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR,
pdev->pdev_id);
}
if (!pdev->mcopy_mode && !pdev->neighbour_peers_added &&
!pdev->monitor_vdev)
dp_ppdu_ring_reset(pdev);
}
/*
* dp_get_fw_peer_stats()- function to print peer stats
* @pdev_handle: DP_PDEV handle
* @mac_addr: mac address of the peer
* @cap: Type of htt stats requested
* @is_wait: if set, wait on completion from firmware response
*
* Currently Supporting only MAC ID based requests Only
* 1: HTT_PEER_STATS_REQ_MODE_NO_QUERY
* 2: HTT_PEER_STATS_REQ_MODE_QUERY_TQM
* 3: HTT_PEER_STATS_REQ_MODE_FLUSH_TQM
*
* Return: void
*/
static void
dp_get_fw_peer_stats(struct cdp_pdev *pdev_handle, uint8_t *mac_addr,
uint32_t cap, uint32_t is_wait)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
int i;
uint32_t config_param0 = 0;
uint32_t config_param1 = 0;
uint32_t config_param2 = 0;
uint32_t config_param3 = 0;
HTT_DBG_EXT_STATS_PEER_INFO_IS_MAC_ADDR_SET(config_param0, 1);
config_param0 |= (1 << (cap + 1));
for (i = 0; i < HTT_PEER_STATS_MAX_TLV; i++) {
config_param1 |= (1 << i);
}
config_param2 |= (mac_addr[0] & 0x000000ff);
config_param2 |= ((mac_addr[1] << 8) & 0x0000ff00);
config_param2 |= ((mac_addr[2] << 16) & 0x00ff0000);
config_param2 |= ((mac_addr[3] << 24) & 0xff000000);
config_param3 |= (mac_addr[4] & 0x000000ff);
config_param3 |= ((mac_addr[5] << 8) & 0x0000ff00);
if (is_wait) {
qdf_event_reset(&pdev->fw_peer_stats_event);
dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
config_param0, config_param1,
config_param2, config_param3,
0, 1, 0);
qdf_wait_single_event(&pdev->fw_peer_stats_event,
DP_FW_PEER_STATS_CMP_TIMEOUT_MSEC);
} else {
dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
config_param0, config_param1,
config_param2, config_param3,
0, 0, 0);
}
}
/* This struct definition will be removed from here
* once it get added in FW headers*/
struct httstats_cmd_req {
uint32_t config_param0;
uint32_t config_param1;
uint32_t config_param2;
uint32_t config_param3;
int cookie;
u_int8_t stats_id;
};
/*
* dp_get_htt_stats: function to process the httstas request
* @pdev_handle: DP pdev handle
* @data: pointer to request data
* @data_len: length for request data
*
* return: void
*/
static void
dp_get_htt_stats(struct cdp_pdev *pdev_handle, void *data, uint32_t data_len)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct httstats_cmd_req *req = (struct httstats_cmd_req *)data;
QDF_ASSERT(data_len == sizeof(struct httstats_cmd_req));
dp_h2t_ext_stats_msg_send(pdev, req->stats_id,
req->config_param0, req->config_param1,
req->config_param2, req->config_param3,
req->cookie, 0, 0);
}
/*
* dp_set_pdev_param: function to set parameters in pdev
* @pdev_handle: DP pdev handle
* @param: parameter type to be set
* @val: value of parameter to be set
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS dp_set_pdev_param(struct cdp_pdev *pdev_handle,
enum cdp_pdev_param_type param,
uint32_t val)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
switch (param) {
case CDP_CONFIG_DEBUG_SNIFFER:
return dp_config_debug_sniffer(pdev_handle, val);
case CDP_CONFIG_BPR_ENABLE:
return dp_set_bpr_enable(pdev_handle, val);
case CDP_CONFIG_PRIMARY_RADIO:
pdev->is_primary = val;
break;
case CDP_CONFIG_CAPTURE_LATENCY:
if (val == 1)
pdev->latency_capture_enable = true;
else
pdev->latency_capture_enable = false;
break;
case CDP_INGRESS_STATS:
dp_pdev_tid_stats_ingress_inc(pdev_handle, val);
break;
case CDP_OSIF_DROP:
dp_pdev_tid_stats_osif_drop(pdev_handle, val);
break;
case CDP_CONFIG_ENH_RX_CAPTURE:
return dp_config_enh_rx_capture(pdev_handle, val);
case CDP_CONFIG_TX_CAPTURE:
return dp_config_enh_tx_capture(pdev_handle, val);
default:
return QDF_STATUS_E_INVAL;
}
return QDF_STATUS_SUCCESS;
}
/*
* dp_calculate_delay_stats: function to get rx delay stats
* @vdev_handle: DP vdev handle
* @nbuf: skb
*
* Return: void
*/
static void dp_calculate_delay_stats(struct cdp_vdev *vdev_handle,
qdf_nbuf_t nbuf)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
dp_rx_compute_delay(vdev, nbuf);
}
/*
* dp_get_vdev_param: function to get parameters from vdev
* @param: parameter type to get value
*
* return: void
*/
static uint32_t dp_get_vdev_param(struct cdp_vdev *vdev_handle,
enum cdp_vdev_param_type param)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
uint32_t val;
switch (param) {
case CDP_ENABLE_WDS:
val = vdev->wds_enabled;
break;
case CDP_ENABLE_MEC:
val = vdev->mec_enabled;
break;
case CDP_ENABLE_DA_WAR:
val = vdev->pdev->soc->da_war_enabled;
break;
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"param value %d is wrong\n",
param);
val = -1;
break;
}
return val;
}
/*
* dp_set_vdev_param: function to set parameters in vdev
* @param: parameter type to be set
* @val: value of parameter to be set
*
* return: void
*/
static void dp_set_vdev_param(struct cdp_vdev *vdev_handle,
enum cdp_vdev_param_type param, uint32_t val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
switch (param) {
case CDP_ENABLE_WDS:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"wds_enable %d for vdev(%pK) id(%d)\n",
val, vdev, vdev->vdev_id);
vdev->wds_enabled = val;
break;
case CDP_ENABLE_MEC:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"mec_enable %d for vdev(%pK) id(%d)\n",
val, vdev, vdev->vdev_id);
vdev->mec_enabled = val;
break;
case CDP_ENABLE_DA_WAR:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"da_war_enable %d for vdev(%pK) id(%d)\n",
val, vdev, vdev->vdev_id);
vdev->pdev->soc->da_war_enabled = val;
dp_wds_flush_ast_table_wifi3(((struct cdp_soc_t *)
vdev->pdev->soc));
break;
case CDP_ENABLE_NAWDS:
vdev->nawds_enabled = val;
break;
case CDP_ENABLE_MCAST_EN:
vdev->mcast_enhancement_en = val;
break;
case CDP_ENABLE_PROXYSTA:
vdev->proxysta_vdev = val;
break;
case CDP_UPDATE_TDLS_FLAGS:
vdev->tdls_link_connected = val;
break;
case CDP_CFG_WDS_AGING_TIMER:
if (val == 0)
qdf_timer_stop(&vdev->pdev->soc->ast_aging_timer);
else if (val != vdev->wds_aging_timer_val)
qdf_timer_mod(&vdev->pdev->soc->ast_aging_timer, val);
vdev->wds_aging_timer_val = val;
break;
case CDP_ENABLE_AP_BRIDGE:
if (wlan_op_mode_sta != vdev->opmode)
vdev->ap_bridge_enabled = val;
else
vdev->ap_bridge_enabled = false;
break;
case CDP_ENABLE_CIPHER:
vdev->sec_type = val;
break;
case CDP_ENABLE_QWRAP_ISOLATION:
vdev->isolation_vdev = val;
break;
case CDP_UPDATE_MULTIPASS:
vdev->multipass_en = val;
break;
default:
break;
}
dp_tx_vdev_update_search_flags(vdev);
}
/**
* dp_peer_set_nawds: set nawds bit in peer
* @peer_handle: pointer to peer
* @value: enable/disable nawds
*
* return: void
*/
static void dp_peer_set_nawds(struct cdp_peer *peer_handle, uint8_t value)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
peer->nawds_enabled = value;
}
/**
* dp_peer_set_tx_capture_enabled: Set tx_cap_enabled bit in peer
* @peer_handle: Peer handle
* @value: Enable/disable setting for tx_cap_enabled
*
* Return: None
*/
static void
dp_peer_set_tx_capture_enabled(struct cdp_peer *peer_handle, bool value)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
peer->tx_cap_enabled = value;
}
/**
* dp_peer_set_rx_capture_enabled: Set rx_cap_enabled bit in peer
* @peer_handle: Peer handle
* @value: Enable/disable setting for rx_cap_enabled
*
* Return: None
*/
static void
dp_peer_set_rx_capture_enabled(struct cdp_peer *peer_handle, bool value)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
peer->rx_cap_enabled = value;
}
/**
* dp_peer_update_pkt_capture_params: Set Rx & Tx Capture flags for a peer
* @is_rx_pkt_cap_enable: enable/disable Rx packet capture in monitor mode
* @is_tx_pkt_cap_enable: enable/disable Tx packet capture in monitor mode
* @peer_mac: MAC address for which the above need to be enabled/disabled
*
* Return: Success if Rx & Tx capture is enabled for peer, false otherwise
*/
QDF_STATUS
dp_peer_update_pkt_capture_params(struct cdp_pdev *pdev,
bool is_rx_pkt_cap_enable,
bool is_tx_pkt_cap_enable,
uint8_t *peer_mac)
{
struct dp_peer *peer;
peer = (struct dp_peer *)dp_find_peer_by_addr(pdev,
peer_mac);
if (!peer) {
dp_err("Invalid Peer");
return QDF_STATUS_E_FAILURE;
}
dp_peer_set_rx_capture_enabled((struct cdp_peer *)peer,
is_rx_pkt_cap_enable);
dp_peer_set_tx_capture_enabled((struct cdp_peer *)peer,
is_tx_pkt_cap_enable);
return QDF_STATUS_SUCCESS;
}
/*
* dp_set_vdev_dscp_tid_map_wifi3(): Update Map ID selected for particular vdev
* @vdev_handle: DP_VDEV handle
* @map_id:ID of map that needs to be updated
*
* Return: void
*/
static void dp_set_vdev_dscp_tid_map_wifi3(struct cdp_vdev *vdev_handle,
uint8_t map_id)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->dscp_tid_map_id = map_id;
return;
}
#ifdef DP_RATETABLE_SUPPORT
static int dp_txrx_get_ratekbps(int preamb, int mcs,
int htflag, int gintval)
{
uint32_t rix;
uint16_t ratecode;
return dp_getrateindex((uint32_t)gintval, (uint16_t)mcs, 1,
(uint8_t)preamb, 1, &rix, &ratecode);
}
#else
static int dp_txrx_get_ratekbps(int preamb, int mcs,
int htflag, int gintval)
{
return 0;
}
#endif
/* dp_txrx_get_pdev_stats - Returns cdp_pdev_stats
* @peer_handle: DP pdev handle
*
* return : cdp_pdev_stats pointer
*/
static struct cdp_pdev_stats*
dp_txrx_get_pdev_stats(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
dp_aggregate_pdev_stats(pdev);
return &pdev->stats;
}
/* dp_txrx_update_vdev_me_stats(): Update vdev ME stats sent from CDP
* @vdev_handle: DP vdev handle
* @buf: buffer containing specific stats structure
*
* Returns: void
*/
static void dp_txrx_update_vdev_me_stats(struct cdp_vdev *vdev_handle,
void *buf)
{
struct dp_vdev *vdev = NULL;
struct cdp_tx_ingress_stats *host_stats = NULL;
if (!vdev_handle) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid vdev handle");
return;
}
vdev = (struct dp_vdev *)vdev_handle;
if (!buf) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid host stats buf");
return;
}
host_stats = (struct cdp_tx_ingress_stats *)buf;
DP_STATS_INC_PKT(vdev, tx_i.mcast_en.mcast_pkt,
host_stats->mcast_en.mcast_pkt.num,
host_stats->mcast_en.mcast_pkt.bytes);
DP_STATS_INC(vdev, tx_i.mcast_en.dropped_map_error,
host_stats->mcast_en.dropped_map_error);
DP_STATS_INC(vdev, tx_i.mcast_en.dropped_self_mac,
host_stats->mcast_en.dropped_self_mac);
DP_STATS_INC(vdev, tx_i.mcast_en.dropped_send_fail,
host_stats->mcast_en.dropped_send_fail);
DP_STATS_INC(vdev, tx_i.mcast_en.ucast,
host_stats->mcast_en.ucast);
DP_STATS_INC(vdev, tx_i.mcast_en.fail_seg_alloc,
host_stats->mcast_en.fail_seg_alloc);
DP_STATS_INC(vdev, tx_i.mcast_en.clone_fail,
host_stats->mcast_en.clone_fail);
}
/* dp_txrx_update_vdev_host_stats(): Update stats sent through CDP
* @vdev_handle: DP vdev handle
* @buf: buffer containing specific stats structure
* @stats_id: stats type
*
* Returns: void
*/
static void dp_txrx_update_vdev_host_stats(struct cdp_vdev *vdev_handle,
void *buf,
uint16_t stats_id)
{
switch (stats_id) {
case DP_VDEV_STATS_PKT_CNT_ONLY:
break;
case DP_VDEV_STATS_TX_ME:
dp_txrx_update_vdev_me_stats(vdev_handle, buf);
break;
default:
qdf_info("Invalid stats_id %d", stats_id);
break;
}
}
/* dp_txrx_get_peer_stats - will return cdp_peer_stats
* @peer_handle: DP_PEER handle
*
* return : cdp_peer_stats pointer
*/
static struct cdp_peer_stats*
dp_txrx_get_peer_stats(struct cdp_peer *peer_handle)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
qdf_assert(peer);
return &peer->stats;
}
/* dp_txrx_reset_peer_stats - reset cdp_peer_stats for particular peer
* @peer_handle: DP_PEER handle
*
* return : void
*/
static void dp_txrx_reset_peer_stats(struct cdp_peer *peer_handle)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
qdf_assert(peer);
qdf_mem_zero(&peer->stats, sizeof(peer->stats));
}
/* dp_txrx_get_vdev_stats - Update buffer with cdp_vdev_stats
* @vdev_handle: DP_VDEV handle
* @buf: buffer for vdev stats
*
* return : int
*/
static int dp_txrx_get_vdev_stats(struct cdp_vdev *vdev_handle, void *buf,
bool is_aggregate)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct cdp_vdev_stats *vdev_stats;
struct dp_pdev *pdev;
struct dp_soc *soc;
if (!vdev)
return 1;
pdev = vdev->pdev;
if (!pdev)
return 1;
soc = pdev->soc;
vdev_stats = (struct cdp_vdev_stats *)buf;
if (is_aggregate) {
qdf_spin_lock_bh(&soc->peer_ref_mutex);
dp_aggregate_vdev_stats(vdev, buf);
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
} else {
qdf_mem_copy(vdev_stats, &vdev->stats, sizeof(vdev->stats));
}
return 0;
}
/*
* dp_get_total_per(): get total per
* @pdev_handle: DP_PDEV handle
*
* Return: % error rate using retries per packet and success packets
*/
static int dp_get_total_per(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
dp_aggregate_pdev_stats(pdev);
if ((pdev->stats.tx.tx_success.num + pdev->stats.tx.retries) == 0)
return 0;
return ((pdev->stats.tx.retries * 100) /
((pdev->stats.tx.tx_success.num) + (pdev->stats.tx.retries)));
}
/*
* dp_txrx_stats_publish(): publish pdev stats into a buffer
* @pdev_handle: DP_PDEV handle
* @buf: to hold pdev_stats
*
* Return: int
*/
static int
dp_txrx_stats_publish(struct cdp_pdev *pdev_handle, struct cdp_stats_extd *buf)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct cdp_pdev_stats *buffer = (struct cdp_pdev_stats *) buf;
struct cdp_txrx_stats_req req = {0,};
dp_aggregate_pdev_stats(pdev);
req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_TX;
req.cookie_val = 1;
dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
req.param1, req.param2, req.param3, 0,
req.cookie_val, 0);
msleep(DP_MAX_SLEEP_TIME);
req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_RX;
req.cookie_val = 1;
dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
req.param1, req.param2, req.param3, 0,
req.cookie_val, 0);
msleep(DP_MAX_SLEEP_TIME);
qdf_mem_copy(buffer, &pdev->stats, sizeof(pdev->stats));
return TXRX_STATS_LEVEL;
}
/**
* dp_set_pdev_dscp_tid_map_wifi3(): update dscp tid map in pdev
* @pdev: DP_PDEV handle
* @map_id: ID of map that needs to be updated
* @tos: index value in map
* @tid: tid value passed by the user
*
* Return: void
*/
static void dp_set_pdev_dscp_tid_map_wifi3(struct cdp_pdev *pdev_handle,
uint8_t map_id, uint8_t tos, uint8_t tid)
{
uint8_t dscp;
struct dp_pdev *pdev = (struct dp_pdev *) pdev_handle;
struct dp_soc *soc = pdev->soc;
if (!soc)
return;
dscp = (tos >> DP_IP_DSCP_SHIFT) & DP_IP_DSCP_MASK;
pdev->dscp_tid_map[map_id][dscp] = tid;
if (map_id < soc->num_hw_dscp_tid_map)
hal_tx_update_dscp_tid(soc->hal_soc, tid,
map_id, dscp);
return;
}
/**
* dp_hmmc_tid_override_en_wifi3(): Function to enable hmmc tid override.
* @pdev_handle: pdev handle
* @val: hmmc-dscp flag value
*
* Return: void
*/
static void dp_hmmc_tid_override_en_wifi3(struct cdp_pdev *pdev_handle,
bool val)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
pdev->hmmc_tid_override_en = val;
}
/**
* dp_set_hmmc_tid_val_wifi3(): Function to set hmmc tid value.
* @pdev_handle: pdev handle
* @tid: tid value
*
* Return: void
*/
static void dp_set_hmmc_tid_val_wifi3(struct cdp_pdev *pdev_handle,
uint8_t tid)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
pdev->hmmc_tid = tid;
}
/**
* dp_fw_stats_process(): Process TxRX FW stats request
* @vdev_handle: DP VDEV handle
* @req: stats request
*
* return: int
*/
static int dp_fw_stats_process(struct cdp_vdev *vdev_handle,
struct cdp_txrx_stats_req *req)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev = NULL;
uint32_t stats = req->stats;
uint8_t mac_id = req->mac_id;
if (!vdev) {
DP_TRACE(NONE, "VDEV not found");
return 1;
}
pdev = vdev->pdev;
/*
* For HTT_DBG_EXT_STATS_RESET command, FW need to config
* from param0 to param3 according to below rule:
*
* PARAM:
* - config_param0 : start_offset (stats type)
* - config_param1 : stats bmask from start offset
* - config_param2 : stats bmask from start offset + 32
* - config_param3 : stats bmask from start offset + 64
*/
if (req->stats == CDP_TXRX_STATS_0) {
req->param0 = HTT_DBG_EXT_STATS_PDEV_TX;
req->param1 = 0xFFFFFFFF;
req->param2 = 0xFFFFFFFF;
req->param3 = 0xFFFFFFFF;
} else if (req->stats == (uint8_t)HTT_DBG_EXT_STATS_PDEV_TX_MU) {
req->param0 = HTT_DBG_EXT_STATS_SET_VDEV_MASK(vdev->vdev_id);
}
return dp_h2t_ext_stats_msg_send(pdev, stats, req->param0,
req->param1, req->param2, req->param3,
0, 0, mac_id);
}
/**
* dp_txrx_stats_request - function to map to firmware and host stats
* @soc: soc handle
* @vdev_id: virtual device ID
* @req: stats request
*
* Return: QDF_STATUS
*/
static
QDF_STATUS dp_txrx_stats_request(struct cdp_soc_t *soc_handle,
uint8_t vdev_id,
struct cdp_txrx_stats_req *req)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_handle);
struct cdp_vdev *vdev;
int host_stats;
int fw_stats;
enum cdp_stats stats;
int num_stats;
vdev = dp_vdev_to_cdp_vdev(dp_get_vdev_from_soc_vdev_id_wifi3(soc,
vdev_id));
if (!vdev || !req) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid vdev/req instance");
return QDF_STATUS_E_INVAL;
}
if (req->mac_id >= WLAN_CFG_MAC_PER_TARGET) {
dp_err("Invalid mac id request");
return QDF_STATUS_E_INVAL;
}
stats = req->stats;
if (stats >= CDP_TXRX_MAX_STATS)
return QDF_STATUS_E_INVAL;
/*
* DP_CURR_FW_STATS_AVAIL: no of FW stats currently available
* has to be updated if new FW HTT stats added
*/
if (stats > CDP_TXRX_STATS_HTT_MAX)
stats = stats + DP_CURR_FW_STATS_AVAIL - DP_HTT_DBG_EXT_STATS_MAX;
num_stats = QDF_ARRAY_SIZE(dp_stats_mapping_table);
if (stats >= num_stats) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: Invalid stats option: %d", __func__, stats);
return QDF_STATUS_E_INVAL;
}
req->stats = stats;
fw_stats = dp_stats_mapping_table[stats][STATS_FW];
host_stats = dp_stats_mapping_table[stats][STATS_HOST];
dp_info("stats: %u fw_stats_type: %d host_stats: %d",
stats, fw_stats, host_stats);
if (fw_stats != TXRX_FW_STATS_INVALID) {
/* update request with FW stats type */
req->stats = fw_stats;
return dp_fw_stats_process(vdev, req);
}
if ((host_stats != TXRX_HOST_STATS_INVALID) &&
(host_stats <= TXRX_HOST_STATS_MAX))
return dp_print_host_stats(vdev, req);
else
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"Wrong Input for TxRx Stats");
return QDF_STATUS_SUCCESS;
}
/*
* dp_txrx_dump_stats() - Dump statistics
* @value - Statistics option
*/
static QDF_STATUS dp_txrx_dump_stats(void *psoc, uint16_t value,
enum qdf_stats_verbosity_level level)
{
struct dp_soc *soc =
(struct dp_soc *)psoc;
QDF_STATUS status = QDF_STATUS_SUCCESS;
if (!soc) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: soc is NULL", __func__);
return QDF_STATUS_E_INVAL;
}
switch (value) {
case CDP_TXRX_PATH_STATS:
dp_txrx_path_stats(soc);
dp_print_soc_interrupt_stats(soc);
break;
case CDP_RX_RING_STATS:
dp_print_per_ring_stats(soc);
break;
case CDP_TXRX_TSO_STATS:
dp_print_tso_stats(soc, level);
break;
case CDP_DUMP_TX_FLOW_POOL_INFO:
if (level == QDF_STATS_VERBOSITY_LEVEL_HIGH)
cdp_dump_flow_pool_info((struct cdp_soc_t *)soc);
break;
case CDP_DP_NAPI_STATS:
dp_print_napi_stats(soc);
break;
case CDP_TXRX_DESC_STATS:
/* TODO: NOT IMPLEMENTED */
break;
default:
status = QDF_STATUS_E_INVAL;
break;
}
return status;
}
/**
* dp_txrx_clear_dump_stats() - clear dumpStats
* @soc- soc handle
* @value - stats option
*
* Return: 0 - Success, non-zero - failure
*/
static
QDF_STATUS dp_txrx_clear_dump_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
uint8_t value)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
QDF_STATUS status = QDF_STATUS_SUCCESS;
if (!soc) {
dp_err("%s: soc is NULL", __func__);
return QDF_STATUS_E_INVAL;
}
switch (value) {
case CDP_TXRX_TSO_STATS:
dp_txrx_clear_tso_stats(soc);
break;
default:
status = QDF_STATUS_E_INVAL;
break;
}
return status;
}
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
/**
* dp_update_flow_control_parameters() - API to store datapath
* config parameters
* @soc: soc handle
* @cfg: ini parameter handle
*
* Return: void
*/
static inline
void dp_update_flow_control_parameters(struct dp_soc *soc,
struct cdp_config_params *params)
{
soc->wlan_cfg_ctx->tx_flow_stop_queue_threshold =
params->tx_flow_stop_queue_threshold;
soc->wlan_cfg_ctx->tx_flow_start_queue_offset =
params->tx_flow_start_queue_offset;
}
#else
static inline
void dp_update_flow_control_parameters(struct dp_soc *soc,
struct cdp_config_params *params)
{
}
#endif
#ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
/* Max packet limit for TX Comp packet loop (dp_tx_comp_handler) */
#define DP_TX_COMP_LOOP_PKT_LIMIT_MAX 1024
/* Max packet limit for RX REAP Loop (dp_rx_process) */
#define DP_RX_REAP_LOOP_PKT_LIMIT_MAX 1024
static
void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc,
struct cdp_config_params *params)
{
soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit =
params->tx_comp_loop_pkt_limit;
if (params->tx_comp_loop_pkt_limit < DP_TX_COMP_LOOP_PKT_LIMIT_MAX)
soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = true;
else
soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = false;
soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit =
params->rx_reap_loop_pkt_limit;
if (params->rx_reap_loop_pkt_limit < DP_RX_REAP_LOOP_PKT_LIMIT_MAX)
soc->wlan_cfg_ctx->rx_enable_eol_data_check = true;
else
soc->wlan_cfg_ctx->rx_enable_eol_data_check = false;
soc->wlan_cfg_ctx->rx_hp_oos_update_limit =
params->rx_hp_oos_update_limit;
dp_info("tx_comp_loop_pkt_limit %u tx_comp_enable_eol_data_check %u rx_reap_loop_pkt_limit %u rx_enable_eol_data_check %u rx_hp_oos_update_limit %u",
soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit,
soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check,
soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit,
soc->wlan_cfg_ctx->rx_enable_eol_data_check,
soc->wlan_cfg_ctx->rx_hp_oos_update_limit);
}
#else
static inline
void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc,
struct cdp_config_params *params)
{ }
#endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
/**
* dp_update_config_parameters() - API to store datapath
* config parameters
* @soc: soc handle
* @cfg: ini parameter handle
*
* Return: status
*/
static
QDF_STATUS dp_update_config_parameters(struct cdp_soc *psoc,
struct cdp_config_params *params)
{
struct dp_soc *soc = (struct dp_soc *)psoc;
if (!(soc)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: Invalid handle", __func__);
return QDF_STATUS_E_INVAL;
}
soc->wlan_cfg_ctx->tso_enabled = params->tso_enable;
soc->wlan_cfg_ctx->lro_enabled = params->lro_enable;
soc->wlan_cfg_ctx->rx_hash = params->flow_steering_enable;
soc->wlan_cfg_ctx->tcp_udp_checksumoffload =
params->tcp_udp_checksumoffload;
soc->wlan_cfg_ctx->napi_enabled = params->napi_enable;
soc->wlan_cfg_ctx->ipa_enabled = params->ipa_enable;
soc->wlan_cfg_ctx->gro_enabled = params->gro_enable;
dp_update_rx_soft_irq_limit_params(soc, params);
dp_update_flow_control_parameters(soc, params);
return QDF_STATUS_SUCCESS;
}
static struct cdp_wds_ops dp_ops_wds = {
.vdev_set_wds = dp_vdev_set_wds,
#ifdef WDS_VENDOR_EXTENSION
.txrx_set_wds_rx_policy = dp_txrx_set_wds_rx_policy,
.txrx_wds_peer_tx_policy_update = dp_txrx_peer_wds_tx_policy_update,
#endif
};
/*
* dp_txrx_data_tx_cb_set(): set the callback for non standard tx
* @vdev_handle - datapath vdev handle
* @callback - callback function
* @ctxt: callback context
*
*/
static void
dp_txrx_data_tx_cb_set(struct cdp_vdev *vdev_handle,
ol_txrx_data_tx_cb callback, void *ctxt)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->tx_non_std_data_callback.func = callback;
vdev->tx_non_std_data_callback.ctxt = ctxt;
}
/**
* dp_pdev_get_dp_txrx_handle() - get dp handle from pdev
* @pdev_hdl: datapath pdev handle
*
* Return: opaque pointer to dp txrx handle
*/
static void *dp_pdev_get_dp_txrx_handle(struct cdp_pdev *pdev_hdl)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_hdl;
return pdev->dp_txrx_handle;
}
/**
* dp_pdev_set_dp_txrx_handle() - set dp handle in pdev
* @pdev_hdl: datapath pdev handle
* @dp_txrx_hdl: opaque pointer for dp_txrx_handle
*
* Return: void
*/
static void
dp_pdev_set_dp_txrx_handle(struct cdp_pdev *pdev_hdl, void *dp_txrx_hdl)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_hdl;
pdev->dp_txrx_handle = dp_txrx_hdl;
}
/**
* dp_soc_get_dp_txrx_handle() - get context for external-dp from dp soc
* @soc_handle: datapath soc handle
*
* Return: opaque pointer to external dp (non-core DP)
*/
static void *dp_soc_get_dp_txrx_handle(struct cdp_soc *soc_handle)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
return soc->external_txrx_handle;
}
/**
* dp_soc_set_dp_txrx_handle() - set external dp handle in soc
* @soc_handle: datapath soc handle
* @txrx_handle: opaque pointer to external dp (non-core DP)
*
* Return: void
*/
static void
dp_soc_set_dp_txrx_handle(struct cdp_soc *soc_handle, void *txrx_handle)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
soc->external_txrx_handle = txrx_handle;
}
/**
* dp_soc_map_pdev_to_lmac() - Save pdev_id to lmac_id mapping
* @pdev_hdl: datapath pdev handle
* @lmac_id: lmac id
*
* Return: void
*/
static void
dp_soc_map_pdev_to_lmac(struct cdp_pdev *pdev_hdl, uint32_t lmac_id)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_hdl;
struct dp_soc *soc = pdev->soc;
pdev->lmac_id = lmac_id;
wlan_cfg_set_hw_macid(soc->wlan_cfg_ctx,
pdev->pdev_id,
(lmac_id + 1));
}
/**
* dp_soc_set_pdev_status_down() - set pdev down/up status
* @pdev_hdl: datapath pdev handle
* @is_pdev_down: pdev down/up status
*
* Return: void
*/
static void
dp_soc_set_pdev_status_down(struct cdp_pdev *pdev_hdl, bool is_pdev_down)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_hdl;
pdev->is_pdev_down = is_pdev_down;
}
/**
* dp_get_cfg_capabilities() - get dp capabilities
* @soc_handle: datapath soc handle
* @dp_caps: enum for dp capabilities
*
* Return: bool to determine if dp caps is enabled
*/
static bool
dp_get_cfg_capabilities(struct cdp_soc_t *soc_handle,
enum cdp_capabilities dp_caps)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
return wlan_cfg_get_dp_caps(soc->wlan_cfg_ctx, dp_caps);
}
#ifdef FEATURE_AST
static void dp_peer_teardown_wifi3(struct cdp_vdev *vdev_hdl, void *peer_hdl)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
struct dp_peer *peer = (struct dp_peer *)peer_hdl;
struct dp_soc *soc = (struct dp_soc *)vdev->pdev->soc;
/*
* For BSS peer, new peer is not created on alloc_node if the
* peer with same address already exists , instead refcnt is
* increased for existing peer. Correspondingly in delete path,
* only refcnt is decreased; and peer is only deleted , when all
* references are deleted. So delete_in_progress should not be set
* for bss_peer, unless only 2 reference remains (peer map reference
* and peer hash table reference).
*/
if (peer->bss_peer && (qdf_atomic_read(&peer->ref_cnt) > 2))
return;
qdf_spin_lock_bh(&soc->ast_lock);
peer->delete_in_progress = true;
dp_peer_delete_ast_entries(soc, peer);
qdf_spin_unlock_bh(&soc->ast_lock);
}
#endif
#ifdef ATH_SUPPORT_NAC_RSSI
/**
* dp_vdev_get_neighbour_rssi(): Store RSSI for configured NAC
* @vdev_hdl: DP vdev handle
* @rssi: rssi value
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS dp_vdev_get_neighbour_rssi(struct cdp_vdev *vdev_hdl,
char *mac_addr,
uint8_t *rssi)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
struct dp_pdev *pdev = vdev->pdev;
struct dp_neighbour_peer *peer = NULL;
QDF_STATUS status = QDF_STATUS_E_FAILURE;
*rssi = 0;
qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
neighbour_peer_list_elem) {
if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
mac_addr, QDF_MAC_ADDR_SIZE) == 0) {
*rssi = peer->rssi;
status = QDF_STATUS_SUCCESS;
break;
}
}
qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
return status;
}
static QDF_STATUS dp_config_for_nac_rssi(struct cdp_vdev *vdev_handle,
enum cdp_nac_param_cmd cmd, char *bssid, char *client_macaddr,
uint8_t chan_num)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
struct dp_soc *soc = (struct dp_soc *) vdev->pdev->soc;
pdev->nac_rssi_filtering = 1;
/* Store address of NAC (neighbour peer) which will be checked
* against TA of received packets.
*/
if (cmd == CDP_NAC_PARAM_ADD) {
dp_update_filter_neighbour_peers(vdev_handle, DP_NAC_PARAM_ADD,
client_macaddr);
} else if (cmd == CDP_NAC_PARAM_DEL) {
dp_update_filter_neighbour_peers(vdev_handle,
DP_NAC_PARAM_DEL,
client_macaddr);
}
if (soc->cdp_soc.ol_ops->config_bssid_in_fw_for_nac_rssi)
soc->cdp_soc.ol_ops->config_bssid_in_fw_for_nac_rssi
(soc->ctrl_psoc, pdev->pdev_id,
vdev->vdev_id, cmd, bssid, client_macaddr);
return QDF_STATUS_SUCCESS;
}
#endif
/**
* dp_enable_peer_based_pktlog() - Set Flag for peer based filtering
* for pktlog
* @txrx_pdev_handle: cdp_pdev handle
* @enb_dsb: Enable or disable peer based filtering
*
* Return: QDF_STATUS
*/
static int
dp_enable_peer_based_pktlog(
struct cdp_pdev *txrx_pdev_handle,
char *mac_addr, uint8_t enb_dsb)
{
struct dp_peer *peer;
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev_handle;
peer = (struct dp_peer *)dp_find_peer_by_addr(txrx_pdev_handle,
mac_addr);
if (!peer) {
dp_err("Invalid Peer");
return QDF_STATUS_E_FAILURE;
}
peer->peer_based_pktlog_filter = enb_dsb;
pdev->dp_peer_based_pktlog = enb_dsb;
return QDF_STATUS_SUCCESS;
}
#ifndef WLAN_SUPPORT_RX_TAG_STATISTICS
/**
* dp_dump_pdev_rx_protocol_tag_stats - dump the number of packets tagged for
* given protocol type (RX_PROTOCOL_TAG_ALL indicates for all protocol)
* @pdev_handle: cdp_pdev handle
* @protocol_type: protocol type for which stats should be displayed
*
* Return: none
*/
static inline void
dp_dump_pdev_rx_protocol_tag_stats(struct cdp_pdev *pdev_handle,
uint16_t protocol_type)
{
}
#endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
#ifndef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
/**
* dp_update_pdev_rx_protocol_tag - Add/remove a protocol tag that should be
* applied to the desired protocol type packets
* @txrx_pdev_handle: cdp_pdev handle
* @enable_rx_protocol_tag - bitmask that indicates what protocol types
* are enabled for tagging. zero indicates disable feature, non-zero indicates
* enable feature
* @protocol_type: new protocol type for which the tag is being added
* @tag: user configured tag for the new protocol
*
* Return: Success
*/
static inline QDF_STATUS
dp_update_pdev_rx_protocol_tag(struct cdp_pdev *pdev_handle,
uint32_t enable_rx_protocol_tag,
uint16_t protocol_type,
uint16_t tag)
{
return QDF_STATUS_SUCCESS;
}
#endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
#ifndef WLAN_SUPPORT_RX_FLOW_TAG
/**
* dp_set_rx_flow_tag - add/delete a flow
* @pdev_handle: cdp_pdev handle
* @flow_info: flow tuple that is to be added to/deleted from flow search table
*
* Return: Success
*/
static inline QDF_STATUS
dp_set_rx_flow_tag(struct cdp_pdev *pdev_handle,
struct cdp_rx_flow_info *flow_info)
{
return QDF_STATUS_SUCCESS;
}
/**
* dp_dump_rx_flow_tag_stats - dump the number of packets tagged for
* given flow 5-tuple
* @pdev_handle: cdp_pdev handle
* @flow_info: flow 5-tuple for which stats should be displayed
*
* Return: Success
*/
static inline QDF_STATUS
dp_dump_rx_flow_tag_stats(struct cdp_pdev *pdev_handle,
struct cdp_rx_flow_info *flow_info)
{
return QDF_STATUS_SUCCESS;
}
#endif /* WLAN_SUPPORT_RX_FLOW_TAG */
static QDF_STATUS dp_peer_map_attach_wifi3(struct cdp_soc_t *soc_hdl,
uint32_t max_peers,
uint32_t max_ast_index,
bool peer_map_unmap_v2)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
soc->max_peers = max_peers;
qdf_print ("%s max_peers %u, max_ast_index: %u\n",
__func__, max_peers, max_ast_index);
wlan_cfg_set_max_ast_idx(soc->wlan_cfg_ctx, max_ast_index);
if (dp_peer_find_attach(soc))
return QDF_STATUS_E_FAILURE;
soc->is_peer_map_unmap_v2 = peer_map_unmap_v2;
return QDF_STATUS_SUCCESS;
}
static void dp_set_rate_stats_cap(struct cdp_soc_t *soc_hdl,
uint8_t val)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
soc->wlanstats_enabled = val;
}
static void dp_soc_set_rate_stats_ctx(struct cdp_soc_t *soc_handle,
void *stats_ctx)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
soc->rate_stats_ctx = stats_ctx;
}
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
static void dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl,
struct cdp_pdev *pdev_hdl)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_hdl;
struct dp_soc *soc = (struct dp_soc *)pdev->soc;
struct dp_vdev *vdev = NULL;
struct dp_peer *peer = NULL;
qdf_spin_lock_bh(&soc->peer_ref_mutex);
qdf_spin_lock_bh(&pdev->vdev_list_lock);
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
if (peer && !peer->bss_peer)
dp_wdi_event_handler(
WDI_EVENT_FLUSH_RATE_STATS_REQ,
pdev->soc, peer->wlanstats_ctx,
peer->peer_ids[0],
WDI_NO_VAL, pdev->pdev_id);
}
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
}
#else
static inline void
dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl,
struct cdp_pdev *pdev_hdl)
{
}
#endif
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
static void dp_peer_flush_rate_stats(struct cdp_soc_t *soc,
struct cdp_pdev *pdev_handle,
void *buf)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
dp_wdi_event_handler(WDI_EVENT_PEER_FLUSH_RATE_STATS,
pdev->soc, buf, HTT_INVALID_PEER,
WDI_NO_VAL, pdev->pdev_id);
}
#else
static inline void
dp_peer_flush_rate_stats(struct cdp_soc_t *soc,
struct cdp_pdev *pdev_handle,
void *buf)
{
}
#endif
static void *dp_soc_get_rate_stats_ctx(struct cdp_soc_t *soc_handle)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
return soc->rate_stats_ctx;
}
/*
* dp_get_cfg() - get dp cfg
* @soc: cdp soc handle
* @cfg: cfg enum
*
* Return: cfg value
*/
static uint32_t dp_get_cfg(void *soc, enum cdp_dp_cfg cfg)
{
struct dp_soc *dpsoc = (struct dp_soc *)soc;
uint32_t value = 0;
switch (cfg) {
case cfg_dp_enable_data_stall:
value = dpsoc->wlan_cfg_ctx->enable_data_stall_detection;
break;
case cfg_dp_enable_ip_tcp_udp_checksum_offload:
value = dpsoc->wlan_cfg_ctx->tcp_udp_checksumoffload;
break;
case cfg_dp_tso_enable:
value = dpsoc->wlan_cfg_ctx->tso_enabled;
break;
case cfg_dp_lro_enable:
value = dpsoc->wlan_cfg_ctx->lro_enabled;
break;
case cfg_dp_gro_enable:
value = dpsoc->wlan_cfg_ctx->gro_enabled;
break;
case cfg_dp_tx_flow_start_queue_offset:
value = dpsoc->wlan_cfg_ctx->tx_flow_start_queue_offset;
break;
case cfg_dp_tx_flow_stop_queue_threshold:
value = dpsoc->wlan_cfg_ctx->tx_flow_stop_queue_threshold;
break;
case cfg_dp_disable_intra_bss_fwd:
value = dpsoc->wlan_cfg_ctx->disable_intra_bss_fwd;
break;
default:
value = 0;
}
return value;
}
#ifdef PEER_FLOW_CONTROL
/**
* dp_tx_flow_ctrl_configure_pdev() - Configure flow control params
* @pdev_hdl: datapath pdev handle
* @param: ol ath params
* @value: value of the flag
* @buff: Buffer to be passed
*
* Implemented this function same as legacy function. In legacy code, single
* function is used to display stats and update pdev params.
*
* Return: 0 for success. nonzero for failure.
*/
static uint32_t dp_tx_flow_ctrl_configure_pdev(void *pdev_handle,
enum _ol_ath_param_t param,
uint32_t value, void *buff)
{
struct dp_soc *soc = NULL;
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
if (qdf_unlikely(!pdev))
return 1;
soc = pdev->soc;
if (!soc)
return 1;
switch (param) {
#ifdef QCA_ENH_V3_STATS_SUPPORT
case OL_ATH_PARAM_VIDEO_DELAY_STATS_FC:
if (value)
pdev->delay_stats_flag = true;
else
pdev->delay_stats_flag = false;
break;
case OL_ATH_PARAM_VIDEO_STATS_FC:
qdf_print("------- TID Stats ------\n");
dp_pdev_print_tid_stats(pdev);
qdf_print("------ Delay Stats ------\n");
dp_pdev_print_delay_stats(pdev);
break;
#endif
case OL_ATH_PARAM_TOTAL_Q_SIZE:
{
uint32_t tx_min, tx_max;
tx_min = wlan_cfg_get_min_tx_desc(soc->wlan_cfg_ctx);
tx_max = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
if (!buff) {
if ((value >= tx_min) && (value <= tx_max)) {
pdev->num_tx_allowed = value;
} else {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_INFO,
"Failed to update num_tx_allowed, Q_min = %d Q_max = %d",
tx_min, tx_max);
break;
}
} else {
*(int *)buff = pdev->num_tx_allowed;
}
}
break;
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s: not handled param %d ", __func__, param);
break;
}
return 0;
}
#endif
/**
* dp_set_pdev_pcp_tid_map_wifi3(): update pcp tid map in pdev
* @vdev: DP_PDEV handle
* @pcp: pcp value
* @tid: tid value passed by the user
*
* Return: QDF_STATUS_SUCCESS on success
*/
static QDF_STATUS dp_set_pdev_pcp_tid_map_wifi3(struct cdp_pdev *pdev_handle,
uint8_t pcp, uint8_t tid)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct dp_soc *soc = pdev->soc;
soc->pcp_tid_map[pcp] = tid;
hal_tx_update_pcp_tid_map(soc->hal_soc, pcp, tid);
return QDF_STATUS_SUCCESS;
}
/**
* dp_set_pdev_tidmap_prty_wifi3(): update tidmap priority in pdev
* @vdev: DP_PDEV handle
* @prio: tidmap priority value passed by the user
*
* Return: QDF_STATUS_SUCCESS on success
*/
static QDF_STATUS dp_set_pdev_tidmap_prty_wifi3(struct cdp_pdev *pdev_handle,
uint8_t prio)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct dp_soc *soc = pdev->soc;
soc->tidmap_prty = prio;
hal_tx_set_tidmap_prty(soc->hal_soc, prio);
return QDF_STATUS_SUCCESS;
}
/**
* dp_set_vdev_pcp_tid_map_wifi3(): update pcp tid map in vdev
* @vdev: DP_VDEV handle
* @pcp: pcp value
* @tid: tid value passed by the user
*
* Return: QDF_STATUS_SUCCESS on success
*/
static QDF_STATUS dp_set_vdev_pcp_tid_map_wifi3(struct cdp_vdev *vdev_handle,
uint8_t pcp, uint8_t tid)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->pcp_tid_map[pcp] = tid;
return QDF_STATUS_SUCCESS;
}
/**
* dp_set_vdev_tidmap_tbl_id_wifi3(): update tidmapi tbl id in vdev
* @vdev: DP_VDEV handle
* @mapid: map_id value passed by the user
*
* Return: QDF_STATUS_SUCCESS on success
*/
static QDF_STATUS dp_set_vdev_tidmap_tbl_id_wifi3(struct cdp_vdev *vdev_handle,
uint8_t mapid)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->tidmap_tbl_id = mapid;
return QDF_STATUS_SUCCESS;
}
/**
* dp_set_vdev_tidmap_prty_wifi3(): update tidmap priority in vdev
* @vdev: DP_VDEV handle
* @prio: tidmap priority value passed by the user
*
* Return: QDF_STATUS_SUCCESS on success
*/
static QDF_STATUS dp_set_vdev_tidmap_prty_wifi3(struct cdp_vdev *vdev_handle,
uint8_t prio)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->tidmap_prty = prio;
return QDF_STATUS_SUCCESS;
}
static struct cdp_cmn_ops dp_ops_cmn = {
.txrx_soc_attach_target = dp_soc_attach_target_wifi3,
.txrx_vdev_attach = dp_vdev_attach_wifi3,
.txrx_vdev_detach = dp_vdev_detach_wifi3,
.txrx_pdev_attach = dp_pdev_attach_wifi3,
.txrx_pdev_detach = dp_pdev_detach_wifi3,
.txrx_pdev_deinit = dp_pdev_deinit_wifi3,
.txrx_peer_create = dp_peer_create_wifi3,
.txrx_peer_setup = dp_peer_setup_wifi3,
#ifdef FEATURE_AST
.txrx_peer_teardown = dp_peer_teardown_wifi3,
#else
.txrx_peer_teardown = NULL,
#endif
.txrx_peer_add_ast = dp_peer_add_ast_wifi3,
.txrx_peer_update_ast = dp_peer_update_ast_wifi3,
.txrx_peer_get_ast_info_by_soc = dp_peer_get_ast_info_by_soc_wifi3,
.txrx_peer_get_ast_info_by_pdev =
dp_peer_get_ast_info_by_pdevid_wifi3,
.txrx_peer_ast_delete_by_soc =
dp_peer_ast_entry_del_by_soc,
.txrx_peer_ast_delete_by_pdev =
dp_peer_ast_entry_del_by_pdev,
.txrx_peer_delete = dp_peer_delete_wifi3,
.txrx_vdev_register = dp_vdev_register_wifi3,
.txrx_vdev_flush_peers = dp_vdev_flush_peers,
.txrx_soc_detach = dp_soc_detach_wifi3,
.txrx_soc_deinit = dp_soc_deinit_wifi3,
.txrx_soc_init = dp_soc_init_wifi3,
.txrx_tso_soc_attach = dp_tso_soc_attach,
.txrx_tso_soc_detach = dp_tso_soc_detach,
.txrx_get_vdev_mac_addr = dp_get_vdev_mac_addr_wifi3,
.txrx_get_vdev_from_vdev_id = dp_get_vdev_from_vdev_id_wifi3,
.txrx_get_mon_vdev_from_pdev = dp_get_mon_vdev_from_pdev_wifi3,
.txrx_get_ctrl_pdev_from_vdev = dp_get_ctrl_pdev_from_vdev_wifi3,
.txrx_ath_getstats = dp_get_device_stats,
.addba_requestprocess = dp_addba_requestprocess_wifi3,
.addba_responsesetup = dp_addba_responsesetup_wifi3,
.addba_resp_tx_completion = dp_addba_resp_tx_completion_wifi3,
.delba_process = dp_delba_process_wifi3,
.set_addba_response = dp_set_addba_response,
.get_peer_mac_addr_frm_id = dp_get_peer_mac_addr_frm_id,
.flush_cache_rx_queue = NULL,
/* TODO: get API's for dscp-tid need to be added*/
.set_vdev_dscp_tid_map = dp_set_vdev_dscp_tid_map_wifi3,
.set_pdev_dscp_tid_map = dp_set_pdev_dscp_tid_map_wifi3,
.hmmc_tid_override_en = dp_hmmc_tid_override_en_wifi3,
.set_hmmc_tid_val = dp_set_hmmc_tid_val_wifi3,
.txrx_get_total_per = dp_get_total_per,
.txrx_stats_request = dp_txrx_stats_request,
.txrx_set_monitor_mode = dp_vdev_set_monitor_mode,
.txrx_get_pdev_id_frm_pdev = dp_get_pdev_id_frm_pdev,
.txrx_get_vow_config_frm_pdev = dp_get_delay_stats_flag,
.txrx_pdev_set_chan_noise_floor = dp_pdev_set_chan_noise_floor,
.txrx_set_nac = dp_set_nac,
.txrx_get_tx_pending = dp_get_tx_pending,
.txrx_set_pdev_tx_capture = dp_config_debug_sniffer,
.txrx_get_peer_mac_from_peer_id = dp_get_peer_mac_from_peer_id,
.display_stats = dp_txrx_dump_stats,
.txrx_soc_set_nss_cfg = dp_soc_set_nss_cfg_wifi3,
.txrx_soc_get_nss_cfg = dp_soc_get_nss_cfg_wifi3,
.txrx_intr_attach = dp_soc_interrupt_attach_wrapper,
.txrx_intr_detach = dp_soc_interrupt_detach,
.set_pn_check = dp_set_pn_check_wifi3,
.update_config_parameters = dp_update_config_parameters,
/* TODO: Add other functions */
.txrx_data_tx_cb_set = dp_txrx_data_tx_cb_set,
.get_dp_txrx_handle = dp_pdev_get_dp_txrx_handle,
.set_dp_txrx_handle = dp_pdev_set_dp_txrx_handle,
.get_soc_dp_txrx_handle = dp_soc_get_dp_txrx_handle,
.set_soc_dp_txrx_handle = dp_soc_set_dp_txrx_handle,
.map_pdev_to_lmac = dp_soc_map_pdev_to_lmac,
.set_pdev_status_down = dp_soc_set_pdev_status_down,
.txrx_set_ba_aging_timeout = dp_set_ba_aging_timeout,
.txrx_get_ba_aging_timeout = dp_get_ba_aging_timeout,
.tx_send = dp_tx_send,
.txrx_peer_reset_ast = dp_wds_reset_ast_wifi3,
.txrx_peer_reset_ast_table = dp_wds_reset_ast_table_wifi3,
.txrx_peer_flush_ast_table = dp_wds_flush_ast_table_wifi3,
.txrx_peer_map_attach = dp_peer_map_attach_wifi3,
.txrx_get_os_rx_handles_from_vdev =
dp_get_os_rx_handles_from_vdev_wifi3,
.delba_tx_completion = dp_delba_tx_completion_wifi3,
.get_dp_capabilities = dp_get_cfg_capabilities,
.txrx_get_cfg = dp_get_cfg,
.set_rate_stats_ctx = dp_soc_set_rate_stats_ctx,
.get_rate_stats_ctx = dp_soc_get_rate_stats_ctx,
.txrx_peer_flush_rate_stats = dp_peer_flush_rate_stats,
.txrx_flush_rate_stats_request = dp_flush_rate_stats_req,
.set_pdev_pcp_tid_map = dp_set_pdev_pcp_tid_map_wifi3,
.set_pdev_tidmap_prty = dp_set_pdev_tidmap_prty_wifi3,
.set_vdev_pcp_tid_map = dp_set_vdev_pcp_tid_map_wifi3,
.set_vdev_tidmap_prty = dp_set_vdev_tidmap_prty_wifi3,
.set_vdev_tidmap_tbl_id = dp_set_vdev_tidmap_tbl_id_wifi3,
.txrx_cp_peer_del_response = dp_cp_peer_del_resp_handler,
#ifdef QCA_MULTIPASS_SUPPORT
.set_vlan_groupkey = dp_set_vlan_groupkey,
#endif
};
static struct cdp_ctrl_ops dp_ops_ctrl = {
.txrx_peer_authorize = dp_peer_authorize,
.txrx_set_vdev_rx_decap_type = dp_set_vdev_rx_decap_type,
.txrx_set_tx_encap_type = dp_set_vdev_tx_encap_type,
#ifdef MESH_MODE_SUPPORT
.txrx_set_mesh_mode = dp_peer_set_mesh_mode,
.txrx_set_mesh_rx_filter = dp_peer_set_mesh_rx_filter,
#endif
.txrx_set_vdev_param = dp_set_vdev_param,
.txrx_peer_set_nawds = dp_peer_set_nawds,
.txrx_set_pdev_reo_dest = dp_set_pdev_reo_dest,
.txrx_get_pdev_reo_dest = dp_get_pdev_reo_dest,
.txrx_set_filter_neighbour_peers = dp_set_filter_neighbour_peers,
.txrx_update_filter_neighbour_peers =
dp_update_filter_neighbour_peers,
.txrx_get_sec_type = dp_get_sec_type,
/* TODO: Add other functions */
.txrx_wdi_event_sub = dp_wdi_event_sub,
.txrx_wdi_event_unsub = dp_wdi_event_unsub,
#ifdef WDI_EVENT_ENABLE
.txrx_get_pldev = dp_get_pldev,
#endif
.txrx_set_pdev_param = dp_set_pdev_param,
#ifdef ATH_SUPPORT_NAC_RSSI
.txrx_vdev_config_for_nac_rssi = dp_config_for_nac_rssi,
.txrx_vdev_get_neighbour_rssi = dp_vdev_get_neighbour_rssi,
#endif
.set_key = dp_set_michael_key,
.txrx_get_vdev_param = dp_get_vdev_param,
.enable_peer_based_pktlog = dp_enable_peer_based_pktlog,
.calculate_delay_stats = dp_calculate_delay_stats,
#ifdef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
.txrx_update_pdev_rx_protocol_tag = dp_update_pdev_rx_protocol_tag,
#ifdef WLAN_SUPPORT_RX_TAG_STATISTICS
.txrx_dump_pdev_rx_protocol_tag_stats =
dp_dump_pdev_rx_protocol_tag_stats,
#endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
#endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
#ifdef WLAN_SUPPORT_RX_FLOW_TAG
.txrx_set_rx_flow_tag = dp_set_rx_flow_tag,
.txrx_dump_rx_flow_tag_stats = dp_dump_rx_flow_tag_stats,
#endif /* WLAN_SUPPORT_RX_FLOW_TAG */
#ifdef QCA_MULTIPASS_SUPPORT
.txrx_peer_set_vlan_id = dp_peer_set_vlan_id,
#endif /*QCA_MULTIPASS_SUPPORT*/
#if defined(WLAN_TX_PKT_CAPTURE_ENH) || defined(WLAN_RX_PKT_CAPTURE_ENH)
.txrx_update_peer_pkt_capture_params =
dp_peer_update_pkt_capture_params,
#endif /* WLAN_TX_PKT_CAPTURE_ENH || WLAN_RX_PKT_CAPTURE_ENH */
};
static struct cdp_me_ops dp_ops_me = {
#ifdef ATH_SUPPORT_IQUE
.tx_me_alloc_descriptor = dp_tx_me_alloc_descriptor,
.tx_me_free_descriptor = dp_tx_me_free_descriptor,
.tx_me_convert_ucast = dp_tx_me_send_convert_ucast,
#endif
};
static struct cdp_mon_ops dp_ops_mon = {
.txrx_monitor_set_filter_ucast_data = NULL,
.txrx_monitor_set_filter_mcast_data = NULL,
.txrx_monitor_set_filter_non_data = NULL,
.txrx_monitor_get_filter_ucast_data = dp_vdev_get_filter_ucast_data,
.txrx_monitor_get_filter_mcast_data = dp_vdev_get_filter_mcast_data,
.txrx_monitor_get_filter_non_data = dp_vdev_get_filter_non_data,
.txrx_reset_monitor_mode = dp_reset_monitor_mode,
/* Added support for HK advance filter */
.txrx_set_advance_monitor_filter = dp_pdev_set_advance_monitor_filter,
.txrx_monitor_record_channel = dp_pdev_set_monitor_channel,
.txrx_deliver_tx_mgmt = dp_deliver_tx_mgmt,
};
static struct cdp_host_stats_ops dp_ops_host_stats = {
.txrx_per_peer_stats = dp_get_host_peer_stats,
.get_fw_peer_stats = dp_get_fw_peer_stats,
.get_htt_stats = dp_get_htt_stats,
.txrx_enable_enhanced_stats = dp_enable_enhanced_stats,
.txrx_disable_enhanced_stats = dp_disable_enhanced_stats,
.txrx_stats_publish = dp_txrx_stats_publish,
.txrx_get_vdev_stats = dp_txrx_get_vdev_stats,
.txrx_get_peer_stats = dp_txrx_get_peer_stats,
.txrx_reset_peer_stats = dp_txrx_reset_peer_stats,
.txrx_get_pdev_stats = dp_txrx_get_pdev_stats,
.txrx_get_ratekbps = dp_txrx_get_ratekbps,
.configure_rate_stats = dp_set_rate_stats_cap,
.txrx_update_vdev_stats = dp_txrx_update_vdev_host_stats,
/* TODO */
};
static struct cdp_raw_ops dp_ops_raw = {
/* TODO */
};
#ifdef PEER_FLOW_CONTROL
static struct cdp_pflow_ops dp_ops_pflow = {
dp_tx_flow_ctrl_configure_pdev,
};
#endif /* CONFIG_WIN */
#ifdef FEATURE_RUNTIME_PM
/**
* dp_runtime_suspend() - ensure DP is ready to runtime suspend
* @soc_hdl: Datapath soc handle
* @pdev_id: id of data path pdev handle
*
* DP is ready to runtime suspend if there are no pending TX packets.
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_runtime_suspend(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("pdev is NULL");
return QDF_STATUS_E_INVAL;
}
/* Abort if there are any pending TX packets */
if (dp_get_tx_pending(dp_pdev_to_cdp_pdev(pdev)) > 0) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
FL("Abort suspend due to pending TX packets"));
return QDF_STATUS_E_AGAIN;
}
if (soc->intr_mode == DP_INTR_POLL)
qdf_timer_stop(&soc->int_timer);
return QDF_STATUS_SUCCESS;
}
/**
* dp_flush_ring_hptp() - Update ring shadow
* register HP/TP address when runtime
* resume
* @opaque_soc: DP soc context
*
* Return: None
*/
static
void dp_flush_ring_hptp(struct dp_soc *soc, hal_ring_handle_t hal_srng)
{
if (hal_srng && hal_srng_get_clear_event(hal_srng,
HAL_SRNG_FLUSH_EVENT)) {
/* Acquire the lock */
hal_srng_access_start(soc->hal_soc, hal_srng);
hal_srng_access_end(soc->hal_soc, hal_srng);
hal_srng_set_flush_last_ts(hal_srng);
}
}
/**
* dp_runtime_resume() - ensure DP is ready to runtime resume
* @soc_hdl: Datapath soc handle
* @pdev_id: id of data path pdev handle
*
* Resume DP for runtime PM.
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_runtime_resume(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
int i;
if (soc->intr_mode == DP_INTR_POLL)
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
for (i = 0; i < MAX_TCL_DATA_RINGS; i++) {
dp_flush_ring_hptp(soc, soc->tcl_data_ring[i].hal_srng);
}
dp_flush_ring_hptp(soc, soc->reo_cmd_ring.hal_srng);
return QDF_STATUS_SUCCESS;
}
#endif /* FEATURE_RUNTIME_PM */
/**
* dp_tx_get_success_ack_stats() - get tx success completion count
* @soc_hdl: Datapath soc handle
* @vdevid: vdev identifier
*
* Return: tx success ack count
*/
static uint32_t dp_tx_get_success_ack_stats(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev =
(struct dp_vdev *)dp_get_vdev_from_soc_vdev_id_wifi3(soc,
vdev_id);
struct cdp_vdev_stats *vdev_stats = NULL;
uint32_t tx_success;
if (!vdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Invalid vdev id %d"), vdev_id);
return 0;
}
vdev_stats = qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
if (!vdev_stats) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"DP alloc failure - unable to get alloc vdev stats");
return 0;
}
qdf_spin_lock_bh(&soc->peer_ref_mutex);
dp_aggregate_vdev_stats(vdev, vdev_stats);
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
tx_success = vdev_stats->tx.tx_success.num;
qdf_mem_free(vdev_stats);
return tx_success;
}
#ifdef WLAN_SUPPORT_DATA_STALL
/**
* dp_register_data_stall_detect_cb() - register data stall callback
* @soc_hdl: Datapath soc handle
* @pdev_id: id of data path pdev handle
* @data_stall_detect_callback: data stall callback function
*
* Return: QDF_STATUS Enumeration
*/
static
QDF_STATUS dp_register_data_stall_detect_cb(
struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
data_stall_detect_cb data_stall_detect_callback)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("pdev NULL!");
return QDF_STATUS_E_INVAL;
}
pdev->data_stall_detect_callback = data_stall_detect_callback;
return QDF_STATUS_SUCCESS;
}
/**
* dp_deregister_data_stall_detect_cb() - de-register data stall callback
* @soc_hdl: Datapath soc handle
* @pdev_id: id of data path pdev handle
* @data_stall_detect_callback: data stall callback function
*
* Return: QDF_STATUS Enumeration
*/
static
QDF_STATUS dp_deregister_data_stall_detect_cb(
struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
data_stall_detect_cb data_stall_detect_callback)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("pdev NULL!");
return QDF_STATUS_E_INVAL;
}
pdev->data_stall_detect_callback = NULL;
return QDF_STATUS_SUCCESS;
}
/**
* dp_txrx_post_data_stall_event() - post data stall event
* @soc_hdl: Datapath soc handle
* @indicator: Module triggering data stall
* @data_stall_type: data stall event type
* @pdev_id: pdev id
* @vdev_id_bitmap: vdev id bitmap
* @recovery_type: data stall recovery type
*
* Return: None
*/
static void
dp_txrx_post_data_stall_event(struct cdp_soc_t *soc_hdl,
enum data_stall_log_event_indicator indicator,
enum data_stall_log_event_type data_stall_type,
uint32_t pdev_id, uint32_t vdev_id_bitmap,
enum data_stall_log_recovery_type recovery_type)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct data_stall_event_info data_stall_info;
struct dp_pdev *pdev;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("pdev NULL!");
return;
}
if (!pdev->data_stall_detect_callback) {
dp_err("data stall cb not registered!");
return;
}
dp_info("data_stall_type: %x pdev_id: %d",
data_stall_type, pdev_id);
data_stall_info.indicator = indicator;
data_stall_info.data_stall_type = data_stall_type;
data_stall_info.vdev_id_bitmap = vdev_id_bitmap;
data_stall_info.pdev_id = pdev_id;
data_stall_info.recovery_type = recovery_type;
pdev->data_stall_detect_callback(&data_stall_info);
}
#endif /* WLAN_SUPPORT_DATA_STALL */
#ifdef DP_PEER_EXTENDED_API
static struct cdp_misc_ops dp_ops_misc = {
#ifdef FEATURE_WLAN_TDLS
.tx_non_std = dp_tx_non_std,
#endif /* FEATURE_WLAN_TDLS */
.get_opmode = dp_get_opmode,
#ifdef FEATURE_RUNTIME_PM
.runtime_suspend = dp_runtime_suspend,
.runtime_resume = dp_runtime_resume,
#endif /* FEATURE_RUNTIME_PM */
.pkt_log_init = dp_pkt_log_init,
.pkt_log_con_service = dp_pkt_log_con_service,
.get_num_rx_contexts = dp_get_num_rx_contexts,
.get_tx_ack_stats = dp_tx_get_success_ack_stats,
#ifdef WLAN_SUPPORT_DATA_STALL
.txrx_data_stall_cb_register = dp_register_data_stall_detect_cb,
.txrx_data_stall_cb_deregister = dp_deregister_data_stall_detect_cb,
.txrx_post_data_stall_event = dp_txrx_post_data_stall_event,
#endif
};
#endif
#ifdef DP_FLOW_CTL
static struct cdp_flowctl_ops dp_ops_flowctl = {
/* WIFI 3.0 DP implement as required. */
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
.flow_pool_map_handler = dp_tx_flow_pool_map,
.flow_pool_unmap_handler = dp_tx_flow_pool_unmap,
.register_pause_cb = dp_txrx_register_pause_cb,
.dump_flow_pool_info = dp_tx_dump_flow_pool_info,
.tx_desc_thresh_reached = dp_tx_desc_thresh_reached,
#endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
};
static struct cdp_lflowctl_ops dp_ops_l_flowctl = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
#endif
#ifdef IPA_OFFLOAD
static struct cdp_ipa_ops dp_ops_ipa = {
.ipa_get_resource = dp_ipa_get_resource,
.ipa_set_doorbell_paddr = dp_ipa_set_doorbell_paddr,
.ipa_op_response = dp_ipa_op_response,
.ipa_register_op_cb = dp_ipa_register_op_cb,
.ipa_get_stat = dp_ipa_get_stat,
.ipa_tx_data_frame = dp_tx_send_ipa_data_frame,
.ipa_enable_autonomy = dp_ipa_enable_autonomy,
.ipa_disable_autonomy = dp_ipa_disable_autonomy,
.ipa_setup = dp_ipa_setup,
.ipa_cleanup = dp_ipa_cleanup,
.ipa_setup_iface = dp_ipa_setup_iface,
.ipa_cleanup_iface = dp_ipa_cleanup_iface,
.ipa_enable_pipes = dp_ipa_enable_pipes,
.ipa_disable_pipes = dp_ipa_disable_pipes,
.ipa_set_perf_level = dp_ipa_set_perf_level,
.ipa_rx_intrabss_fwd = dp_ipa_rx_intrabss_fwd
};
#endif
#ifdef DP_POWER_SAVE
static QDF_STATUS dp_bus_suspend(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct cdp_pdev *pdev = (struct cdp_pdev *)
dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
int timeout = SUSPEND_DRAIN_WAIT;
int drain_wait_delay = 50; /* 50 ms */
if (qdf_unlikely(!pdev)) {
dp_err("pdev is NULL");
return QDF_STATUS_E_INVAL;
}
/* Abort if there are any pending TX packets */
while (dp_get_tx_pending(pdev) > 0) {
qdf_sleep(drain_wait_delay);
if (timeout <= 0) {
dp_err("TX frames are pending, abort suspend");
return QDF_STATUS_E_TIMEOUT;
}
timeout = timeout - drain_wait_delay;
}
if (soc->intr_mode == DP_INTR_POLL)
qdf_timer_stop(&soc->int_timer);
return QDF_STATUS_SUCCESS;
}
static QDF_STATUS dp_bus_resume(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
if (soc->intr_mode == DP_INTR_POLL)
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
return QDF_STATUS_SUCCESS;
}
static struct cdp_bus_ops dp_ops_bus = {
.bus_suspend = dp_bus_suspend,
.bus_resume = dp_bus_resume
};
#endif
#ifdef DP_FLOW_CTL
static struct cdp_throttle_ops dp_ops_throttle = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_cfg_ops dp_ops_cfg = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
#endif
#ifdef DP_PEER_EXTENDED_API
static struct cdp_ocb_ops dp_ops_ocb = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_mob_stats_ops dp_ops_mob_stats = {
.clear_stats = dp_txrx_clear_dump_stats,
};
/*
* dp_peer_get_ref_find_by_addr - get peer with addr by ref count inc
* @dev: physical device instance
* @peer_mac_addr: peer mac address
* @debug_id: to track enum peer access
*
* Return: peer instance pointer
*/
static inline void *
dp_peer_get_ref_find_by_addr(struct cdp_pdev *dev, uint8_t *peer_mac_addr,
enum peer_debug_id_type debug_id)
{
struct dp_pdev *pdev = (struct dp_pdev *)dev;
struct dp_peer *peer;
peer = dp_peer_find_hash_find(pdev->soc, peer_mac_addr, 0, DP_VDEV_ALL);
if (!peer)
return NULL;
DP_TRACE(INFO, "%s: peer %pK mac: %pM", __func__, peer,
peer->mac_addr.raw);
return peer;
}
/*
* dp_peer_release_ref - release peer ref count
* @peer: peer handle
* @debug_id: to track enum peer access
*
* Return: None
*/
static inline
void dp_peer_release_ref(void *peer, enum peer_debug_id_type debug_id)
{
dp_peer_unref_delete(peer);
}
static struct cdp_peer_ops dp_ops_peer = {
.register_peer = dp_register_peer,
.clear_peer = dp_clear_peer,
.find_peer_by_addr = dp_find_peer_by_addr,
.find_peer_by_addr_and_vdev = dp_find_peer_by_addr_and_vdev,
.peer_get_ref_by_addr = dp_peer_get_ref_find_by_addr,
.peer_release_ref = dp_peer_release_ref,
.peer_state_update = dp_peer_state_update,
.get_vdevid = dp_get_vdevid,
.get_vdev_by_peer_addr = dp_get_vdev_by_peer_addr,
.peer_get_peer_mac_addr = dp_peer_get_peer_mac_addr,
.get_vdev_for_peer = dp_get_vdev_for_peer,
.get_peer_state = dp_get_peer_state,
};
#endif
static struct cdp_ops dp_txrx_ops = {
.cmn_drv_ops = &dp_ops_cmn,
.ctrl_ops = &dp_ops_ctrl,
.me_ops = &dp_ops_me,
.mon_ops = &dp_ops_mon,
.host_stats_ops = &dp_ops_host_stats,
.wds_ops = &dp_ops_wds,
.raw_ops = &dp_ops_raw,
#ifdef PEER_FLOW_CONTROL
.pflow_ops = &dp_ops_pflow,
#endif /* PEER_FLOW_CONTROL */
#ifdef DP_PEER_EXTENDED_API
.misc_ops = &dp_ops_misc,
.ocb_ops = &dp_ops_ocb,
.peer_ops = &dp_ops_peer,
.mob_stats_ops = &dp_ops_mob_stats,
#endif
#ifdef DP_FLOW_CTL
.cfg_ops = &dp_ops_cfg,
.flowctl_ops = &dp_ops_flowctl,
.l_flowctl_ops = &dp_ops_l_flowctl,
.throttle_ops = &dp_ops_throttle,
#endif
#ifdef IPA_OFFLOAD
.ipa_ops = &dp_ops_ipa,
#endif
#ifdef DP_POWER_SAVE
.bus_ops = &dp_ops_bus,
#endif
};
/*
* dp_soc_set_txrx_ring_map()
* @dp_soc: DP handler for soc
*
* Return: Void
*/
void dp_soc_set_txrx_ring_map(struct dp_soc *soc)
{
uint32_t i;
for (i = 0; i < WLAN_CFG_INT_NUM_CONTEXTS; i++) {
soc->tx_ring_map[i] = dp_cpu_ring_map[DP_NSS_DEFAULT_MAP][i];
}
}
#if defined(QCA_WIFI_QCA8074) || defined(QCA_WIFI_QCA6018)
#ifndef QCA_MEM_ATTACH_ON_WIFI3
/**
* dp_soc_attach_wifi3() - Attach txrx SOC
* @ctrl_psoc: Opaque SOC handle from control plane
* @htc_handle: Opaque HTC handle
* @hif_handle: Opaque HIF handle
* @qdf_osdev: QDF device
* @ol_ops: Offload Operations
* @device_id: Device ID
*
* Return: DP SOC handle on success, NULL on failure
*/
struct cdp_soc_t *
dp_soc_attach_wifi3(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
struct hif_opaque_softc *hif_handle,
HTC_HANDLE htc_handle, qdf_device_t qdf_osdev,
struct ol_if_ops *ol_ops, uint16_t device_id)
{
struct dp_soc *dp_soc = NULL;
dp_soc = dp_soc_attach(ctrl_psoc, htc_handle, qdf_osdev,
ol_ops, device_id);
if (!dp_soc)
return NULL;
if (!dp_soc_init(dp_soc, htc_handle, hif_handle))
return NULL;
return dp_soc_to_cdp_soc_t(dp_soc);
}
#else
/**
* dp_soc_attach_wifi3() - Attach txrx SOC
* @ctrl_psoc: Opaque SOC handle from control plane
* @htc_handle: Opaque HTC handle
* @hif_handle: Opaque HIF handle
* @qdf_osdev: QDF device
* @ol_ops: Offload Operations
* @device_id: Device ID
*
* Return: DP SOC handle on success, NULL on failure
*/
struct cdp_soc_t *
dp_soc_attach_wifi3(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
struct hif_opaque_softc *hif_handle,
HTC_HANDLE htc_handle, qdf_device_t qdf_osdev,
struct ol_if_ops *ol_ops, uint16_t device_id)
{
struct dp_soc *dp_soc = NULL;
dp_soc = dp_soc_attach(ctrl_psoc, htc_handle, qdf_osdev,
ol_ops, device_id);
return dp_soc_to_cdp_soc_t(dp_soc);
}
#endif
/**
* dp_soc_attach() - Attach txrx SOC
* @ctrl_psoc: Opaque SOC handle from control plane
* @htc_handle: Opaque HTC handle
* @qdf_osdev: QDF device
* @ol_ops: Offload Operations
* @device_id: Device ID
*
* Return: DP SOC handle on success, NULL on failure
*/
static struct dp_soc *
dp_soc_attach(struct cdp_ctrl_objmgr_psoc *ctrl_psoc, HTC_HANDLE htc_handle,
qdf_device_t qdf_osdev,
struct ol_if_ops *ol_ops, uint16_t device_id)
{
int int_ctx;
struct dp_soc *soc = NULL;
struct htt_soc *htt_soc;
soc = qdf_mem_malloc(sizeof(*soc));
if (!soc) {
dp_err("DP SOC memory allocation failed");
goto fail0;
}
int_ctx = 0;
soc->device_id = device_id;
soc->cdp_soc.ops = &dp_txrx_ops;
soc->cdp_soc.ol_ops = ol_ops;
soc->ctrl_psoc = ctrl_psoc;
soc->osdev = qdf_osdev;
soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_MAPS;
wlan_set_srng_cfg(&soc->wlan_srng_cfg);
qdf_mem_zero(&soc->vdev_id_map, sizeof(soc->vdev_id_map));
soc->wlan_cfg_ctx = wlan_cfg_soc_attach(soc->ctrl_psoc);
if (!soc->wlan_cfg_ctx) {
dp_err("wlan_cfg_ctx failed\n");
goto fail1;
}
dp_soc_set_interrupt_mode(soc);
htt_soc = htt_soc_attach(soc, htc_handle);
if (!htt_soc)
goto fail1;
soc->htt_handle = htt_soc;
if (htt_soc_htc_prealloc(htt_soc) != QDF_STATUS_SUCCESS)
goto fail2;
return soc;
fail2:
htt_soc_detach(htt_soc);
fail1:
qdf_mem_free(soc);
fail0:
return NULL;
}
/**
* dp_soc_init() - Initialize txrx SOC
* @dp_soc: Opaque DP SOC handle
* @htc_handle: Opaque HTC handle
* @hif_handle: Opaque HIF handle
*
* Return: DP SOC handle on success, NULL on failure
*/
void *dp_soc_init(void *dpsoc, HTC_HANDLE htc_handle,
struct hif_opaque_softc *hif_handle)
{
int target_type;
struct dp_soc *soc = (struct dp_soc *)dpsoc;
struct htt_soc *htt_soc = soc->htt_handle;
htt_set_htc_handle(htt_soc, htc_handle);
soc->hif_handle = hif_handle;
soc->hal_soc = hif_get_hal_handle(soc->hif_handle);
if (!soc->hal_soc)
return NULL;
htt_soc_initialize(soc->htt_handle, soc->ctrl_psoc,
htt_get_htc_handle(htt_soc),
soc->hal_soc, soc->osdev);
target_type = hal_get_target_type(soc->hal_soc);
switch (target_type) {
case TARGET_TYPE_QCA6290:
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCA6290);
soc->ast_override_support = 1;
soc->da_war_enabled = false;
break;
#if defined(QCA_WIFI_QCA6390) || defined(QCA_WIFI_QCA6490)
case TARGET_TYPE_QCA6390:
case TARGET_TYPE_QCA6490:
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCA6290);
wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, true);
soc->ast_override_support = 1;
if (soc->cdp_soc.ol_ops->get_con_mode &&
soc->cdp_soc.ol_ops->get_con_mode() ==
QDF_GLOBAL_MONITOR_MODE) {
int int_ctx;
for (int_ctx = 0; int_ctx < WLAN_CFG_INT_NUM_CONTEXTS; int_ctx++) {
soc->wlan_cfg_ctx->int_rx_ring_mask[int_ctx] = 0;
soc->wlan_cfg_ctx->int_rxdma2host_ring_mask[int_ctx] = 0;
}
}
soc->wlan_cfg_ctx->rxdma1_enable = 0;
break;
#endif /* QCA_WIFI_QCA6390 || QCA_WIFI_QCA6490 */
case TARGET_TYPE_QCA8074:
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCA8074);
wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, true);
soc->da_war_enabled = true;
soc->is_rx_fse_full_cache_invalidate_war_enabled = true;
break;
case TARGET_TYPE_QCA8074V2:
case TARGET_TYPE_QCA6018:
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCA8074);
wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, false);
soc->hw_nac_monitor_support = 1;
soc->ast_override_support = 1;
soc->per_tid_basize_max_tid = 8;
soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_V2_MAPS;
soc->da_war_enabled = false;
soc->is_rx_fse_full_cache_invalidate_war_enabled = true;
break;
case TARGET_TYPE_QCN9000:
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCN9000);
soc->ast_override_support = 1;
soc->da_war_enabled = false;
wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, false);
soc->hw_nac_monitor_support = 1;
soc->per_tid_basize_max_tid = 8;
soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_V2_MAPS;
break;
default:
qdf_print("%s: Unknown tgt type %d\n", __func__, target_type);
qdf_assert_always(0);
break;
}
wlan_cfg_set_rx_hash(soc->wlan_cfg_ctx,
cfg_get(soc->ctrl_psoc, CFG_DP_RX_HASH));
soc->cce_disable = false;
qdf_atomic_init(&soc->num_tx_outstanding);
soc->num_tx_allowed =
wlan_cfg_get_dp_soc_tx_device_limit(soc->wlan_cfg_ctx);
if (soc->cdp_soc.ol_ops->get_dp_cfg_param) {
int ret = soc->cdp_soc.ol_ops->get_dp_cfg_param(soc->ctrl_psoc,
CDP_CFG_MAX_PEER_ID);
if (ret != -EINVAL) {
wlan_cfg_set_max_peer_id(soc->wlan_cfg_ctx, ret);
}
ret = soc->cdp_soc.ol_ops->get_dp_cfg_param(soc->ctrl_psoc,
CDP_CFG_CCE_DISABLE);
if (ret == 1)
soc->cce_disable = true;
}
qdf_spinlock_create(&soc->peer_ref_mutex);
qdf_spinlock_create(&soc->ast_lock);
qdf_spinlock_create(&soc->reo_desc_freelist_lock);
qdf_list_create(&soc->reo_desc_freelist, REO_DESC_FREELIST_SIZE);
/* fill the tx/rx cpu ring map*/
dp_soc_set_txrx_ring_map(soc);
qdf_spinlock_create(&soc->htt_stats.lock);
/* initialize work queue for stats processing */
qdf_create_work(0, &soc->htt_stats.work, htt_t2h_stats_handler, soc);
return soc;
}
/**
* dp_soc_init_wifi3() - Initialize txrx SOC
* @dp_soc: Opaque DP SOC handle
* @ctrl_psoc: Opaque SOC handle from control plane(Unused)
* @hif_handle: Opaque HIF handle
* @htc_handle: Opaque HTC handle
* @qdf_osdev: QDF device (Unused)
* @ol_ops: Offload Operations (Unused)
* @device_id: Device ID (Unused)
*
* Return: DP SOC handle on success, NULL on failure
*/
void *dp_soc_init_wifi3(void *dpsoc, struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
struct hif_opaque_softc *hif_handle,
HTC_HANDLE htc_handle, qdf_device_t qdf_osdev,
struct ol_if_ops *ol_ops, uint16_t device_id)
{
return dp_soc_init(dpsoc, htc_handle, hif_handle);
}
#endif
/*
* dp_get_pdev_for_mac_id() - Return pdev for mac_id
*
* @soc: handle to DP soc
* @mac_id: MAC id
*
* Return: Return pdev corresponding to MAC
*/
void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id)
{
if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
return soc->pdev_list[mac_id];
/* Typically for MCL as there only 1 PDEV*/
return soc->pdev_list[0];
}
/*
* dp_is_hw_dbs_enable() - Procedure to check if DBS is supported
* @soc: DP SoC context
* @max_mac_rings: No of MAC rings
*
* Return: None
*/
static
void dp_is_hw_dbs_enable(struct dp_soc *soc,
int *max_mac_rings)
{
bool dbs_enable = false;
if (soc->cdp_soc.ol_ops->is_hw_dbs_2x2_capable)
dbs_enable = soc->cdp_soc.ol_ops->
is_hw_dbs_2x2_capable((void *)soc->ctrl_psoc);
*max_mac_rings = (dbs_enable)?(*max_mac_rings):1;
}
/*
* dp_is_soc_reinit() - Check if soc reinit is true
* @soc: DP SoC context
*
* Return: true or false
*/
bool dp_is_soc_reinit(struct dp_soc *soc)
{
return soc->dp_soc_reinit;
}
/*
* dp_set_pktlog_wifi3() - attach txrx vdev
* @pdev: Datapath PDEV handle
* @event: which event's notifications are being subscribed to
* @enable: WDI event subscribe or not. (True or False)
*
* Return: Success, NULL on failure
*/
#ifdef WDI_EVENT_ENABLE
int dp_set_pktlog_wifi3(struct dp_pdev *pdev, uint32_t event,
bool enable)
{
struct dp_soc *soc = NULL;
struct htt_rx_ring_tlv_filter htt_tlv_filter = {0};
int max_mac_rings = wlan_cfg_get_num_mac_rings
(pdev->wlan_cfg_ctx);
uint8_t mac_id = 0;
soc = pdev->soc;
dp_is_hw_dbs_enable(soc, &max_mac_rings);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
FL("Max_mac_rings %d "),
max_mac_rings);
if (enable) {
switch (event) {
case WDI_EVENT_RX_DESC:
if (pdev->monitor_vdev) {
/* Nothing needs to be done if monitor mode is
* enabled
*/
return 0;
}
if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_FULL) {
pdev->rx_pktlog_mode = DP_RX_PKTLOG_FULL;
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 1;
htt_tlv_filter.msdu_end = 1;
htt_tlv_filter.mpdu_end = 1;
htt_tlv_filter.packet_header = 1;
htt_tlv_filter.attention = 1;
htt_tlv_filter.ppdu_start = 1;
htt_tlv_filter.ppdu_end = 1;
htt_tlv_filter.ppdu_end_user_stats = 1;
htt_tlv_filter.ppdu_end_user_stats_ext = 1;
htt_tlv_filter.ppdu_end_status_done = 1;
htt_tlv_filter.enable_fp = 1;
htt_tlv_filter.fp_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.fp_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.fp_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.mo_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.mo_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.mo_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.offset_valid = false;
for (mac_id = 0; mac_id < max_mac_rings;
mac_id++) {
int mac_for_pdev =
dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(soc->htt_handle,
mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_STATUS,
RX_BUFFER_SIZE,
&htt_tlv_filter);
}
if (soc->reap_timer_init)
qdf_timer_mod(&soc->mon_reap_timer,
DP_INTR_POLL_TIMER_MS);
}
break;
case WDI_EVENT_LITE_RX:
if (pdev->monitor_vdev) {
/* Nothing needs to be done if monitor mode is
* enabled
*/
return 0;
}
if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_LITE) {
pdev->rx_pktlog_mode = DP_RX_PKTLOG_LITE;
htt_tlv_filter.ppdu_start = 1;
htt_tlv_filter.ppdu_end = 1;
htt_tlv_filter.ppdu_end_user_stats = 1;
htt_tlv_filter.ppdu_end_user_stats_ext = 1;
htt_tlv_filter.ppdu_end_status_done = 1;
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.enable_fp = 1;
htt_tlv_filter.fp_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.fp_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.fp_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.mo_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.mo_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.mo_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.offset_valid = false;
for (mac_id = 0; mac_id < max_mac_rings;
mac_id++) {
int mac_for_pdev =
dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(soc->htt_handle,
mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_STATUS,
RX_BUFFER_SIZE_PKTLOG_LITE,
&htt_tlv_filter);
}
if (soc->reap_timer_init)
qdf_timer_mod(&soc->mon_reap_timer,
DP_INTR_POLL_TIMER_MS);
}
break;
case WDI_EVENT_LITE_T2H:
if (pdev->monitor_vdev) {
/* Nothing needs to be done if monitor mode is
* enabled
*/
return 0;
}
for (mac_id = 0; mac_id < max_mac_rings; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(
mac_id, pdev->pdev_id);
pdev->pktlog_ppdu_stats = true;
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_TXLITE_STATS_BITMASK_CFG,
mac_for_pdev);
}
break;
default:
/* Nothing needs to be done for other pktlog types */
break;
}
} else {
switch (event) {
case WDI_EVENT_RX_DESC:
case WDI_EVENT_LITE_RX:
if (pdev->monitor_vdev) {
/* Nothing needs to be done if monitor mode is
* enabled
*/
return 0;
}
if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_DISABLED) {
pdev->rx_pktlog_mode = DP_RX_PKTLOG_DISABLED;
for (mac_id = 0; mac_id < max_mac_rings;
mac_id++) {
int mac_for_pdev =
dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(soc->htt_handle,
mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_STATUS,
RX_BUFFER_SIZE,
&htt_tlv_filter);
}
if (soc->reap_timer_init)
qdf_timer_stop(&soc->mon_reap_timer);
}
break;
case WDI_EVENT_LITE_T2H:
if (pdev->monitor_vdev) {
/* Nothing needs to be done if monitor mode is
* enabled
*/
return 0;
}
/* To disable HTT_H2T_MSG_TYPE_PPDU_STATS_CFG in FW
* passing value 0. Once these macros will define in htt
* header file will use proper macros
*/
for (mac_id = 0; mac_id < max_mac_rings; mac_id++) {
int mac_for_pdev =
dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
pdev->pktlog_ppdu_stats = false;
if (!pdev->enhanced_stats_en && !pdev->tx_sniffer_enable && !pdev->mcopy_mode) {
dp_h2t_cfg_stats_msg_send(pdev, 0,
mac_for_pdev);
} else if (pdev->tx_sniffer_enable || pdev->mcopy_mode) {
dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_SNIFFER,
mac_for_pdev);
} else if (pdev->enhanced_stats_en) {
dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_ENH_STATS,
mac_for_pdev);
}
}
break;
default:
/* Nothing needs to be done for other pktlog types */
break;
}
}
return 0;
}
#endif
/**
* dp_bucket_index() - Return index from array
*
* @delay: delay measured
* @array: array used to index corresponding delay
*
* Return: index
*/
static uint8_t dp_bucket_index(uint32_t delay, uint16_t *array)
{
uint8_t i = CDP_DELAY_BUCKET_0;
for (; i < CDP_DELAY_BUCKET_MAX; i++) {
if (delay >= array[i] && delay <= array[i + 1])
return i;
}
return (CDP_DELAY_BUCKET_MAX - 1);
}
/**
* dp_fill_delay_buckets() - Fill delay statistics bucket for each
* type of delay
*
* @pdev: pdev handle
* @delay: delay in ms
* @tid: tid value
* @mode: type of tx delay mode
* @ring_id: ring number
* Return: pointer to cdp_delay_stats structure
*/
static struct cdp_delay_stats *
dp_fill_delay_buckets(struct dp_pdev *pdev, uint32_t delay,
uint8_t tid, uint8_t mode, uint8_t ring_id)
{
uint8_t delay_index = 0;
struct cdp_tid_tx_stats *tstats =
&pdev->stats.tid_stats.tid_tx_stats[ring_id][tid];
struct cdp_tid_rx_stats *rstats =
&pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
/*
* cdp_fw_to_hw_delay_range
* Fw to hw delay ranges in milliseconds
*/
uint16_t cdp_fw_to_hw_delay[CDP_DELAY_BUCKET_MAX] = {
0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 250, 500};
/*
* cdp_sw_enq_delay_range
* Software enqueue delay ranges in milliseconds
*/
uint16_t cdp_sw_enq_delay[CDP_DELAY_BUCKET_MAX] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
/*
* cdp_intfrm_delay_range
* Interframe delay ranges in milliseconds
*/
uint16_t cdp_intfrm_delay[CDP_DELAY_BUCKET_MAX] = {
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60};
/*
* Update delay stats in proper bucket
*/
switch (mode) {
/* Software Enqueue delay ranges */
case CDP_DELAY_STATS_SW_ENQ:
delay_index = dp_bucket_index(delay, cdp_sw_enq_delay);
tstats->swq_delay.delay_bucket[delay_index]++;
return &tstats->swq_delay;
/* Tx Completion delay ranges */
case CDP_DELAY_STATS_FW_HW_TRANSMIT:
delay_index = dp_bucket_index(delay, cdp_fw_to_hw_delay);
tstats->hwtx_delay.delay_bucket[delay_index]++;
return &tstats->hwtx_delay;
/* Interframe tx delay ranges */
case CDP_DELAY_STATS_TX_INTERFRAME:
delay_index = dp_bucket_index(delay, cdp_intfrm_delay);
tstats->intfrm_delay.delay_bucket[delay_index]++;
return &tstats->intfrm_delay;
/* Interframe rx delay ranges */
case CDP_DELAY_STATS_RX_INTERFRAME:
delay_index = dp_bucket_index(delay, cdp_intfrm_delay);
rstats->intfrm_delay.delay_bucket[delay_index]++;
return &rstats->intfrm_delay;
/* Ring reap to indication to network stack */
case CDP_DELAY_STATS_REAP_STACK:
delay_index = dp_bucket_index(delay, cdp_intfrm_delay);
rstats->to_stack_delay.delay_bucket[delay_index]++;
return &rstats->to_stack_delay;
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"%s Incorrect delay mode: %d", __func__, mode);
}
return NULL;
}
/**
* dp_update_delay_stats() - Update delay statistics in structure
* and fill min, max and avg delay
*
* @pdev: pdev handle
* @delay: delay in ms
* @tid: tid value
* @mode: type of tx delay mode
* @ring id: ring number
* Return: none
*/
void dp_update_delay_stats(struct dp_pdev *pdev, uint32_t delay,
uint8_t tid, uint8_t mode, uint8_t ring_id)
{
struct cdp_delay_stats *dstats = NULL;
/*
* Delay ranges are different for different delay modes
* Get the correct index to update delay bucket
*/
dstats = dp_fill_delay_buckets(pdev, delay, tid, mode, ring_id);
if (qdf_unlikely(!dstats))
return;
if (delay != 0) {
/*
* Compute minimum,average and maximum
* delay
*/
if (delay < dstats->min_delay)
dstats->min_delay = delay;
if (delay > dstats->max_delay)
dstats->max_delay = delay;
/*
* Average over delay measured till now
*/
if (!dstats->avg_delay)
dstats->avg_delay = delay;
else
dstats->avg_delay = ((delay + dstats->avg_delay) / 2);
}
}