Files
android_kernel_samsung_sm86…/hal/wifi3.0/hal_generic_api.h
Balamurugan Mahalingam 5d80641550 qcacmn: [1/2] Support both qca8074v1 and qca8074v2 from hal
Some of the macro names defined in qca8074v1, are defined with
a slightly different name in qca8074v2, and few macros have the
same name in both headers but are defined with different values.
Fixed the same.

Change-Id: I5e948baf5326d1d8fdfa2bd7ee8aa072c710d17c
2018-09-04 11:53:36 -07:00

1461 lines
44 KiB
C
Raw Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
/*
* Copyright (c) 2016-2018 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef _HAL_GENERIC_API_H_
#define _HAL_GENERIC_API_H_
#define HAL_RX_MSDU_DESC_INFO_GET(msdu_details_ptr) \
((struct rx_msdu_desc_info *) \
_OFFSET_TO_BYTE_PTR(msdu_details_ptr, \
UNIFIED_RX_MSDU_DETAILS_2_RX_MSDU_DESC_INFO_RX_MSDU_DESC_INFO_DETAILS_OFFSET))
/**
* hal_rx_msdu_desc_info_get_ptr_generic() - Get msdu desc info ptr
* @msdu_details_ptr - Pointer to msdu_details_ptr
* Return - Pointer to rx_msdu_desc_info structure.
*
*/
static void *hal_rx_msdu_desc_info_get_ptr_generic(void *msdu_details_ptr)
{
return HAL_RX_MSDU_DESC_INFO_GET(msdu_details_ptr);
}
#define HAL_RX_LINK_DESC_MSDU0_PTR(link_desc) \
((struct rx_msdu_details *) \
_OFFSET_TO_BYTE_PTR((link_desc),\
UNIFIED_RX_MSDU_LINK_8_RX_MSDU_DETAILS_MSDU_0_OFFSET))
/**
* hal_rx_link_desc_msdu0_ptr_generic - Get pointer to rx_msdu details
* @link_desc - Pointer to link desc
* Return - Pointer to rx_msdu_details structure
*
*/
static void *hal_rx_link_desc_msdu0_ptr_generic(void *link_desc)
{
return HAL_RX_LINK_DESC_MSDU0_PTR(link_desc);
}
/**
* hal_tx_comp_get_status() - TQM Release reason
* @hal_desc: completion ring Tx status
*
* This function will parse the WBM completion descriptor and populate in
* HAL structure
*
* Return: none
*/
#if defined(WCSS_VERSION) && \
((defined(CONFIG_WIN) && (WCSS_VERSION > 81)) || \
(defined(CONFIG_MCL) && (WCSS_VERSION >= 72)))
static inline void hal_tx_comp_get_status_generic(void *desc,
void *ts1)
{
uint8_t rate_stats_valid = 0;
uint32_t rate_stats = 0;
struct hal_tx_completion_status *ts =
(struct hal_tx_completion_status *)ts1;
ts->ppdu_id = HAL_TX_DESC_GET(desc, WBM_RELEASE_RING_3,
TQM_STATUS_NUMBER);
ts->ack_frame_rssi = HAL_TX_DESC_GET(desc, WBM_RELEASE_RING_4,
ACK_FRAME_RSSI);
ts->first_msdu = HAL_TX_DESC_GET(desc, WBM_RELEASE_RING_4, FIRST_MSDU);
ts->last_msdu = HAL_TX_DESC_GET(desc, WBM_RELEASE_RING_4, LAST_MSDU);
ts->msdu_part_of_amsdu = HAL_TX_DESC_GET(desc, WBM_RELEASE_RING_4,
MSDU_PART_OF_AMSDU);
ts->peer_id = HAL_TX_DESC_GET(desc, WBM_RELEASE_RING_7, SW_PEER_ID);
ts->tid = HAL_TX_DESC_GET(desc, WBM_RELEASE_RING_7, TID);
ts->transmit_cnt = HAL_TX_DESC_GET(desc, WBM_RELEASE_RING_3,
TRANSMIT_COUNT);
rate_stats = HAL_TX_DESC_GET(desc, WBM_RELEASE_RING_5,
TX_RATE_STATS);
rate_stats_valid = HAL_TX_MS(TX_RATE_STATS_INFO_0,
TX_RATE_STATS_INFO_VALID, rate_stats);
ts->valid = rate_stats_valid;
if (rate_stats_valid) {
ts->bw = HAL_TX_MS(TX_RATE_STATS_INFO_0, TRANSMIT_BW,
rate_stats);
ts->pkt_type = HAL_TX_MS(TX_RATE_STATS_INFO_0,
TRANSMIT_PKT_TYPE, rate_stats);
ts->stbc = HAL_TX_MS(TX_RATE_STATS_INFO_0,
TRANSMIT_STBC, rate_stats);
ts->ldpc = HAL_TX_MS(TX_RATE_STATS_INFO_0, TRANSMIT_LDPC,
rate_stats);
ts->sgi = HAL_TX_MS(TX_RATE_STATS_INFO_0, TRANSMIT_SGI,
rate_stats);
ts->mcs = HAL_TX_MS(TX_RATE_STATS_INFO_0, TRANSMIT_MCS,
rate_stats);
ts->ofdma = HAL_TX_MS(TX_RATE_STATS_INFO_0, OFDMA_TRANSMISSION,
rate_stats);
ts->tones_in_ru = HAL_TX_MS(TX_RATE_STATS_INFO_0, TONES_IN_RU,
rate_stats);
}
ts->release_src = hal_tx_comp_get_buffer_source(desc);
ts->status = hal_tx_comp_get_release_reason(desc);
ts->tsf = HAL_TX_DESC_GET(desc, UNIFIED_WBM_RELEASE_RING_6,
TX_RATE_STATS_INFO_TX_RATE_STATS);
}
#else
static inline void hal_tx_comp_get_status_generic(void *desc,
struct hal_tx_completion_status *ts)
{
ts->ppdu_id = HAL_TX_DESC_GET(desc, WBM_RELEASE_RING_3,
TQM_STATUS_NUMBER);
ts->ack_frame_rssi = HAL_TX_DESC_GET(desc, WBM_RELEASE_RING_4,
ACK_FRAME_RSSI);
ts->first_msdu = HAL_TX_DESC_GET(desc, WBM_RELEASE_RING_4, FIRST_MSDU);
ts->last_msdu = HAL_TX_DESC_GET(desc, WBM_RELEASE_RING_4, LAST_MSDU);
ts->msdu_part_of_amsdu = HAL_TX_DESC_GET(desc, WBM_RELEASE_RING_4,
MSDU_PART_OF_AMSDU);
ts->release_src = hal_tx_comp_get_buffer_source(desc);
ts->status = hal_tx_comp_get_release_reason(desc);
}
#endif
/**
* hal_tx_desc_set_buf_addr - Fill Buffer Address information in Tx Descriptor
* @desc: Handle to Tx Descriptor
* @paddr: Physical Address
* @pool_id: Return Buffer Manager ID
* @desc_id: Descriptor ID
* @type: 0 - Address points to a MSDU buffer
* 1 - Address points to MSDU extension descriptor
*
* Return: void
*/
static inline void hal_tx_desc_set_buf_addr_generic(void *desc,
dma_addr_t paddr, uint8_t pool_id,
uint32_t desc_id, uint8_t type)
{
/* Set buffer_addr_info.buffer_addr_31_0 */
HAL_SET_FLD(desc, UNIFIED_TCL_DATA_CMD_0, BUFFER_ADDR_INFO_BUF_ADDR_INFO) =
HAL_TX_SM(UNIFIED_BUFFER_ADDR_INFO_0, BUFFER_ADDR_31_0, paddr);
/* Set buffer_addr_info.buffer_addr_39_32 */
HAL_SET_FLD(desc, UNIFIED_TCL_DATA_CMD_1,
BUFFER_ADDR_INFO_BUF_ADDR_INFO) |=
HAL_TX_SM(UNIFIED_BUFFER_ADDR_INFO_1, BUFFER_ADDR_39_32,
(((uint64_t) paddr) >> 32));
/* Set buffer_addr_info.return_buffer_manager = pool id */
HAL_SET_FLD(desc, UNIFIED_TCL_DATA_CMD_1,
BUFFER_ADDR_INFO_BUF_ADDR_INFO) |=
HAL_TX_SM(UNIFIED_BUFFER_ADDR_INFO_1,
RETURN_BUFFER_MANAGER, (pool_id + HAL_WBM_SW0_BM_ID));
/* Set buffer_addr_info.sw_buffer_cookie = desc_id */
HAL_SET_FLD(desc, UNIFIED_TCL_DATA_CMD_1,
BUFFER_ADDR_INFO_BUF_ADDR_INFO) |=
HAL_TX_SM(UNIFIED_BUFFER_ADDR_INFO_1, SW_BUFFER_COOKIE, desc_id);
/* Set Buffer or Ext Descriptor Type */
HAL_SET_FLD(desc, UNIFIED_TCL_DATA_CMD_2,
BUF_OR_EXT_DESC_TYPE) |=
HAL_TX_SM(UNIFIED_TCL_DATA_CMD_2, BUF_OR_EXT_DESC_TYPE, type);
}
/**
* hal_rx_status_get_tlv_info() - process receive info TLV
* @rx_tlv_hdr: pointer to TLV header
* @ppdu_info: pointer to ppdu_info
*
* Return: HAL_TLV_STATUS_PPDU_NOT_DONE or HAL_TLV_STATUS_PPDU_DONE from tlv
*/
static inline uint32_t
hal_rx_status_get_tlv_info_generic(void *rx_tlv_hdr, void *ppduinfo,
void *halsoc)
{
struct hal_soc *hal = (struct hal_soc *)halsoc;
uint32_t tlv_tag, user_id, tlv_len, value;
uint8_t group_id = 0;
uint8_t he_dcm = 0;
uint8_t he_stbc = 0;
uint16_t he_gi = 0;
uint16_t he_ltf = 0;
void *rx_tlv;
bool unhandled = false;
struct hal_rx_ppdu_info *ppdu_info =
(struct hal_rx_ppdu_info *)ppduinfo;
tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv_hdr);
user_id = HAL_RX_GET_USER_TLV32_USERID(rx_tlv_hdr);
tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv_hdr);
rx_tlv = (uint8_t *)rx_tlv_hdr + HAL_RX_TLV32_HDR_SIZE;
switch (tlv_tag) {
case WIFIRX_PPDU_START_E:
ppdu_info->com_info.ppdu_id =
HAL_RX_GET(rx_tlv, RX_PPDU_START_0,
PHY_PPDU_ID);
/* channel number is set in PHY meta data */
ppdu_info->rx_status.chan_num =
HAL_RX_GET(rx_tlv, RX_PPDU_START_1,
SW_PHY_META_DATA);
ppdu_info->com_info.ppdu_timestamp =
HAL_RX_GET(rx_tlv, RX_PPDU_START_2,
PPDU_START_TIMESTAMP);
ppdu_info->rx_state = HAL_RX_MON_PPDU_START;
break;
case WIFIRX_PPDU_START_USER_INFO_E:
break;
case WIFIRX_PPDU_END_E:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"[%s][%d] ppdu_end_e len=%d",
__func__, __LINE__, tlv_len);
/* This is followed by sub-TLVs of PPDU_END */
ppdu_info->rx_state = HAL_RX_MON_PPDU_END;
break;
case WIFIRXPCU_PPDU_END_INFO_E:
ppdu_info->rx_status.tsft =
HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_1,
WB_TIMESTAMP_UPPER_32);
ppdu_info->rx_status.tsft = (ppdu_info->rx_status.tsft << 32) |
HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_0,
WB_TIMESTAMP_LOWER_32);
ppdu_info->rx_status.duration =
HAL_RX_GET(rx_tlv, UNIFIED_RXPCU_PPDU_END_INFO_8,
RX_PPDU_DURATION);
break;
case WIFIRX_PPDU_END_USER_STATS_E:
{
unsigned long tid = 0;
uint16_t seq = 0;
ppdu_info->rx_status.ast_index =
HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_4,
AST_INDEX);
tid = HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_12,
RECEIVED_QOS_DATA_TID_BITMAP);
ppdu_info->rx_status.tid = qdf_find_first_bit(&tid, sizeof(tid)*8);
if (ppdu_info->rx_status.tid == (sizeof(tid) * 8))
ppdu_info->rx_status.tid = HAL_TID_INVALID;
ppdu_info->rx_status.tcp_msdu_count =
HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
TCP_MSDU_COUNT) +
HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_10,
TCP_ACK_MSDU_COUNT);
ppdu_info->rx_status.udp_msdu_count =
HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
UDP_MSDU_COUNT);
ppdu_info->rx_status.other_msdu_count =
HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_10,
OTHER_MSDU_COUNT);
ppdu_info->rx_status.frame_control_info_valid =
HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
DATA_SEQUENCE_CONTROL_INFO_VALID);
seq = HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_5,
FIRST_DATA_SEQ_CTRL);
if (ppdu_info->rx_status.frame_control_info_valid)
ppdu_info->rx_status.first_data_seq_ctrl = seq;
ppdu_info->rx_status.preamble_type =
HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
HT_CONTROL_FIELD_PKT_TYPE);
switch (ppdu_info->rx_status.preamble_type) {
case HAL_RX_PKT_TYPE_11N:
ppdu_info->rx_status.ht_flags = 1;
ppdu_info->rx_status.rtap_flags |= HT_SGI_PRESENT;
break;
case HAL_RX_PKT_TYPE_11AC:
ppdu_info->rx_status.vht_flags = 1;
break;
case HAL_RX_PKT_TYPE_11AX:
ppdu_info->rx_status.he_flags = 1;
break;
default:
break;
}
ppdu_info->com_info.mpdu_cnt_fcs_ok =
HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
MPDU_CNT_FCS_OK);
ppdu_info->com_info.mpdu_cnt_fcs_err =
HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_2,
MPDU_CNT_FCS_ERR);
if ((ppdu_info->com_info.mpdu_cnt_fcs_ok |
ppdu_info->com_info.mpdu_cnt_fcs_err) > 1)
ppdu_info->rx_status.rs_flags |= IEEE80211_AMPDU_FLAG;
else
ppdu_info->rx_status.rs_flags &=
(~IEEE80211_AMPDU_FLAG);
break;
}
case WIFIRX_PPDU_END_USER_STATS_EXT_E:
break;
case WIFIRX_PPDU_END_STATUS_DONE_E:
return HAL_TLV_STATUS_PPDU_DONE;
case WIFIDUMMY_E:
return HAL_TLV_STATUS_BUF_DONE;
case WIFIPHYRX_HT_SIG_E:
{
uint8_t *ht_sig_info = (uint8_t *)rx_tlv +
HAL_RX_OFFSET(UNIFIED_PHYRX_HT_SIG_0,
HT_SIG_INFO_PHYRX_HT_SIG_INFO_DETAILS);
value = HAL_RX_GET(ht_sig_info, HT_SIG_INFO_1,
FEC_CODING);
ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
1 : 0;
ppdu_info->rx_status.mcs = HAL_RX_GET(ht_sig_info,
HT_SIG_INFO_0, MCS);
ppdu_info->rx_status.bw = HAL_RX_GET(ht_sig_info,
HT_SIG_INFO_0, CBW);
ppdu_info->rx_status.sgi = HAL_RX_GET(ht_sig_info,
HT_SIG_INFO_1, SHORT_GI);
break;
}
case WIFIPHYRX_L_SIG_B_E:
{
uint8_t *l_sig_b_info = (uint8_t *)rx_tlv +
HAL_RX_OFFSET(UNIFIED_PHYRX_L_SIG_B_0,
L_SIG_B_INFO_PHYRX_L_SIG_B_INFO_DETAILS);
value = HAL_RX_GET(l_sig_b_info, L_SIG_B_INFO_0, RATE);
switch (value) {
case 1:
ppdu_info->rx_status.rate = HAL_11B_RATE_3MCS;
break;
case 2:
ppdu_info->rx_status.rate = HAL_11B_RATE_2MCS;
break;
case 3:
ppdu_info->rx_status.rate = HAL_11B_RATE_1MCS;
break;
case 4:
ppdu_info->rx_status.rate = HAL_11B_RATE_0MCS;
break;
case 5:
ppdu_info->rx_status.rate = HAL_11B_RATE_6MCS;
break;
case 6:
ppdu_info->rx_status.rate = HAL_11B_RATE_5MCS;
break;
case 7:
ppdu_info->rx_status.rate = HAL_11B_RATE_4MCS;
break;
default:
break;
}
ppdu_info->rx_status.cck_flag = 1;
break;
}
case WIFIPHYRX_L_SIG_A_E:
{
uint8_t *l_sig_a_info = (uint8_t *)rx_tlv +
HAL_RX_OFFSET(UNIFIED_PHYRX_L_SIG_A_0,
L_SIG_A_INFO_PHYRX_L_SIG_A_INFO_DETAILS);
value = HAL_RX_GET(l_sig_a_info, L_SIG_A_INFO_0, RATE);
switch (value) {
case 8:
ppdu_info->rx_status.rate = HAL_11A_RATE_0MCS;
break;
case 9:
ppdu_info->rx_status.rate = HAL_11A_RATE_1MCS;
break;
case 10:
ppdu_info->rx_status.rate = HAL_11A_RATE_2MCS;
break;
case 11:
ppdu_info->rx_status.rate = HAL_11A_RATE_3MCS;
break;
case 12:
ppdu_info->rx_status.rate = HAL_11A_RATE_4MCS;
break;
case 13:
ppdu_info->rx_status.rate = HAL_11A_RATE_5MCS;
break;
case 14:
ppdu_info->rx_status.rate = HAL_11A_RATE_6MCS;
break;
case 15:
ppdu_info->rx_status.rate = HAL_11A_RATE_7MCS;
break;
default:
break;
}
ppdu_info->rx_status.ofdm_flag = 1;
break;
}
case WIFIPHYRX_VHT_SIG_A_E:
{
uint8_t *vht_sig_a_info = (uint8_t *)rx_tlv +
HAL_RX_OFFSET(UNIFIED_PHYRX_VHT_SIG_A_0,
VHT_SIG_A_INFO_PHYRX_VHT_SIG_A_INFO_DETAILS);
value = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_1,
SU_MU_CODING);
ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
1 : 0;
group_id = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_0, GROUP_ID);
ppdu_info->rx_status.vht_flag_values5 = group_id;
ppdu_info->rx_status.mcs = HAL_RX_GET(vht_sig_a_info,
VHT_SIG_A_INFO_1, MCS);
ppdu_info->rx_status.sgi = HAL_RX_GET(vht_sig_a_info,
VHT_SIG_A_INFO_1, GI_SETTING);
switch (hal->target_type) {
case TARGET_TYPE_QCA8074:
case TARGET_TYPE_QCA8074V2:
ppdu_info->rx_status.is_stbc =
HAL_RX_GET(vht_sig_a_info,
VHT_SIG_A_INFO_0, STBC);
value = HAL_RX_GET(vht_sig_a_info,
VHT_SIG_A_INFO_0, N_STS);
if (ppdu_info->rx_status.is_stbc && (value > 0))
value = ((value + 1) >> 1) - 1;
ppdu_info->rx_status.nss =
((value & VHT_SIG_SU_NSS_MASK) + 1);
break;
case TARGET_TYPE_QCA6290:
#if !defined(QCA_WIFI_QCA6290_11AX)
ppdu_info->rx_status.is_stbc =
HAL_RX_GET(vht_sig_a_info,
VHT_SIG_A_INFO_0, STBC);
value = HAL_RX_GET(vht_sig_a_info,
VHT_SIG_A_INFO_0, N_STS);
if (ppdu_info->rx_status.is_stbc && (value > 0))
value = ((value + 1) >> 1) - 1;
ppdu_info->rx_status.nss =
((value & VHT_SIG_SU_NSS_MASK) + 1);
#else
ppdu_info->rx_status.nss = 0;
#endif
break;
#ifdef QCA_WIFI_QCA6390
case TARGET_TYPE_QCA6390:
ppdu_info->rx_status.nss = 0;
break;
#endif
default:
break;
}
ppdu_info->rx_status.vht_flag_values3[0] =
(((ppdu_info->rx_status.mcs) << 4)
| ppdu_info->rx_status.nss);
ppdu_info->rx_status.bw = HAL_RX_GET(vht_sig_a_info,
VHT_SIG_A_INFO_0, BANDWIDTH);
ppdu_info->rx_status.vht_flag_values2 =
ppdu_info->rx_status.bw;
ppdu_info->rx_status.vht_flag_values4 =
HAL_RX_GET(vht_sig_a_info,
VHT_SIG_A_INFO_1, SU_MU_CODING);
ppdu_info->rx_status.beamformed = HAL_RX_GET(vht_sig_a_info,
VHT_SIG_A_INFO_1, BEAMFORMED);
break;
}
case WIFIPHYRX_HE_SIG_A_SU_E:
{
uint8_t *he_sig_a_su_info = (uint8_t *)rx_tlv +
HAL_RX_OFFSET(UNIFIED_PHYRX_HE_SIG_A_SU_0,
HE_SIG_A_SU_INFO_PHYRX_HE_SIG_A_SU_INFO_DETAILS);
ppdu_info->rx_status.he_flags = 1;
value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
FORMAT_INDICATION);
if (value == 0) {
ppdu_info->rx_status.he_data1 =
QDF_MON_STATUS_HE_TRIG_FORMAT_TYPE;
} else {
ppdu_info->rx_status.he_data1 =
QDF_MON_STATUS_HE_SU_FORMAT_TYPE;
}
/* data1 */
ppdu_info->rx_status.he_data1 |=
QDF_MON_STATUS_HE_BSS_COLOR_KNOWN |
QDF_MON_STATUS_HE_BEAM_CHANGE_KNOWN |
QDF_MON_STATUS_HE_DL_UL_KNOWN |
QDF_MON_STATUS_HE_MCS_KNOWN |
QDF_MON_STATUS_HE_DCM_KNOWN |
QDF_MON_STATUS_HE_CODING_KNOWN |
QDF_MON_STATUS_HE_LDPC_EXTRA_SYMBOL_KNOWN |
QDF_MON_STATUS_HE_STBC_KNOWN |
QDF_MON_STATUS_HE_DATA_BW_RU_KNOWN |
QDF_MON_STATUS_HE_DOPPLER_KNOWN;
/* data2 */
ppdu_info->rx_status.he_data2 =
QDF_MON_STATUS_HE_GI_KNOWN;
ppdu_info->rx_status.he_data2 |=
QDF_MON_STATUS_TXBF_KNOWN |
QDF_MON_STATUS_PE_DISAMBIGUITY_KNOWN |
QDF_MON_STATUS_TXOP_KNOWN |
QDF_MON_STATUS_LTF_SYMBOLS_KNOWN |
QDF_MON_STATUS_PRE_FEC_PADDING_KNOWN |
QDF_MON_STATUS_MIDABLE_PERIODICITY_KNOWN;
/* data3 */
value = HAL_RX_GET(he_sig_a_su_info,
HE_SIG_A_SU_INFO_0, BSS_COLOR_ID);
ppdu_info->rx_status.he_data3 = value;
value = HAL_RX_GET(he_sig_a_su_info,
HE_SIG_A_SU_INFO_0, BEAM_CHANGE);
value = value << QDF_MON_STATUS_BEAM_CHANGE_SHIFT;
ppdu_info->rx_status.he_data3 |= value;
value = HAL_RX_GET(he_sig_a_su_info,
HE_SIG_A_SU_INFO_0, DL_UL_FLAG);
value = value << QDF_MON_STATUS_DL_UL_SHIFT;
ppdu_info->rx_status.he_data3 |= value;
value = HAL_RX_GET(he_sig_a_su_info,
HE_SIG_A_SU_INFO_0, TRANSMIT_MCS);
ppdu_info->rx_status.mcs = value;
value = value << QDF_MON_STATUS_TRANSMIT_MCS_SHIFT;
ppdu_info->rx_status.he_data3 |= value;
value = HAL_RX_GET(he_sig_a_su_info,
HE_SIG_A_SU_INFO_0, DCM);
he_dcm = value;
value = value << QDF_MON_STATUS_DCM_SHIFT;
ppdu_info->rx_status.he_data3 |= value;
value = HAL_RX_GET(he_sig_a_su_info,
HE_SIG_A_SU_INFO_1, CODING);
value = value << QDF_MON_STATUS_CODING_SHIFT;
ppdu_info->rx_status.he_data3 |= value;
value = HAL_RX_GET(he_sig_a_su_info,
HE_SIG_A_SU_INFO_1,
LDPC_EXTRA_SYMBOL);
value = value << QDF_MON_STATUS_LDPC_EXTRA_SYMBOL_SHIFT;
ppdu_info->rx_status.he_data3 |= value;
value = HAL_RX_GET(he_sig_a_su_info,
HE_SIG_A_SU_INFO_1, STBC);
he_stbc = value;
value = value << QDF_MON_STATUS_STBC_SHIFT;
ppdu_info->rx_status.he_data3 |= value;
/* data4 */
value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
SPATIAL_REUSE);
ppdu_info->rx_status.he_data4 = value;
/* data5 */
value = HAL_RX_GET(he_sig_a_su_info,
HE_SIG_A_SU_INFO_0, TRANSMIT_BW);
ppdu_info->rx_status.he_data5 = value;
ppdu_info->rx_status.bw = value;
value = HAL_RX_GET(he_sig_a_su_info,
HE_SIG_A_SU_INFO_0, CP_LTF_SIZE);
switch (value) {
case 0:
he_gi = HE_GI_0_8;
he_ltf = HE_LTF_1_X;
break;
case 1:
he_gi = HE_GI_0_8;
he_ltf = HE_LTF_2_X;
break;
case 2:
he_gi = HE_GI_1_6;
he_ltf = HE_LTF_2_X;
break;
case 3:
if (he_dcm && he_stbc) {
he_gi = HE_GI_0_8;
he_ltf = HE_LTF_4_X;
} else {
he_gi = HE_GI_3_2;
he_ltf = HE_LTF_4_X;
}
break;
}
ppdu_info->rx_status.sgi = he_gi;
value = he_gi << QDF_MON_STATUS_GI_SHIFT;
ppdu_info->rx_status.he_data5 |= value;
value = he_ltf << QDF_MON_STATUS_HE_LTF_SIZE_SHIFT;
ppdu_info->rx_status.he_data5 |= value;
value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0, NSTS);
value = (value << QDF_MON_STATUS_HE_LTF_SYM_SHIFT);
ppdu_info->rx_status.he_data5 |= value;
value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
PACKET_EXTENSION_A_FACTOR);
value = value << QDF_MON_STATUS_PRE_FEC_PAD_SHIFT;
ppdu_info->rx_status.he_data5 |= value;
value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1, TXBF);
value = value << QDF_MON_STATUS_TXBF_SHIFT;
ppdu_info->rx_status.he_data5 |= value;
value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
PACKET_EXTENSION_PE_DISAMBIGUITY);
value = value << QDF_MON_STATUS_PE_DISAMBIGUITY_SHIFT;
ppdu_info->rx_status.he_data5 |= value;
/* data6 */
value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0, NSTS);
value++;
ppdu_info->rx_status.nss = value;
ppdu_info->rx_status.he_data6 = value;
value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
DOPPLER_INDICATION);
value = value << QDF_MON_STATUS_DOPPLER_SHIFT;
ppdu_info->rx_status.he_data6 |= value;
value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
TXOP_DURATION);
value = value << QDF_MON_STATUS_TXOP_SHIFT;
ppdu_info->rx_status.he_data6 |= value;
ppdu_info->rx_status.beamformed = HAL_RX_GET(he_sig_a_su_info,
HE_SIG_A_SU_INFO_1, TXBF);
break;
}
case WIFIPHYRX_HE_SIG_A_MU_DL_E:
{
uint8_t *he_sig_a_mu_dl_info = (uint8_t *)rx_tlv +
HAL_RX_OFFSET(UNIFIED_PHYRX_HE_SIG_A_MU_DL_0,
HE_SIG_A_MU_DL_INFO_PHYRX_HE_SIG_A_MU_DL_INFO_DETAILS);
ppdu_info->rx_status.he_mu_flags = 1;
/* HE Flags */
/*data1*/
ppdu_info->rx_status.he_data1 =
QDF_MON_STATUS_HE_MU_FORMAT_TYPE;
ppdu_info->rx_status.he_data1 |=
QDF_MON_STATUS_HE_BSS_COLOR_KNOWN |
QDF_MON_STATUS_HE_DL_UL_KNOWN |
QDF_MON_STATUS_HE_LDPC_EXTRA_SYMBOL_KNOWN |
QDF_MON_STATUS_HE_STBC_KNOWN |
QDF_MON_STATUS_HE_DATA_BW_RU_KNOWN |
QDF_MON_STATUS_HE_DOPPLER_KNOWN;
/* data2 */
ppdu_info->rx_status.he_data2 =
QDF_MON_STATUS_HE_GI_KNOWN;
ppdu_info->rx_status.he_data2 |=
QDF_MON_STATUS_LTF_SYMBOLS_KNOWN |
QDF_MON_STATUS_PRE_FEC_PADDING_KNOWN |
QDF_MON_STATUS_PE_DISAMBIGUITY_KNOWN |
QDF_MON_STATUS_TXOP_KNOWN |
QDF_MON_STATUS_MIDABLE_PERIODICITY_KNOWN;
/*data3*/
value = HAL_RX_GET(he_sig_a_mu_dl_info,
HE_SIG_A_MU_DL_INFO_0, BSS_COLOR_ID);
ppdu_info->rx_status.he_data3 = value;
value = HAL_RX_GET(he_sig_a_mu_dl_info,
HE_SIG_A_MU_DL_INFO_0, DL_UL_FLAG);
value = value << QDF_MON_STATUS_DL_UL_SHIFT;
ppdu_info->rx_status.he_data3 |= value;
value = HAL_RX_GET(he_sig_a_mu_dl_info,
HE_SIG_A_MU_DL_INFO_1,
LDPC_EXTRA_SYMBOL);
value = value << QDF_MON_STATUS_LDPC_EXTRA_SYMBOL_SHIFT;
ppdu_info->rx_status.he_data3 |= value;
value = HAL_RX_GET(he_sig_a_mu_dl_info,
HE_SIG_A_MU_DL_INFO_1, STBC);
he_stbc = value;
value = value << QDF_MON_STATUS_STBC_SHIFT;
ppdu_info->rx_status.he_data3 |= value;
/*data4*/
value = HAL_RX_GET(he_sig_a_mu_dl_info, HE_SIG_A_MU_DL_INFO_0,
SPATIAL_REUSE);
ppdu_info->rx_status.he_data4 = value;
/*data5*/
value = HAL_RX_GET(he_sig_a_mu_dl_info,
HE_SIG_A_MU_DL_INFO_0, TRANSMIT_BW);
ppdu_info->rx_status.he_data5 = value;
ppdu_info->rx_status.bw = value;
value = HAL_RX_GET(he_sig_a_mu_dl_info,
HE_SIG_A_MU_DL_INFO_0, CP_LTF_SIZE);
switch (value) {
case 0:
he_gi = HE_GI_0_8;
he_ltf = HE_LTF_4_X;
break;
case 1:
he_gi = HE_GI_0_8;
he_ltf = HE_LTF_2_X;
break;
case 2:
he_gi = HE_GI_1_6;
he_ltf = HE_LTF_2_X;
break;
case 3:
he_gi = HE_GI_3_2;
he_ltf = HE_LTF_4_X;
break;
}
ppdu_info->rx_status.sgi = he_gi;
value = he_gi << QDF_MON_STATUS_GI_SHIFT;
ppdu_info->rx_status.he_data5 |= value;
value = he_ltf << QDF_MON_STATUS_HE_LTF_SIZE_SHIFT;
ppdu_info->rx_status.he_data5 |= value;
value = HAL_RX_GET(he_sig_a_mu_dl_info,
HE_SIG_A_MU_DL_INFO_1, NUM_LTF_SYMBOLS);
value = (value << QDF_MON_STATUS_HE_LTF_SYM_SHIFT);
ppdu_info->rx_status.he_data5 |= value;
value = HAL_RX_GET(he_sig_a_mu_dl_info, HE_SIG_A_MU_DL_INFO_1,
PACKET_EXTENSION_A_FACTOR);
value = value << QDF_MON_STATUS_PRE_FEC_PAD_SHIFT;
ppdu_info->rx_status.he_data5 |= value;
value = HAL_RX_GET(he_sig_a_mu_dl_info, HE_SIG_A_MU_DL_INFO_1,
PACKET_EXTENSION_PE_DISAMBIGUITY);
value = value << QDF_MON_STATUS_PE_DISAMBIGUITY_SHIFT;
ppdu_info->rx_status.he_data5 |= value;
/*data6*/
value = HAL_RX_GET(he_sig_a_mu_dl_info, HE_SIG_A_MU_DL_INFO_0,
DOPPLER_INDICATION);
value = value << QDF_MON_STATUS_DOPPLER_SHIFT;
ppdu_info->rx_status.he_data6 |= value;
value = HAL_RX_GET(he_sig_a_mu_dl_info, HE_SIG_A_MU_DL_INFO_1,
TXOP_DURATION);
value = value << QDF_MON_STATUS_TXOP_SHIFT;
ppdu_info->rx_status.he_data6 |= value;
/* HE-MU Flags */
/* HE-MU-flags1 */
ppdu_info->rx_status.he_flags1 =
QDF_MON_STATUS_SIG_B_MCS_KNOWN |
QDF_MON_STATUS_SIG_B_DCM_KNOWN |
QDF_MON_STATUS_SIG_B_COMPRESSION_FLAG_1_KNOWN |
QDF_MON_STATUS_SIG_B_SYM_NUM_KNOWN |
QDF_MON_STATUS_RU_0_KNOWN;
value = HAL_RX_GET(he_sig_a_mu_dl_info,
HE_SIG_A_MU_DL_INFO_0, MCS_OF_SIG_B);
ppdu_info->rx_status.he_flags1 |= value;
value = HAL_RX_GET(he_sig_a_mu_dl_info,
HE_SIG_A_MU_DL_INFO_0, DCM_OF_SIG_B);
value = value << QDF_MON_STATUS_DCM_FLAG_1_SHIFT;
ppdu_info->rx_status.he_flags1 |= value;
/* HE-MU-flags2 */
ppdu_info->rx_status.he_flags2 =
QDF_MON_STATUS_BW_KNOWN;
value = HAL_RX_GET(he_sig_a_mu_dl_info,
HE_SIG_A_MU_DL_INFO_0, TRANSMIT_BW);
ppdu_info->rx_status.he_flags2 |= value;
value = HAL_RX_GET(he_sig_a_mu_dl_info,
HE_SIG_A_MU_DL_INFO_0, COMP_MODE_SIG_B);
value = value << QDF_MON_STATUS_SIG_B_COMPRESSION_FLAG_2_SHIFT;
ppdu_info->rx_status.he_flags2 |= value;
value = HAL_RX_GET(he_sig_a_mu_dl_info,
HE_SIG_A_MU_DL_INFO_0, NUM_SIG_B_SYMBOLS);
value = value - 1;
value = value << QDF_MON_STATUS_NUM_SIG_B_SYMBOLS_SHIFT;
ppdu_info->rx_status.he_flags2 |= value;
break;
}
case WIFIPHYRX_HE_SIG_B1_MU_E:
{
uint8_t *he_sig_b1_mu_info = (uint8_t *)rx_tlv +
HAL_RX_OFFSET(UNIFIED_PHYRX_HE_SIG_B1_MU_0,
HE_SIG_B1_MU_INFO_PHYRX_HE_SIG_B1_MU_INFO_DETAILS);
ppdu_info->rx_status.he_sig_b_common_known |=
QDF_MON_STATUS_HE_SIG_B_COMMON_KNOWN_RU0;
/* TODO: Check on the availability of other fields in
* sig_b_common
*/
value = HAL_RX_GET(he_sig_b1_mu_info,
HE_SIG_B1_MU_INFO_0, RU_ALLOCATION);
ppdu_info->rx_status.he_RU[0] = value;
break;
}
case WIFIPHYRX_HE_SIG_B2_MU_E:
{
uint8_t *he_sig_b2_mu_info = (uint8_t *)rx_tlv +
HAL_RX_OFFSET(UNIFIED_PHYRX_HE_SIG_B2_MU_0,
HE_SIG_B2_MU_INFO_PHYRX_HE_SIG_B2_MU_INFO_DETAILS);
/*
* Not all "HE" fields can be updated from
* WIFIPHYRX_HE_SIG_A_MU_DL_E TLV. Use WIFIPHYRX_HE_SIG_B2_MU_E
* to populate rest of the "HE" fields for MU scenarios.
*/
/* HE-data1 */
ppdu_info->rx_status.he_data1 |=
QDF_MON_STATUS_HE_MCS_KNOWN |
QDF_MON_STATUS_HE_CODING_KNOWN;
/* HE-data2 */
/* HE-data3 */
value = HAL_RX_GET(he_sig_b2_mu_info,
HE_SIG_B2_MU_INFO_0, STA_MCS);
ppdu_info->rx_status.mcs = value;
value = value << QDF_MON_STATUS_TRANSMIT_MCS_SHIFT;
ppdu_info->rx_status.he_data3 |= value;
value = HAL_RX_GET(he_sig_b2_mu_info,
HE_SIG_B2_MU_INFO_0, STA_CODING);
value = value << QDF_MON_STATUS_CODING_SHIFT;
ppdu_info->rx_status.he_data3 |= value;
/* HE-data4 */
value = HAL_RX_GET(he_sig_b2_mu_info,
HE_SIG_B2_MU_INFO_0, STA_ID);
value = value << QDF_MON_STATUS_STA_ID_SHIFT;
ppdu_info->rx_status.he_data4 |= value;
/* HE-data5 */
/* HE-data6 */
value = HAL_RX_GET(he_sig_b2_mu_info,
HE_SIG_B2_MU_INFO_0, NSTS);
/* value n indicates n+1 spatial streams */
value++;
ppdu_info->rx_status.nss = value;
ppdu_info->rx_status.he_data6 |= value;
break;
}
case WIFIPHYRX_HE_SIG_B2_OFDMA_E:
{
uint8_t *he_sig_b2_ofdma_info =
(uint8_t *)rx_tlv +
HAL_RX_OFFSET(UNIFIED_PHYRX_HE_SIG_B2_OFDMA_0,
HE_SIG_B2_OFDMA_INFO_PHYRX_HE_SIG_B2_OFDMA_INFO_DETAILS);
/*
* Not all "HE" fields can be updated from
* WIFIPHYRX_HE_SIG_A_MU_DL_E TLV. Use WIFIPHYRX_HE_SIG_B2_MU_E
* to populate rest of "HE" fields for MU OFDMA scenarios.
*/
/* HE-data1 */
ppdu_info->rx_status.he_data1 |=
QDF_MON_STATUS_HE_MCS_KNOWN |
QDF_MON_STATUS_HE_DCM_KNOWN |
QDF_MON_STATUS_HE_CODING_KNOWN;
/* HE-data2 */
ppdu_info->rx_status.he_data2 |=
QDF_MON_STATUS_TXBF_KNOWN;
/* HE-data3 */
value = HAL_RX_GET(he_sig_b2_ofdma_info,
HE_SIG_B2_OFDMA_INFO_0, STA_MCS);
ppdu_info->rx_status.mcs = value;
value = value << QDF_MON_STATUS_TRANSMIT_MCS_SHIFT;
ppdu_info->rx_status.he_data3 |= value;
value = HAL_RX_GET(he_sig_b2_ofdma_info,
HE_SIG_B2_OFDMA_INFO_0, STA_DCM);
he_dcm = value;
value = value << QDF_MON_STATUS_DCM_SHIFT;
ppdu_info->rx_status.he_data3 |= value;
value = HAL_RX_GET(he_sig_b2_ofdma_info,
HE_SIG_B2_OFDMA_INFO_0, STA_CODING);
value = value << QDF_MON_STATUS_CODING_SHIFT;
ppdu_info->rx_status.he_data3 |= value;
/* HE-data4 */
value = HAL_RX_GET(he_sig_b2_ofdma_info,
HE_SIG_B2_OFDMA_INFO_0, STA_ID);
value = value << QDF_MON_STATUS_STA_ID_SHIFT;
ppdu_info->rx_status.he_data4 |= value;
/* HE-data5 */
value = HAL_RX_GET(he_sig_b2_ofdma_info,
HE_SIG_B2_OFDMA_INFO_0, TXBF);
value = value << QDF_MON_STATUS_TXBF_SHIFT;
ppdu_info->rx_status.he_data5 |= value;
/* HE-data6 */
value = HAL_RX_GET(he_sig_b2_ofdma_info,
HE_SIG_B2_OFDMA_INFO_0, NSTS);
/* value n indicates n+1 spatial streams */
value++;
ppdu_info->rx_status.nss = value;
ppdu_info->rx_status.he_data6 |= value;
break;
}
case WIFIPHYRX_RSSI_LEGACY_E:
{
uint8_t *rssi_info_tlv = (uint8_t *)rx_tlv +
HAL_RX_OFFSET(UNIFIED_PHYRX_RSSI_LEGACY_3,
RECEIVE_RSSI_INFO_PRE_RSSI_INFO_DETAILS);
ppdu_info->rx_status.rssi_comb = HAL_RX_GET(rx_tlv,
PHYRX_RSSI_LEGACY_35, RSSI_COMB);
ppdu_info->rx_status.bw = hal->ops->hal_rx_get_tlv(rx_tlv);
ppdu_info->rx_status.he_re = 0;
ppdu_info->rx_status.reception_type = HAL_RX_GET(rx_tlv,
PHYRX_RSSI_LEGACY_0, RECEPTION_TYPE);
value = HAL_RX_GET(rssi_info_tlv,
RECEIVE_RSSI_INFO_0, RSSI_PRI20_CHAIN0);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"RSSI_PRI20_CHAIN0: %d\n", value);
value = HAL_RX_GET(rssi_info_tlv,
RECEIVE_RSSI_INFO_0, RSSI_EXT20_CHAIN0);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"RSSI_EXT20_CHAIN0: %d\n", value);
value = HAL_RX_GET(rssi_info_tlv,
RECEIVE_RSSI_INFO_0, RSSI_EXT40_LOW20_CHAIN0);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"RSSI_EXT40_LOW20_CHAIN0: %d\n", value);
value = HAL_RX_GET(rssi_info_tlv,
RECEIVE_RSSI_INFO_0, RSSI_EXT40_HIGH20_CHAIN0);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"RSSI_EXT40_HIGH20_CHAIN0: %d\n", value);
value = HAL_RX_GET(rssi_info_tlv,
RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW20_CHAIN0);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"RSSI_EXT80_LOW20_CHAIN0: %d\n", value);
value = HAL_RX_GET(rssi_info_tlv,
RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW_HIGH20_CHAIN0);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"RSSI_EXT80_LOW_HIGH20_CHAIN0: %d\n", value);
value = HAL_RX_GET(rssi_info_tlv,
RECEIVE_RSSI_INFO_1, RSSI_EXT80_HIGH_LOW20_CHAIN0);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"RSSI_EXT80_HIGH_LOW20_CHAIN0: %d\n", value);
value = HAL_RX_GET(rssi_info_tlv,
RECEIVE_RSSI_INFO_1,
RSSI_EXT80_HIGH20_CHAIN0);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"RSSI_EXT80_HIGH20_CHAIN0: %d\n", value);
break;
}
case WIFIPHYRX_OTHER_RECEIVE_INFO_E:
hal_rx_proc_phyrx_other_receive_info_tlv(hal, rx_tlv_hdr,
ppdu_info);
break;
case WIFIRX_HEADER_E:
ppdu_info->msdu_info.first_msdu_payload = rx_tlv;
ppdu_info->msdu_info.payload_len = tlv_len;
break;
case WIFIRX_MPDU_START_E:
{
uint8_t *rx_mpdu_start =
(uint8_t *)rx_tlv + HAL_RX_OFFSET(UNIFIED_RX_MPDU_START_0,
RX_MPDU_INFO_RX_MPDU_INFO_DETAILS);
uint32_t ppdu_id = HAL_RX_GET(rx_mpdu_start, RX_MPDU_INFO_0,
PHY_PPDU_ID);
ppdu_info->nac_info.fc_valid =
HAL_RX_GET(rx_mpdu_start,
RX_MPDU_INFO_2,
MPDU_FRAME_CONTROL_VALID);
ppdu_info->nac_info.to_ds_flag =
HAL_RX_GET(rx_mpdu_start,
RX_MPDU_INFO_2,
TO_DS);
ppdu_info->nac_info.mac_addr2_valid =
HAL_RX_GET(rx_mpdu_start,
RX_MPDU_INFO_2,
MAC_ADDR_AD2_VALID);
*(uint16_t *)&ppdu_info->nac_info.mac_addr2[0] =
HAL_RX_GET(rx_mpdu_start,
RX_MPDU_INFO_16,
MAC_ADDR_AD2_15_0);
*(uint32_t *)&ppdu_info->nac_info.mac_addr2[2] =
HAL_RX_GET(rx_mpdu_start,
RX_MPDU_INFO_17,
MAC_ADDR_AD2_47_16);
if (ppdu_info->rx_status.prev_ppdu_id != ppdu_id) {
ppdu_info->rx_status.prev_ppdu_id = ppdu_id;
ppdu_info->rx_status.ppdu_len =
HAL_RX_GET(rx_mpdu_start, RX_MPDU_INFO_13,
MPDU_LENGTH);
} else {
ppdu_info->rx_status.ppdu_len +=
HAL_RX_GET(rx_mpdu_start, RX_MPDU_INFO_13,
MPDU_LENGTH);
}
break;
}
case 0:
return HAL_TLV_STATUS_PPDU_DONE;
default:
unhandled = true;
break;
}
if (!unhandled)
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"%s TLV type: %d, TLV len:%d %s",
__func__, tlv_tag, tlv_len,
unhandled == true ? "unhandled" : "");
qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
rx_tlv, tlv_len);
return HAL_TLV_STATUS_PPDU_NOT_DONE;
}
/**
* hal_reo_status_get_header_generic - Process reo desc info
* @d - Pointer to reo descriptior
* @b - tlv type info
* @h1 - Pointer to hal_reo_status_header where info to be stored
*
* Return - none.
*
*/
static void hal_reo_status_get_header_generic(uint32_t *d, int b, void *h1)
{
uint32_t val1 = 0;
struct hal_reo_status_header *h =
(struct hal_reo_status_header *)h1;
switch (b) {
case HAL_REO_QUEUE_STATS_STATUS_TLV:
val1 = d[HAL_OFFSET_DW(REO_GET_QUEUE_STATS_STATUS_0,
UNIFORM_REO_STATUS_HEADER_STATUS_HEADER)];
break;
case HAL_REO_FLUSH_QUEUE_STATUS_TLV:
val1 = d[HAL_OFFSET_DW(REO_FLUSH_QUEUE_STATUS_0,
UNIFORM_REO_STATUS_HEADER_STATUS_HEADER)];
break;
case HAL_REO_FLUSH_CACHE_STATUS_TLV:
val1 = d[HAL_OFFSET_DW(REO_FLUSH_CACHE_STATUS_0,
UNIFORM_REO_STATUS_HEADER_STATUS_HEADER)];
break;
case HAL_REO_UNBLK_CACHE_STATUS_TLV:
val1 = d[HAL_OFFSET_DW(REO_UNBLOCK_CACHE_STATUS_0,
UNIFORM_REO_STATUS_HEADER_STATUS_HEADER)];
break;
case HAL_REO_TIMOUT_LIST_STATUS_TLV:
val1 = d[HAL_OFFSET_DW(REO_FLUSH_TIMEOUT_LIST_STATUS_0,
UNIFORM_REO_STATUS_HEADER_STATUS_HEADER)];
break;
case HAL_REO_DESC_THRES_STATUS_TLV:
val1 = d[HAL_OFFSET_DW(REO_DESCRIPTOR_THRESHOLD_REACHED_STATUS_0,
UNIFORM_REO_STATUS_HEADER_STATUS_HEADER)];
break;
case HAL_REO_UPDATE_RX_QUEUE_STATUS_TLV:
val1 = d[HAL_OFFSET_DW(REO_UPDATE_RX_REO_QUEUE_STATUS_0,
UNIFORM_REO_STATUS_HEADER_STATUS_HEADER)];
break;
default:
pr_err("ERROR: Unknown tlv\n");
break;
}
h->cmd_num =
HAL_GET_FIELD(
UNIFORM_REO_STATUS_HEADER_0, REO_STATUS_NUMBER,
val1);
h->exec_time =
HAL_GET_FIELD(UNIFORM_REO_STATUS_HEADER_0,
CMD_EXECUTION_TIME, val1);
h->status =
HAL_GET_FIELD(UNIFORM_REO_STATUS_HEADER_0,
REO_CMD_EXECUTION_STATUS, val1);
switch (b) {
case HAL_REO_QUEUE_STATS_STATUS_TLV:
val1 = d[HAL_OFFSET_DW(REO_GET_QUEUE_STATS_STATUS_1,
UNIFORM_REO_STATUS_HEADER_STATUS_HEADER_GENERIC)];
break;
case HAL_REO_FLUSH_QUEUE_STATUS_TLV:
val1 = d[HAL_OFFSET_DW(REO_FLUSH_QUEUE_STATUS_1,
UNIFORM_REO_STATUS_HEADER_STATUS_HEADER_GENERIC)];
break;
case HAL_REO_FLUSH_CACHE_STATUS_TLV:
val1 = d[HAL_OFFSET_DW(REO_FLUSH_CACHE_STATUS_1,
UNIFORM_REO_STATUS_HEADER_STATUS_HEADER_GENERIC)];
break;
case HAL_REO_UNBLK_CACHE_STATUS_TLV:
val1 = d[HAL_OFFSET_DW(REO_UNBLOCK_CACHE_STATUS_1,
UNIFORM_REO_STATUS_HEADER_STATUS_HEADER_GENERIC)];
break;
case HAL_REO_TIMOUT_LIST_STATUS_TLV:
val1 = d[HAL_OFFSET_DW(REO_FLUSH_TIMEOUT_LIST_STATUS_1,
UNIFORM_REO_STATUS_HEADER_STATUS_HEADER_GENERIC)];
break;
case HAL_REO_DESC_THRES_STATUS_TLV:
val1 = d[HAL_OFFSET_DW(REO_DESCRIPTOR_THRESHOLD_REACHED_STATUS_1,
UNIFORM_REO_STATUS_HEADER_STATUS_HEADER_GENERIC)];
break;
case HAL_REO_UPDATE_RX_QUEUE_STATUS_TLV:
val1 = d[HAL_OFFSET_DW(REO_UPDATE_RX_REO_QUEUE_STATUS_1,
UNIFORM_REO_STATUS_HEADER_STATUS_HEADER_GENERIC)];
break;
default:
pr_err("ERROR: Unknown tlv\n");
break;
}
h->tstamp =
HAL_GET_FIELD(UNIFORM_REO_STATUS_HEADER_1, TIMESTAMP, val1);
}
/**
* hal_reo_setup - Initialize HW REO block
*
* @hal_soc: Opaque HAL SOC handle
* @reo_params: parameters needed by HAL for REO config
*/
static void hal_reo_setup_generic(void *hal_soc,
void *reoparams)
{
struct hal_soc *soc = (struct hal_soc *)hal_soc;
uint32_t reg_val;
struct hal_reo_params *reo_params = (struct hal_reo_params *)reoparams;
reg_val = HAL_REG_READ(soc, HWIO_REO_R0_GENERAL_ENABLE_ADDR(
SEQ_WCSS_UMAC_REO_REG_OFFSET));
reg_val &= ~(HWIO_REO_R0_GENERAL_ENABLE_FRAGMENT_DEST_RING_BMSK |
HWIO_REO_R0_GENERAL_ENABLE_AGING_LIST_ENABLE_BMSK |
HWIO_REO_R0_GENERAL_ENABLE_AGING_FLUSH_ENABLE_BMSK);
reg_val |= HAL_SM(HWIO_REO_R0_GENERAL_ENABLE,
FRAGMENT_DEST_RING, reo_params->frag_dst_ring) |
HAL_SM(HWIO_REO_R0_GENERAL_ENABLE, AGING_LIST_ENABLE, 1) |
HAL_SM(HWIO_REO_R0_GENERAL_ENABLE, AGING_FLUSH_ENABLE, 1);
HAL_REG_WRITE(soc, HWIO_REO_R0_GENERAL_ENABLE_ADDR(
SEQ_WCSS_UMAC_REO_REG_OFFSET), reg_val);
/* Other ring enable bits and REO_ENABLE will be set by FW */
/* TODO: Setup destination ring mapping if enabled */
/* TODO: Error destination ring setting is left to default.
* Default setting is to send all errors to release ring.
*/
HAL_REG_WRITE(soc,
HWIO_REO_R0_AGING_THRESHOLD_IX_0_ADDR(
SEQ_WCSS_UMAC_REO_REG_OFFSET),
HAL_DEFAULT_REO_TIMEOUT_MS * 1000);
HAL_REG_WRITE(soc,
HWIO_REO_R0_AGING_THRESHOLD_IX_1_ADDR(
SEQ_WCSS_UMAC_REO_REG_OFFSET),
(HAL_DEFAULT_REO_TIMEOUT_MS * 1000));
HAL_REG_WRITE(soc,
HWIO_REO_R0_AGING_THRESHOLD_IX_2_ADDR(
SEQ_WCSS_UMAC_REO_REG_OFFSET),
(HAL_DEFAULT_REO_TIMEOUT_MS * 1000));
HAL_REG_WRITE(soc,
HWIO_REO_R0_AGING_THRESHOLD_IX_3_ADDR(
SEQ_WCSS_UMAC_REO_REG_OFFSET),
(HAL_DEFAULT_REO_TIMEOUT_MS * 1000));
/*
* When hash based routing is enabled, routing of the rx packet
* is done based on the following value: 1 _ _ _ _ The last 4
* bits are based on hash[3:0]. This means the possible values
* are 0x10 to 0x1f. This value is used to look-up the
* ring ID configured in Destination_Ring_Ctrl_IX_* register.
* The Destination_Ring_Ctrl_IX_2 and Destination_Ring_Ctrl_IX_3
* registers need to be configured to set-up the 16 entries to
* map the hash values to a ring number. There are 3 bits per
* hash entry – which are mapped as follows:
* 0: TCL, 1:SW1, 2:SW2, * 3:SW3, 4:SW4, 5:Release, 6:FW(WIFI),
* 7: NOT_USED.
*/
if (reo_params->rx_hash_enabled) {
HAL_REG_WRITE(soc,
HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
SEQ_WCSS_UMAC_REO_REG_OFFSET),
reo_params->remap1);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR 0x%x"),
HAL_REG_READ(soc,
HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
SEQ_WCSS_UMAC_REO_REG_OFFSET)));
HAL_REG_WRITE(soc,
HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
SEQ_WCSS_UMAC_REO_REG_OFFSET),
reo_params->remap2);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR 0x%x"),
HAL_REG_READ(soc,
HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
SEQ_WCSS_UMAC_REO_REG_OFFSET)));
}
/* TODO: Check if the following registers shoould be setup by host:
* AGING_CONTROL
* HIGH_MEMORY_THRESHOLD
* GLOBAL_LINK_DESC_COUNT_THRESH_IX_0[1,2]
* GLOBAL_LINK_DESC_COUNT_CTRL
*/
}
/**
* hal_srng_src_hw_init - Private function to initialize SRNG
* source ring HW
* @hal_soc: HAL SOC handle
* @srng: SRNG ring pointer
*/
static inline void hal_srng_src_hw_init_generic(void *halsoc,
struct hal_srng *srng)
{
struct hal_soc *hal = (struct hal_soc *)halsoc;
uint32_t reg_val = 0;
uint64_t tp_addr = 0;
HIF_DBG("%s: hw_init srng %d", __func__, srng->ring_id);
if (srng->flags & HAL_SRNG_MSI_INTR) {
SRNG_SRC_REG_WRITE(srng, MSI1_BASE_LSB,
srng->msi_addr & 0xffffffff);
reg_val = SRNG_SM(SRNG_SRC_FLD(MSI1_BASE_MSB, ADDR),
(uint64_t)(srng->msi_addr) >> 32) |
SRNG_SM(SRNG_SRC_FLD(MSI1_BASE_MSB,
MSI1_ENABLE), 1);
SRNG_SRC_REG_WRITE(srng, MSI1_BASE_MSB, reg_val);
SRNG_SRC_REG_WRITE(srng, MSI1_DATA, srng->msi_data);
}
SRNG_SRC_REG_WRITE(srng, BASE_LSB, srng->ring_base_paddr & 0xffffffff);
reg_val = SRNG_SM(SRNG_SRC_FLD(BASE_MSB, RING_BASE_ADDR_MSB),
((uint64_t)(srng->ring_base_paddr) >> 32)) |
SRNG_SM(SRNG_SRC_FLD(BASE_MSB, RING_SIZE),
srng->entry_size * srng->num_entries);
SRNG_SRC_REG_WRITE(srng, BASE_MSB, reg_val);
#if defined(WCSS_VERSION) && \
((defined(CONFIG_WIN) && (WCSS_VERSION > 81)) || \
(defined(CONFIG_MCL) && (WCSS_VERSION >= 72)))
reg_val = SRNG_SM(SRNG_SRC_FLD(ID, ENTRY_SIZE), srng->entry_size);
#else
reg_val = SRNG_SM(SRNG_SRC_FLD(ID, RING_ID), srng->ring_id) |
SRNG_SM(SRNG_SRC_FLD(ID, ENTRY_SIZE), srng->entry_size);
#endif
SRNG_SRC_REG_WRITE(srng, ID, reg_val);
/**
* Interrupt setup:
* Default interrupt mode is 'pulse'. Need to setup SW_INTERRUPT_MODE
* if level mode is required
*/
reg_val = 0;
/*
* WAR - Hawkeye v1 has a hardware bug which requires timer value to be
* programmed in terms of 1us resolution instead of 8us resolution as
* given in MLD.
*/
if (srng->intr_timer_thres_us) {
reg_val |= SRNG_SM(SRNG_SRC_FLD(CONSUMER_INT_SETUP_IX0,
INTERRUPT_TIMER_THRESHOLD),
srng->intr_timer_thres_us);
/* For HK v2 this should be (srng->intr_timer_thres_us >> 3) */
}
if (srng->intr_batch_cntr_thres_entries) {
reg_val |= SRNG_SM(SRNG_SRC_FLD(CONSUMER_INT_SETUP_IX0,
BATCH_COUNTER_THRESHOLD),
srng->intr_batch_cntr_thres_entries *
srng->entry_size);
}
SRNG_SRC_REG_WRITE(srng, CONSUMER_INT_SETUP_IX0, reg_val);
reg_val = 0;
if (srng->flags & HAL_SRNG_LOW_THRES_INTR_ENABLE) {
reg_val |= SRNG_SM(SRNG_SRC_FLD(CONSUMER_INT_SETUP_IX1,
LOW_THRESHOLD), srng->u.src_ring.low_threshold);
}
SRNG_SRC_REG_WRITE(srng, CONSUMER_INT_SETUP_IX1, reg_val);
/* As per HW team, TP_ADDR and HP_ADDR for Idle link ring should
* remain 0 to avoid some WBM stability issues. Remote head/tail
* pointers are not required since this ring is completely managed
* by WBM HW
*/
if (srng->ring_id != HAL_SRNG_WBM_IDLE_LINK) {
tp_addr = (uint64_t)(hal->shadow_rdptr_mem_paddr +
((unsigned long)(srng->u.src_ring.tp_addr) -
(unsigned long)(hal->shadow_rdptr_mem_vaddr)));
SRNG_SRC_REG_WRITE(srng, TP_ADDR_LSB, tp_addr & 0xffffffff);
SRNG_SRC_REG_WRITE(srng, TP_ADDR_MSB, tp_addr >> 32);
}
/* Initilaize head and tail pointers to indicate ring is empty */
SRNG_SRC_REG_WRITE(srng, HP, 0);
SRNG_SRC_REG_WRITE(srng, TP, 0);
*(srng->u.src_ring.tp_addr) = 0;
reg_val = ((srng->flags & HAL_SRNG_DATA_TLV_SWAP) ?
SRNG_SM(SRNG_SRC_FLD(MISC, DATA_TLV_SWAP_BIT), 1) : 0) |
((srng->flags & HAL_SRNG_RING_PTR_SWAP) ?
SRNG_SM(SRNG_SRC_FLD(MISC, HOST_FW_SWAP_BIT), 1) : 0) |
((srng->flags & HAL_SRNG_MSI_SWAP) ?
SRNG_SM(SRNG_SRC_FLD(MISC, MSI_SWAP_BIT), 1) : 0);
/* Loop count is not used for SRC rings */
reg_val |= SRNG_SM(SRNG_SRC_FLD(MISC, LOOPCNT_DISABLE), 1);
/*
* reg_val |= SRNG_SM(SRNG_SRC_FLD(MISC, SRNG_ENABLE), 1);
* todo: update fw_api and replace with above line
* (when SRNG_ENABLE field for the MISC register is available in fw_api)
* (WCSS_UMAC_CE_0_SRC_WFSS_CE_CHANNEL_SRC_R0_SRC_RING_MISC)
*/
reg_val |= 0x40;
SRNG_SRC_REG_WRITE(srng, MISC, reg_val);
}
/**
* hal_srng_dst_hw_init - Private function to initialize SRNG
* destination ring HW
* @hal_soc: HAL SOC handle
* @srng: SRNG ring pointer
*/
static inline void hal_srng_dst_hw_init_generic(void *halsoc,
struct hal_srng *srng)
{
struct hal_soc *hal = (struct hal_soc *)halsoc;
uint32_t reg_val = 0;
uint64_t hp_addr = 0;
HIF_DBG("%s: hw_init srng %d", __func__, srng->ring_id);
if (srng->flags & HAL_SRNG_MSI_INTR) {
SRNG_DST_REG_WRITE(srng, MSI1_BASE_LSB,
srng->msi_addr & 0xffffffff);
reg_val = SRNG_SM(SRNG_DST_FLD(MSI1_BASE_MSB, ADDR),
(uint64_t)(srng->msi_addr) >> 32) |
SRNG_SM(SRNG_DST_FLD(MSI1_BASE_MSB,
MSI1_ENABLE), 1);
SRNG_DST_REG_WRITE(srng, MSI1_BASE_MSB, reg_val);
SRNG_DST_REG_WRITE(srng, MSI1_DATA, srng->msi_data);
}
SRNG_DST_REG_WRITE(srng, BASE_LSB, srng->ring_base_paddr & 0xffffffff);
reg_val = SRNG_SM(SRNG_DST_FLD(BASE_MSB, RING_BASE_ADDR_MSB),
((uint64_t)(srng->ring_base_paddr) >> 32)) |
SRNG_SM(SRNG_DST_FLD(BASE_MSB, RING_SIZE),
srng->entry_size * srng->num_entries);
SRNG_DST_REG_WRITE(srng, BASE_MSB, reg_val);
reg_val = SRNG_SM(SRNG_DST_FLD(ID, RING_ID), srng->ring_id) |
SRNG_SM(SRNG_DST_FLD(ID, ENTRY_SIZE), srng->entry_size);
SRNG_DST_REG_WRITE(srng, ID, reg_val);
/**
* Interrupt setup:
* Default interrupt mode is 'pulse'. Need to setup SW_INTERRUPT_MODE
* if level mode is required
*/
reg_val = 0;
if (srng->intr_timer_thres_us) {
reg_val |= SRNG_SM(SRNG_DST_FLD(PRODUCER_INT_SETUP,
INTERRUPT_TIMER_THRESHOLD),
srng->intr_timer_thres_us >> 3);
}
if (srng->intr_batch_cntr_thres_entries) {
reg_val |= SRNG_SM(SRNG_DST_FLD(PRODUCER_INT_SETUP,
BATCH_COUNTER_THRESHOLD),
srng->intr_batch_cntr_thres_entries *
srng->entry_size);
}
SRNG_DST_REG_WRITE(srng, PRODUCER_INT_SETUP, reg_val);
hp_addr = (uint64_t)(hal->shadow_rdptr_mem_paddr +
((unsigned long)(srng->u.dst_ring.hp_addr) -
(unsigned long)(hal->shadow_rdptr_mem_vaddr)));
SRNG_DST_REG_WRITE(srng, HP_ADDR_LSB, hp_addr & 0xffffffff);
SRNG_DST_REG_WRITE(srng, HP_ADDR_MSB, hp_addr >> 32);
/* Initilaize head and tail pointers to indicate ring is empty */
SRNG_DST_REG_WRITE(srng, HP, 0);
SRNG_DST_REG_WRITE(srng, TP, 0);
*(srng->u.dst_ring.hp_addr) = 0;
reg_val = ((srng->flags & HAL_SRNG_DATA_TLV_SWAP) ?
SRNG_SM(SRNG_DST_FLD(MISC, DATA_TLV_SWAP_BIT), 1) : 0) |
((srng->flags & HAL_SRNG_RING_PTR_SWAP) ?
SRNG_SM(SRNG_DST_FLD(MISC, HOST_FW_SWAP_BIT), 1) : 0) |
((srng->flags & HAL_SRNG_MSI_SWAP) ?
SRNG_SM(SRNG_DST_FLD(MISC, MSI_SWAP_BIT), 1) : 0);
/*
* reg_val |= SRNG_SM(SRNG_SRC_FLD(MISC, SRNG_ENABLE), 1);
* todo: update fw_api and replace with above line
* (when SRNG_ENABLE field for the MISC register is available in fw_api)
* (WCSS_UMAC_CE_0_SRC_WFSS_CE_CHANNEL_SRC_R0_SRC_RING_MISC)
*/
reg_val |= 0x40;
SRNG_DST_REG_WRITE(srng, MISC, reg_val);
}
#endif