Files
android_kernel_samsung_sm86…/dp/wifi3.0/dp_rx.c
Neha Bisht 229317b922 qcacmn: Avoid intrabss check in Tx NAWDS path
Intrabss check for NAWDS was added as a temporary fix to resolve the
issue of selfbridge enteries present in AST table. The actual reason
is loopback pkt received with one's own bridge mac. To avoid this, add
a check for not sending out any packet with an invalid peer id in the
ast table.

Change-Id: Ia4c520bcc8b7077f0b484a0bc40c4d26db77c3f4
CRs-Fixed: 3135142
2022-03-03 02:11:13 -08:00

3000 lines
83 KiB
C

/*
* Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include "hal_hw_headers.h"
#include "dp_types.h"
#include "dp_rx.h"
#include "dp_tx.h"
#include "dp_peer.h"
#include "hal_rx.h"
#include "hal_api.h"
#include "qdf_nbuf.h"
#ifdef MESH_MODE_SUPPORT
#include "if_meta_hdr.h"
#endif
#include "dp_internal.h"
#include "dp_ipa.h"
#include "dp_hist.h"
#include "dp_rx_buffer_pool.h"
#ifdef WIFI_MONITOR_SUPPORT
#include "dp_htt.h"
#include <dp_mon.h>
#endif
#ifdef FEATURE_WDS
#include "dp_txrx_wds.h"
#endif
#ifdef DUP_RX_DESC_WAR
void dp_rx_dump_info_and_assert(struct dp_soc *soc,
hal_ring_handle_t hal_ring,
hal_ring_desc_t ring_desc,
struct dp_rx_desc *rx_desc)
{
void *hal_soc = soc->hal_soc;
hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
dp_rx_desc_dump(rx_desc);
}
#else
void dp_rx_dump_info_and_assert(struct dp_soc *soc,
hal_ring_handle_t hal_ring_hdl,
hal_ring_desc_t ring_desc,
struct dp_rx_desc *rx_desc)
{
hal_soc_handle_t hal_soc = soc->hal_soc;
dp_rx_desc_dump(rx_desc);
hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
hal_srng_dump_ring(hal_soc, hal_ring_hdl);
qdf_assert_always(0);
}
#endif
#ifndef QCA_HOST_MODE_WIFI_DISABLED
#ifdef RX_DESC_SANITY_WAR
QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
hal_ring_handle_t hal_ring_hdl,
hal_ring_desc_t ring_desc,
struct dp_rx_desc *rx_desc)
{
uint8_t return_buffer_manager;
if (qdf_unlikely(!rx_desc)) {
/*
* This is an unlikely case where the cookie obtained
* from the ring_desc is invalid and hence we are not
* able to find the corresponding rx_desc
*/
goto fail;
}
return_buffer_manager = hal_rx_ret_buf_manager_get(hal_soc, ring_desc);
if (qdf_unlikely(!(return_buffer_manager ==
HAL_RX_BUF_RBM_SW1_BM(soc->wbm_sw0_bm_id) ||
return_buffer_manager ==
HAL_RX_BUF_RBM_SW3_BM(soc->wbm_sw0_bm_id)))) {
goto fail;
}
return QDF_STATUS_SUCCESS;
fail:
DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
dp_err("Ring Desc:");
hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
ring_desc);
return QDF_STATUS_E_NULL_VALUE;
}
#endif
#endif /* QCA_HOST_MODE_WIFI_DISABLED */
/**
* dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
*
* @dp_soc: struct dp_soc *
* @nbuf_frag_info_t: nbuf frag info
* @dp_pdev: struct dp_pdev *
* @rx_desc_pool: Rx desc pool
*
* Return: QDF_STATUS
*/
#ifdef DP_RX_MON_MEM_FRAG
static inline QDF_STATUS
dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
struct dp_pdev *dp_pdev,
struct rx_desc_pool *rx_desc_pool)
{
QDF_STATUS ret = QDF_STATUS_E_FAILURE;
(nbuf_frag_info_t->virt_addr).vaddr =
qdf_frag_alloc(rx_desc_pool->buf_size);
if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
dp_err("Frag alloc failed");
DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
return QDF_STATUS_E_NOMEM;
}
ret = qdf_mem_map_page(dp_soc->osdev,
(nbuf_frag_info_t->virt_addr).vaddr,
QDF_DMA_FROM_DEVICE,
rx_desc_pool->buf_size,
&nbuf_frag_info_t->paddr);
if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
dp_err("Frag map failed");
DP_STATS_INC(dp_pdev, replenish.map_err, 1);
return QDF_STATUS_E_FAULT;
}
return QDF_STATUS_SUCCESS;
}
#else
static inline QDF_STATUS
dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
struct dp_pdev *dp_pdev,
struct rx_desc_pool *rx_desc_pool)
{
return QDF_STATUS_SUCCESS;
}
#endif /* DP_RX_MON_MEM_FRAG */
#ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
/**
* dp_rx_refill_ring_record_entry() - Record an entry into refill_ring history
* @soc: Datapath soc structure
* @ring_num: Refill ring number
* @num_req: number of buffers requested for refill
* @num_refill: number of buffers refilled
*
* Returns: None
*/
static inline void
dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
hal_ring_handle_t hal_ring_hdl,
uint32_t num_req, uint32_t num_refill)
{
struct dp_refill_info_record *record;
uint32_t idx;
uint32_t tp;
uint32_t hp;
if (qdf_unlikely(ring_num >= MAX_PDEV_CNT ||
!soc->rx_refill_ring_history[ring_num]))
return;
idx = dp_history_get_next_index(&soc->rx_refill_ring_history[ring_num]->index,
DP_RX_REFILL_HIST_MAX);
/* No NULL check needed for record since its an array */
record = &soc->rx_refill_ring_history[ring_num]->entry[idx];
hal_get_sw_hptp(soc->hal_soc, hal_ring_hdl, &tp, &hp);
record->timestamp = qdf_get_log_timestamp();
record->num_req = num_req;
record->num_refill = num_refill;
record->hp = hp;
record->tp = tp;
}
#else
static inline void
dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
hal_ring_handle_t hal_ring_hdl,
uint32_t num_req, uint32_t num_refill)
{
}
#endif
/**
* dp_pdev_nbuf_alloc_and_map() - Allocate nbuf for desc buffer and map
*
* @dp_soc: struct dp_soc *
* @mac_id: Mac id
* @num_entries_avail: num_entries_avail
* @nbuf_frag_info_t: nbuf frag info
* @dp_pdev: struct dp_pdev *
* @rx_desc_pool: Rx desc pool
*
* Return: QDF_STATUS
*/
static inline QDF_STATUS
dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
uint32_t mac_id,
uint32_t num_entries_avail,
struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
struct dp_pdev *dp_pdev,
struct rx_desc_pool *rx_desc_pool)
{
QDF_STATUS ret = QDF_STATUS_E_FAILURE;
(nbuf_frag_info_t->virt_addr).nbuf =
dp_rx_buffer_pool_nbuf_alloc(dp_soc,
mac_id,
rx_desc_pool,
num_entries_avail);
if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
dp_err("nbuf alloc failed");
DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
return QDF_STATUS_E_NOMEM;
}
ret = dp_rx_buffer_pool_nbuf_map(dp_soc, rx_desc_pool,
nbuf_frag_info_t);
if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
dp_rx_buffer_pool_nbuf_free(dp_soc,
(nbuf_frag_info_t->virt_addr).nbuf, mac_id);
dp_err("nbuf map failed");
DP_STATS_INC(dp_pdev, replenish.map_err, 1);
return QDF_STATUS_E_FAULT;
}
nbuf_frag_info_t->paddr =
qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
dp_ipa_handle_rx_buf_smmu_mapping(dp_soc,
(qdf_nbuf_t)((nbuf_frag_info_t->virt_addr).nbuf),
rx_desc_pool->buf_size,
true);
ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
&nbuf_frag_info_t->paddr,
rx_desc_pool);
if (ret == QDF_STATUS_E_FAILURE) {
DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
return QDF_STATUS_E_ADDRNOTAVAIL;
}
return QDF_STATUS_SUCCESS;
}
#if defined(QCA_DP_RX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86)
QDF_STATUS
__dp_rx_buffers_no_map_lt_replenish(struct dp_soc *soc, uint32_t mac_id,
struct dp_srng *dp_rxdma_srng,
struct rx_desc_pool *rx_desc_pool)
{
struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
uint32_t count;
void *rxdma_ring_entry;
union dp_rx_desc_list_elem_t *next = NULL;
void *rxdma_srng;
qdf_nbuf_t nbuf;
qdf_dma_addr_t paddr;
uint16_t num_entries_avail = 0;
uint16_t num_alloc_desc = 0;
union dp_rx_desc_list_elem_t *desc_list = NULL;
union dp_rx_desc_list_elem_t *tail = NULL;
int sync_hw_ptr = 0;
rxdma_srng = dp_rxdma_srng->hal_srng;
if (qdf_unlikely(!dp_pdev)) {
dp_rx_err("%pK: pdev is null for mac_id = %d", soc, mac_id);
return QDF_STATUS_E_FAILURE;
}
if (qdf_unlikely(!rxdma_srng)) {
dp_rx_debug("%pK: rxdma srng not initialized", soc);
return QDF_STATUS_E_FAILURE;
}
hal_srng_access_start(soc->hal_soc, rxdma_srng);
num_entries_avail = hal_srng_src_num_avail(soc->hal_soc,
rxdma_srng,
sync_hw_ptr);
dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
soc, num_entries_avail);
if (qdf_unlikely(num_entries_avail <
((dp_rxdma_srng->num_entries * 3) / 4))) {
hal_srng_access_end(soc->hal_soc, rxdma_srng);
return QDF_STATUS_E_FAILURE;
}
DP_STATS_INC(dp_pdev, replenish.low_thresh_intrs, 1);
num_alloc_desc = dp_rx_get_free_desc_list(soc, mac_id,
rx_desc_pool,
num_entries_avail,
&desc_list,
&tail);
if (!num_alloc_desc) {
dp_rx_err("%pK: no free rx_descs in freelist", soc);
DP_STATS_INC(dp_pdev, err.desc_lt_alloc_fail,
num_entries_avail);
hal_srng_access_end(soc->hal_soc, rxdma_srng);
return QDF_STATUS_E_NOMEM;
}
for (count = 0; count < num_alloc_desc; count++) {
next = desc_list->next;
qdf_prefetch(next);
nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
if (qdf_unlikely(!nbuf)) {
DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
break;
}
paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
rx_desc_pool->buf_size);
rxdma_ring_entry = hal_srng_src_get_next(soc->hal_soc,
rxdma_srng);
qdf_assert_always(rxdma_ring_entry);
desc_list->rx_desc.nbuf = nbuf;
desc_list->rx_desc.rx_buf_start = nbuf->data;
desc_list->rx_desc.unmapped = 0;
/* rx_desc.in_use should be zero at this time*/
qdf_assert_always(desc_list->rx_desc.in_use == 0);
desc_list->rx_desc.in_use = 1;
desc_list->rx_desc.in_err_state = 0;
hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
paddr,
desc_list->rx_desc.cookie,
rx_desc_pool->owner);
desc_list = next;
}
qdf_dsb();
hal_srng_access_end(soc->hal_soc, rxdma_srng);
/* No need to count the number of bytes received during replenish.
* Therefore set replenish.pkts.bytes as 0.
*/
DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
DP_STATS_INC(dp_pdev, buf_freelist, (num_alloc_desc - count));
/*
* add any available free desc back to the free list
*/
if (desc_list)
dp_rx_add_desc_list_to_free_list(soc, &desc_list, &tail,
mac_id, rx_desc_pool);
return QDF_STATUS_SUCCESS;
}
QDF_STATUS
__dp_rx_buffers_no_map_replenish(struct dp_soc *soc, uint32_t mac_id,
struct dp_srng *dp_rxdma_srng,
struct rx_desc_pool *rx_desc_pool,
uint32_t num_req_buffers,
union dp_rx_desc_list_elem_t **desc_list,
union dp_rx_desc_list_elem_t **tail)
{
struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
uint32_t count;
void *rxdma_ring_entry;
union dp_rx_desc_list_elem_t *next;
void *rxdma_srng;
qdf_nbuf_t nbuf;
qdf_dma_addr_t paddr;
rxdma_srng = dp_rxdma_srng->hal_srng;
if (qdf_unlikely(!dp_pdev)) {
dp_rx_err("%pK: pdev is null for mac_id = %d",
soc, mac_id);
return QDF_STATUS_E_FAILURE;
}
if (qdf_unlikely(!rxdma_srng)) {
dp_rx_debug("%pK: rxdma srng not initialized", soc);
DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
return QDF_STATUS_E_FAILURE;
}
dp_rx_debug("%pK: requested %d buffers for replenish",
soc, num_req_buffers);
hal_srng_access_start(soc->hal_soc, rxdma_srng);
for (count = 0; count < num_req_buffers; count++) {
next = (*desc_list)->next;
qdf_prefetch(next);
nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
if (qdf_unlikely(!nbuf)) {
DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
break;
}
paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
rx_desc_pool->buf_size);
rxdma_ring_entry = (struct dp_buffer_addr_info *)
hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
if (!rxdma_ring_entry)
break;
qdf_assert_always(rxdma_ring_entry);
(*desc_list)->rx_desc.nbuf = nbuf;
(*desc_list)->rx_desc.rx_buf_start = nbuf->data;
(*desc_list)->rx_desc.unmapped = 0;
/* rx_desc.in_use should be zero at this time*/
qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
(*desc_list)->rx_desc.in_use = 1;
(*desc_list)->rx_desc.in_err_state = 0;
hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
paddr,
(*desc_list)->rx_desc.cookie,
rx_desc_pool->owner);
*desc_list = next;
}
qdf_dsb();
hal_srng_access_end(soc->hal_soc, rxdma_srng);
/* No need to count the number of bytes received during replenish.
* Therefore set replenish.pkts.bytes as 0.
*/
DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
DP_STATS_INC(dp_pdev, buf_freelist, (num_req_buffers - count));
/*
* add any available free desc back to the free list
*/
if (*desc_list)
dp_rx_add_desc_list_to_free_list(soc, desc_list, tail,
mac_id, rx_desc_pool);
return QDF_STATUS_SUCCESS;
}
QDF_STATUS __dp_pdev_rx_buffers_no_map_attach(struct dp_soc *soc,
uint32_t mac_id,
struct dp_srng *dp_rxdma_srng,
struct rx_desc_pool *rx_desc_pool,
uint32_t num_req_buffers)
{
struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
uint32_t count;
uint32_t nr_descs = 0;
void *rxdma_ring_entry;
union dp_rx_desc_list_elem_t *next;
void *rxdma_srng;
qdf_nbuf_t nbuf;
qdf_dma_addr_t paddr;
union dp_rx_desc_list_elem_t *desc_list = NULL;
union dp_rx_desc_list_elem_t *tail = NULL;
rxdma_srng = dp_rxdma_srng->hal_srng;
if (qdf_unlikely(!dp_pdev)) {
dp_rx_err("%pK: pdev is null for mac_id = %d",
soc, mac_id);
return QDF_STATUS_E_FAILURE;
}
if (qdf_unlikely(!rxdma_srng)) {
dp_rx_debug("%pK: rxdma srng not initialized", soc);
DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
return QDF_STATUS_E_FAILURE;
}
dp_rx_debug("%pK: requested %d buffers for replenish",
soc, num_req_buffers);
nr_descs = dp_rx_get_free_desc_list(soc, mac_id, rx_desc_pool,
num_req_buffers, &desc_list, &tail);
if (!nr_descs) {
dp_err("no free rx_descs in freelist");
DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
return QDF_STATUS_E_NOMEM;
}
dp_debug("got %u RX descs for driver attach", nr_descs);
hal_srng_access_start(soc->hal_soc, rxdma_srng);
for (count = 0; count < nr_descs; count++) {
next = desc_list->next;
qdf_prefetch(next);
nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
if (qdf_unlikely(!nbuf)) {
DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
break;
}
paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
rx_desc_pool->buf_size);
rxdma_ring_entry = (struct dp_buffer_addr_info *)
hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
if (!rxdma_ring_entry)
break;
qdf_assert_always(rxdma_ring_entry);
desc_list->rx_desc.nbuf = nbuf;
desc_list->rx_desc.rx_buf_start = nbuf->data;
desc_list->rx_desc.unmapped = 0;
/* rx_desc.in_use should be zero at this time*/
qdf_assert_always(desc_list->rx_desc.in_use == 0);
desc_list->rx_desc.in_use = 1;
desc_list->rx_desc.in_err_state = 0;
hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
paddr,
desc_list->rx_desc.cookie,
rx_desc_pool->owner);
desc_list = next;
}
qdf_dsb();
hal_srng_access_end(soc->hal_soc, rxdma_srng);
/* No need to count the number of bytes received during replenish.
* Therefore set replenish.pkts.bytes as 0.
*/
DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
return QDF_STATUS_SUCCESS;
}
#endif
/*
* dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
* called during dp rx initialization
* and at the end of dp_rx_process.
*
* @soc: core txrx main context
* @mac_id: mac_id which is one of 3 mac_ids
* @dp_rxdma_srng: dp rxdma circular ring
* @rx_desc_pool: Pointer to free Rx descriptor pool
* @num_req_buffers: number of buffer to be replenished
* @desc_list: list of descs if called from dp_rx_process
* or NULL during dp rx initialization or out of buffer
* interrupt.
* @tail: tail of descs list
* @func_name: name of the caller function
* Return: return success or failure
*/
QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
struct dp_srng *dp_rxdma_srng,
struct rx_desc_pool *rx_desc_pool,
uint32_t num_req_buffers,
union dp_rx_desc_list_elem_t **desc_list,
union dp_rx_desc_list_elem_t **tail,
const char *func_name)
{
uint32_t num_alloc_desc;
uint16_t num_desc_to_free = 0;
struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
uint32_t num_entries_avail;
uint32_t count;
int sync_hw_ptr = 1;
struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
void *rxdma_ring_entry;
union dp_rx_desc_list_elem_t *next;
QDF_STATUS ret;
void *rxdma_srng;
rxdma_srng = dp_rxdma_srng->hal_srng;
if (qdf_unlikely(!dp_pdev)) {
dp_rx_err("%pK: pdev is null for mac_id = %d",
dp_soc, mac_id);
return QDF_STATUS_E_FAILURE;
}
if (qdf_unlikely(!rxdma_srng)) {
dp_rx_debug("%pK: rxdma srng not initialized", dp_soc);
DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
return QDF_STATUS_E_FAILURE;
}
dp_rx_debug("%pK: requested %d buffers for replenish",
dp_soc, num_req_buffers);
hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
rxdma_srng,
sync_hw_ptr);
dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
dp_soc, num_entries_avail);
if (!(*desc_list) && (num_entries_avail >
((dp_rxdma_srng->num_entries * 3) / 4))) {
num_req_buffers = num_entries_avail;
} else if (num_entries_avail < num_req_buffers) {
num_desc_to_free = num_req_buffers - num_entries_avail;
num_req_buffers = num_entries_avail;
}
if (qdf_unlikely(!num_req_buffers)) {
num_desc_to_free = num_req_buffers;
hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
goto free_descs;
}
/*
* if desc_list is NULL, allocate the descs from freelist
*/
if (!(*desc_list)) {
num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
rx_desc_pool,
num_req_buffers,
desc_list,
tail);
if (!num_alloc_desc) {
dp_rx_err("%pK: no free rx_descs in freelist", dp_soc);
DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
num_req_buffers);
hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
return QDF_STATUS_E_NOMEM;
}
dp_rx_debug("%pK: %d rx desc allocated", dp_soc, num_alloc_desc);
num_req_buffers = num_alloc_desc;
}
count = 0;
while (count < num_req_buffers) {
/* Flag is set while pdev rx_desc_pool initialization */
if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
ret = dp_pdev_frag_alloc_and_map(dp_soc,
&nbuf_frag_info,
dp_pdev,
rx_desc_pool);
else
ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
mac_id,
num_entries_avail, &nbuf_frag_info,
dp_pdev, rx_desc_pool);
if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
if (qdf_unlikely(ret == QDF_STATUS_E_FAULT))
continue;
break;
}
count++;
rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
rxdma_srng);
qdf_assert_always(rxdma_ring_entry);
next = (*desc_list)->next;
/* Flag is set while pdev rx_desc_pool initialization */
if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
&nbuf_frag_info);
else
dp_rx_desc_prep(&((*desc_list)->rx_desc),
&nbuf_frag_info);
/* rx_desc.in_use should be zero at this time*/
qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
(*desc_list)->rx_desc.in_use = 1;
(*desc_list)->rx_desc.in_err_state = 0;
dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
func_name, RX_DESC_REPLENISHED);
dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
nbuf_frag_info.virt_addr.nbuf,
(unsigned long long)(nbuf_frag_info.paddr),
(*desc_list)->rx_desc.cookie);
hal_rxdma_buff_addr_info_set(dp_soc->hal_soc, rxdma_ring_entry,
nbuf_frag_info.paddr,
(*desc_list)->rx_desc.cookie,
rx_desc_pool->owner);
*desc_list = next;
}
dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id, rxdma_srng,
num_req_buffers, count);
hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
dp_rx_schedule_refill_thread(dp_soc);
dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
count, num_desc_to_free);
/* No need to count the number of bytes received during replenish.
* Therefore set replenish.pkts.bytes as 0.
*/
DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
free_descs:
DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
/*
* add any available free desc back to the free list
*/
if (*desc_list)
dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
mac_id, rx_desc_pool);
return QDF_STATUS_SUCCESS;
}
qdf_export_symbol(__dp_rx_buffers_replenish);
/*
* dp_rx_deliver_raw() - process RAW mode pkts and hand over the
* pkts to RAW mode simulation to
* decapsulate the pkt.
*
* @vdev: vdev on which RAW mode is enabled
* @nbuf_list: list of RAW pkts to process
* @txrx_peer: peer object from which the pkt is rx
*
* Return: void
*/
void
dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
struct dp_txrx_peer *txrx_peer)
{
qdf_nbuf_t deliver_list_head = NULL;
qdf_nbuf_t deliver_list_tail = NULL;
qdf_nbuf_t nbuf;
nbuf = nbuf_list;
while (nbuf) {
qdf_nbuf_t next = qdf_nbuf_next(nbuf);
DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.raw, 1,
qdf_nbuf_len(nbuf));
/*
* reset the chfrag_start and chfrag_end bits in nbuf cb
* as this is a non-amsdu pkt and RAW mode simulation expects
* these bit s to be 0 for non-amsdu pkt.
*/
if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
qdf_nbuf_is_rx_chfrag_end(nbuf)) {
qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
}
nbuf = next;
}
vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
&deliver_list_tail);
vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
}
#ifndef QCA_HOST_MODE_WIFI_DISABLED
#ifndef FEATURE_WDS
void dp_rx_da_learn(struct dp_soc *soc, uint8_t *rx_tlv_hdr,
struct dp_txrx_peer *ta_peer, qdf_nbuf_t nbuf)
{
}
#endif
#ifdef QCA_SUPPORT_TX_MIN_RATES_FOR_SPECIAL_FRAMES
/*
* dp_classify_critical_pkts() - API for marking critical packets
* @soc: dp_soc context
* @vdev: vdev on which packet is to be sent
* @nbuf: nbuf that has to be classified
*
* The function parses the packet, identifies whether its a critical frame and
* marks QDF_NBUF_CB_TX_EXTRA_IS_CRITICAL bit in qdf_nbuf_cb for the nbuf.
* Code for marking which frames are CRITICAL is accessed via callback.
* EAPOL, ARP, DHCP, DHCPv6, ICMPv6 NS/NA are the typical critical frames.
*
* Return: None
*/
static
void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev,
qdf_nbuf_t nbuf)
{
if (vdev->tx_classify_critical_pkt_cb)
vdev->tx_classify_critical_pkt_cb(vdev->osif_vdev, nbuf);
}
#else
static inline
void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev,
qdf_nbuf_t nbuf)
{
}
#endif
/*
* dp_rx_intrabss_mcbc_fwd() - Does intrabss forward for mcast packets
*
* @soc: core txrx main context
* @ta_peer : source peer entry
* @rx_tlv_hdr : start address of rx tlvs
* @nbuf : nbuf that has to be intrabss forwarded
* @tid_stats : tid stats pointer
*
* Return: bool: true if it is forwarded else false
*/
bool dp_rx_intrabss_mcbc_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer,
uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
struct cdp_tid_rx_stats *tid_stats)
{
uint16_t len;
qdf_nbuf_t nbuf_copy;
if (dp_rx_intrabss_eapol_drop_check(soc, ta_peer, rx_tlv_hdr,
nbuf))
return true;
if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
return false;
/* If the source peer in the isolation list
* then dont forward instead push to bridge stack
*/
if (dp_get_peer_isolation(ta_peer))
return false;
nbuf_copy = qdf_nbuf_copy(nbuf);
if (!nbuf_copy)
return false;
len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf_copy);
if (soc->arch_ops.dp_rx_intrabss_handle_nawds(soc, ta_peer, nbuf_copy,
tid_stats))
return false;
if (dp_tx_send((struct cdp_soc_t *)soc,
ta_peer->vdev->vdev_id, nbuf_copy)) {
DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
len);
tid_stats->fail_cnt[INTRABSS_DROP]++;
dp_rx_nbuf_free(nbuf_copy);
} else {
DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
len);
tid_stats->intrabss_cnt++;
}
return false;
}
/*
* dp_rx_intrabss_ucast_fwd() - Does intrabss forward for unicast packets
*
* @soc: core txrx main context
* @ta_peer: source peer entry
* @tx_vdev_id: VDEV ID for Intra-BSS TX
* @rx_tlv_hdr: start address of rx tlvs
* @nbuf: nbuf that has to be intrabss forwarded
* @tid_stats: tid stats pointer
*
* Return: bool: true if it is forwarded else false
*/
bool dp_rx_intrabss_ucast_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer,
uint8_t tx_vdev_id,
uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
struct cdp_tid_rx_stats *tid_stats)
{
uint16_t len;
len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
/* linearize the nbuf just before we send to
* dp_tx_send()
*/
if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
return false;
nbuf = qdf_nbuf_unshare(nbuf);
if (!nbuf) {
DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer,
rx.intra_bss.fail,
1, len);
/* return true even though the pkt is
* not forwarded. Basically skb_unshare
* failed and we want to continue with
* next nbuf.
*/
tid_stats->fail_cnt[INTRABSS_DROP]++;
return false;
}
}
dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf);
if (!dp_tx_send((struct cdp_soc_t *)soc,
tx_vdev_id, nbuf)) {
DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
len);
} else {
DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
len);
tid_stats->fail_cnt[INTRABSS_DROP]++;
return false;
}
return true;
}
#endif /* QCA_HOST_MODE_WIFI_DISABLED */
#ifdef MESH_MODE_SUPPORT
/**
* dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
*
* @vdev: DP Virtual device handle
* @nbuf: Buffer pointer
* @rx_tlv_hdr: start of rx tlv header
* @txrx_peer: pointer to peer
*
* This function allocated memory for mesh receive stats and fill the
* required stats. Stores the memory address in skb cb.
*
* Return: void
*/
void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr,
struct dp_txrx_peer *txrx_peer)
{
struct mesh_recv_hdr_s *rx_info = NULL;
uint32_t pkt_type;
uint32_t nss;
uint32_t rate_mcs;
uint32_t bw;
uint8_t primary_chan_num;
uint32_t center_chan_freq;
struct dp_soc *soc = vdev->pdev->soc;
struct dp_peer *peer;
struct dp_peer *primary_link_peer;
struct dp_soc *link_peer_soc;
cdp_peer_stats_param_t buf = {0};
/* fill recv mesh stats */
rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
/* upper layers are resposible to free this memory */
if (!rx_info) {
dp_rx_err("%pK: Memory allocation failed for mesh rx stats",
vdev->pdev->soc);
DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
return;
}
rx_info->rs_flags = MESH_RXHDR_VER1;
if (qdf_nbuf_is_rx_chfrag_start(nbuf))
rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
if (qdf_nbuf_is_rx_chfrag_end(nbuf))
rx_info->rs_flags |= MESH_RX_LAST_MSDU;
peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id, DP_MOD_ID_MESH);
if (peer) {
if (hal_rx_tlv_get_is_decrypted(soc->hal_soc, rx_tlv_hdr)) {
rx_info->rs_flags |= MESH_RX_DECRYPTED;
rx_info->rs_keyix = hal_rx_msdu_get_keyid(soc->hal_soc,
rx_tlv_hdr);
if (vdev->osif_get_key)
vdev->osif_get_key(vdev->osif_vdev,
&rx_info->rs_decryptkey[0],
&peer->mac_addr.raw[0],
rx_info->rs_keyix);
}
dp_peer_unref_delete(peer, DP_MOD_ID_MESH);
}
primary_link_peer = dp_get_primary_link_peer_by_id(soc,
txrx_peer->peer_id,
DP_MOD_ID_MESH);
if (qdf_likely(primary_link_peer)) {
link_peer_soc = primary_link_peer->vdev->pdev->soc;
dp_monitor_peer_get_stats_param(link_peer_soc,
primary_link_peer,
cdp_peer_rx_snr, &buf);
rx_info->rs_snr = buf.rx_snr;
dp_peer_unref_delete(primary_link_peer, DP_MOD_ID_MESH);
}
rx_info->rs_rssi = rx_info->rs_snr + DP_DEFAULT_NOISEFLOOR;
soc = vdev->pdev->soc;
primary_chan_num = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr);
center_chan_freq = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr) >> 16;
if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
soc->ctrl_psoc,
vdev->pdev->pdev_id,
center_chan_freq);
}
rx_info->rs_channel = primary_chan_num;
pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
rate_mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
(bw << 24);
qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x, snr %x"),
rx_info->rs_flags,
rx_info->rs_rssi,
rx_info->rs_channel,
rx_info->rs_ratephy1,
rx_info->rs_keyix,
rx_info->rs_snr);
}
/**
* dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
*
* @vdev: DP Virtual device handle
* @nbuf: Buffer pointer
* @rx_tlv_hdr: start of rx tlv header
*
* This checks if the received packet is matching any filter out
* catogery and and drop the packet if it matches.
*
* Return: status(0 indicates drop, 1 indicate to no drop)
*/
QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr)
{
union dp_align_mac_addr mac_addr;
struct dp_soc *soc = vdev->pdev->soc;
if (qdf_unlikely(vdev->mesh_rx_filter)) {
if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
rx_tlv_hdr))
return QDF_STATUS_SUCCESS;
if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
rx_tlv_hdr))
return QDF_STATUS_SUCCESS;
if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
rx_tlv_hdr) &&
!hal_rx_mpdu_get_to_ds(soc->hal_soc,
rx_tlv_hdr))
return QDF_STATUS_SUCCESS;
if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
if (hal_rx_mpdu_get_addr1(soc->hal_soc,
rx_tlv_hdr,
&mac_addr.raw[0]))
return QDF_STATUS_E_FAILURE;
if (!qdf_mem_cmp(&mac_addr.raw[0],
&vdev->mac_addr.raw[0],
QDF_MAC_ADDR_SIZE))
return QDF_STATUS_SUCCESS;
}
if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
if (hal_rx_mpdu_get_addr2(soc->hal_soc,
rx_tlv_hdr,
&mac_addr.raw[0]))
return QDF_STATUS_E_FAILURE;
if (!qdf_mem_cmp(&mac_addr.raw[0],
&vdev->mac_addr.raw[0],
QDF_MAC_ADDR_SIZE))
return QDF_STATUS_SUCCESS;
}
}
return QDF_STATUS_E_FAILURE;
}
#else
void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr, struct dp_txrx_peer *peer)
{
}
QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr)
{
return QDF_STATUS_E_FAILURE;
}
#endif
#ifdef FEATURE_NAC_RSSI
/**
* dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
* @soc: DP SOC handle
* @mpdu: mpdu for which peer is invalid
* @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
* pool_id has same mapping)
*
* return: integer type
*/
uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
uint8_t mac_id)
{
struct dp_invalid_peer_msg msg;
struct dp_vdev *vdev = NULL;
struct dp_pdev *pdev = NULL;
struct ieee80211_frame *wh;
qdf_nbuf_t curr_nbuf, next_nbuf;
uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr);
if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
dp_rx_debug("%pK: Drop decapped frames", soc);
goto free;
}
wh = (struct ieee80211_frame *)rx_pkt_hdr;
if (!DP_FRAME_IS_DATA(wh)) {
dp_rx_debug("%pK: NAWDS valid only for data frames", soc);
goto free;
}
if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
dp_rx_err("%pK: Invalid nbuf length", soc);
goto free;
}
pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
dp_rx_err("%pK: PDEV %s", soc, !pdev ? "not found" : "down");
goto free;
}
if (dp_monitor_filter_neighbour_peer(pdev, rx_pkt_hdr) ==
QDF_STATUS_SUCCESS)
return 0;
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
QDF_MAC_ADDR_SIZE) == 0) {
goto out;
}
}
if (!vdev) {
dp_rx_err("%pK: VDEV not found", soc);
goto free;
}
out:
msg.wh = wh;
qdf_nbuf_pull_head(mpdu, soc->rx_pkt_tlv_size);
msg.nbuf = mpdu;
msg.vdev_id = vdev->vdev_id;
/*
* NOTE: Only valid for HKv1.
* If smart monitor mode is enabled on RE, we are getting invalid
* peer frames with RA as STA mac of RE and the TA not matching
* with any NAC list or the the BSSID.Such frames need to dropped
* in order to avoid HM_WDS false addition.
*/
if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) {
if (dp_monitor_drop_inv_peer_pkts(vdev) == QDF_STATUS_SUCCESS) {
dp_rx_warn("%pK: Drop inv peer pkts with STA RA:%pm",
soc, wh->i_addr1);
goto free;
}
pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
(struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
pdev->pdev_id, &msg);
}
free:
/* Drop and free packet */
curr_nbuf = mpdu;
while (curr_nbuf) {
next_nbuf = qdf_nbuf_next(curr_nbuf);
dp_rx_nbuf_free(curr_nbuf);
curr_nbuf = next_nbuf;
}
return 0;
}
/**
* dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
* @soc: DP SOC handle
* @mpdu: mpdu for which peer is invalid
* @mpdu_done: if an mpdu is completed
* @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
* pool_id has same mapping)
*
* return: integer type
*/
void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
qdf_nbuf_t mpdu, bool mpdu_done,
uint8_t mac_id)
{
/* Only trigger the process when mpdu is completed */
if (mpdu_done)
dp_rx_process_invalid_peer(soc, mpdu, mac_id);
}
#else
uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
uint8_t mac_id)
{
qdf_nbuf_t curr_nbuf, next_nbuf;
struct dp_pdev *pdev;
struct dp_vdev *vdev = NULL;
struct ieee80211_frame *wh;
uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr);
wh = (struct ieee80211_frame *)rx_pkt_hdr;
if (!DP_FRAME_IS_DATA(wh)) {
QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
"only for data frames");
goto free;
}
if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
dp_rx_info_rl("%pK: Invalid nbuf length", soc);
goto free;
}
pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
if (!pdev) {
dp_rx_info_rl("%pK: PDEV not found", soc);
goto free;
}
qdf_spin_lock_bh(&pdev->vdev_list_lock);
DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
QDF_MAC_ADDR_SIZE) == 0) {
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
goto out;
}
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
if (!vdev) {
dp_rx_info_rl("%pK: VDEV not found", soc);
goto free;
}
out:
if (soc->cdp_soc.ol_ops->rx_invalid_peer)
soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
free:
/* reset the head and tail pointers */
pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
if (pdev) {
pdev->invalid_peer_head_msdu = NULL;
pdev->invalid_peer_tail_msdu = NULL;
}
/* Drop and free packet */
curr_nbuf = mpdu;
while (curr_nbuf) {
next_nbuf = qdf_nbuf_next(curr_nbuf);
dp_rx_nbuf_free(curr_nbuf);
curr_nbuf = next_nbuf;
}
/* Reset the head and tail pointers */
pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
if (pdev) {
pdev->invalid_peer_head_msdu = NULL;
pdev->invalid_peer_tail_msdu = NULL;
}
return 0;
}
void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
qdf_nbuf_t mpdu, bool mpdu_done,
uint8_t mac_id)
{
/* Process the nbuf */
dp_rx_process_invalid_peer(soc, mpdu, mac_id);
}
#endif
#ifndef QCA_HOST_MODE_WIFI_DISABLED
#ifdef RECEIVE_OFFLOAD
/**
* dp_rx_print_offload_info() - Print offload info from RX TLV
* @soc: dp soc handle
* @msdu: MSDU for which the offload info is to be printed
*
* Return: None
*/
static void dp_rx_print_offload_info(struct dp_soc *soc,
qdf_nbuf_t msdu)
{
dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
dp_verbose_debug("lro_eligible 0x%x",
QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu));
dp_verbose_debug("pure_ack 0x%x", QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu));
dp_verbose_debug("chksum 0x%x", QDF_NBUF_CB_RX_TCP_CHKSUM(msdu));
dp_verbose_debug("TCP seq num 0x%x", QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu));
dp_verbose_debug("TCP ack num 0x%x", QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu));
dp_verbose_debug("TCP window 0x%x", QDF_NBUF_CB_RX_TCP_WIN(msdu));
dp_verbose_debug("TCP protocol 0x%x", QDF_NBUF_CB_RX_TCP_PROTO(msdu));
dp_verbose_debug("TCP offset 0x%x", QDF_NBUF_CB_RX_TCP_OFFSET(msdu));
dp_verbose_debug("toeplitz 0x%x", QDF_NBUF_CB_RX_FLOW_ID(msdu));
dp_verbose_debug("---------------------------------------------------------");
}
/**
* dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
* @soc: DP SOC handle
* @rx_tlv: RX TLV received for the msdu
* @msdu: msdu for which GRO info needs to be filled
* @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
*
* Return: None
*/
void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
{
struct hal_offload_info offload_info;
if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
return;
if (hal_rx_tlv_get_offload_info(soc->hal_soc, rx_tlv, &offload_info))
return;
*rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = offload_info.lro_eligible;
QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) = offload_info.tcp_pure_ack;
QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
rx_tlv);
QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) = offload_info.tcp_seq_num;
QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) = offload_info.tcp_ack_num;
QDF_NBUF_CB_RX_TCP_WIN(msdu) = offload_info.tcp_win;
QDF_NBUF_CB_RX_TCP_PROTO(msdu) = offload_info.tcp_proto;
QDF_NBUF_CB_RX_IPV6_PROTO(msdu) = offload_info.ipv6_proto;
QDF_NBUF_CB_RX_TCP_OFFSET(msdu) = offload_info.tcp_offset;
QDF_NBUF_CB_RX_FLOW_ID(msdu) = offload_info.flow_id;
dp_rx_print_offload_info(soc, msdu);
}
#endif /* RECEIVE_OFFLOAD */
/**
* dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
*
* @soc: DP soc handle
* @nbuf: pointer to msdu.
* @mpdu_len: mpdu length
* @l3_pad_len: L3 padding length by HW
*
* Return: returns true if nbuf is last msdu of mpdu else retuns false.
*/
static inline bool dp_rx_adjust_nbuf_len(struct dp_soc *soc,
qdf_nbuf_t nbuf,
uint16_t *mpdu_len,
uint32_t l3_pad_len)
{
bool last_nbuf;
uint32_t pkt_hdr_size;
pkt_hdr_size = soc->rx_pkt_tlv_size + l3_pad_len;
if ((*mpdu_len + pkt_hdr_size) > RX_DATA_BUFFER_SIZE) {
qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
last_nbuf = false;
*mpdu_len -= (RX_DATA_BUFFER_SIZE - pkt_hdr_size);
} else {
qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + pkt_hdr_size));
last_nbuf = true;
*mpdu_len = 0;
}
return last_nbuf;
}
/**
* dp_get_l3_hdr_pad_len() - get L3 header padding length.
*
* @soc: DP soc handle
* @nbuf: pointer to msdu.
*
* Return: returns padding length in bytes.
*/
static inline uint32_t dp_get_l3_hdr_pad_len(struct dp_soc *soc,
qdf_nbuf_t nbuf)
{
uint32_t l3_hdr_pad = 0;
uint8_t *rx_tlv_hdr;
struct hal_rx_msdu_metadata msdu_metadata;
while (nbuf) {
if (!qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
/* scattered msdu end with continuation is 0 */
rx_tlv_hdr = qdf_nbuf_data(nbuf);
hal_rx_msdu_metadata_get(soc->hal_soc,
rx_tlv_hdr,
&msdu_metadata);
l3_hdr_pad = msdu_metadata.l3_hdr_pad;
break;
}
nbuf = nbuf->next;
}
return l3_hdr_pad;
}
/**
* dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
* multiple nbufs.
* @soc: DP SOC handle
* @nbuf: pointer to the first msdu of an amsdu.
*
* This function implements the creation of RX frag_list for cases
* where an MSDU is spread across multiple nbufs.
*
* Return: returns the head nbuf which contains complete frag_list.
*/
qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf)
{
qdf_nbuf_t parent, frag_list, next = NULL;
uint16_t frag_list_len = 0;
uint16_t mpdu_len;
bool last_nbuf;
uint32_t l3_hdr_pad_offset = 0;
/*
* Use msdu len got from REO entry descriptor instead since
* there is case the RX PKT TLV is corrupted while msdu_len
* from REO descriptor is right for non-raw RX scatter msdu.
*/
mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
/*
* this is a case where the complete msdu fits in one single nbuf.
* in this case HW sets both start and end bit and we only need to
* reset these bits for RAW mode simulator to decap the pkt
*/
if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
qdf_nbuf_is_rx_chfrag_end(nbuf)) {
qdf_nbuf_set_pktlen(nbuf, mpdu_len + soc->rx_pkt_tlv_size);
qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size);
return nbuf;
}
l3_hdr_pad_offset = dp_get_l3_hdr_pad_len(soc, nbuf);
/*
* This is a case where we have multiple msdus (A-MSDU) spread across
* multiple nbufs. here we create a fraglist out of these nbufs.
*
* the moment we encounter a nbuf with continuation bit set we
* know for sure we have an MSDU which is spread across multiple
* nbufs. We loop through and reap nbufs till we reach last nbuf.
*/
parent = nbuf;
frag_list = nbuf->next;
nbuf = nbuf->next;
/*
* set the start bit in the first nbuf we encounter with continuation
* bit set. This has the proper mpdu length set as it is the first
* msdu of the mpdu. this becomes the parent nbuf and the subsequent
* nbufs will form the frag_list of the parent nbuf.
*/
qdf_nbuf_set_rx_chfrag_start(parent, 1);
/*
* L3 header padding is only needed for the 1st buffer
* in a scattered msdu
*/
last_nbuf = dp_rx_adjust_nbuf_len(soc, parent, &mpdu_len,
l3_hdr_pad_offset);
/*
* MSDU cont bit is set but reported MPDU length can fit
* in to single buffer
*
* Increment error stats and avoid SG list creation
*/
if (last_nbuf) {
DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1);
qdf_nbuf_pull_head(parent,
soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
return parent;
}
/*
* this is where we set the length of the fragments which are
* associated to the parent nbuf. We iterate through the frag_list
* till we hit the last_nbuf of the list.
*/
do {
last_nbuf = dp_rx_adjust_nbuf_len(soc, nbuf, &mpdu_len, 0);
qdf_nbuf_pull_head(nbuf,
soc->rx_pkt_tlv_size);
frag_list_len += qdf_nbuf_len(nbuf);
if (last_nbuf) {
next = nbuf->next;
nbuf->next = NULL;
break;
} else if (qdf_nbuf_is_rx_chfrag_end(nbuf)) {
dp_err("Invalid packet length\n");
qdf_assert_always(0);
}
nbuf = nbuf->next;
} while (!last_nbuf);
qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
parent->next = next;
qdf_nbuf_pull_head(parent,
soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
return parent;
}
#endif /* QCA_HOST_MODE_WIFI_DISABLED */
#ifdef QCA_PEER_EXT_STATS
/*
* dp_rx_compute_tid_delay - Computer per TID delay stats
* @peer: DP soc context
* @nbuf: NBuffer
*
* Return: Void
*/
void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
qdf_nbuf_t nbuf)
{
struct cdp_delay_rx_stats *rx_delay = &stats->rx_delay;
uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
}
#endif /* QCA_PEER_EXT_STATS */
/**
* dp_rx_compute_delay() - Compute and fill in all timestamps
* to pass in correct fields
*
* @vdev: pdev handle
* @tx_desc: tx descriptor
* @tid: tid value
* Return: none
*/
void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
{
uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
uint32_t interframe_delay =
(uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
dp_update_delay_stats(vdev->pdev, to_stack, tid,
CDP_DELAY_STATS_REAP_STACK, ring_id);
/*
* Update interframe delay stats calculated at deliver_data_ol point.
* Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
* interframe delay will not be calculate correctly for 1st frame.
* On the other side, this will help in avoiding extra per packet check
* of vdev->prev_rx_deliver_tstamp.
*/
dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
vdev->prev_rx_deliver_tstamp = current_ts;
}
/**
* dp_rx_drop_nbuf_list() - drop an nbuf list
* @pdev: dp pdev reference
* @buf_list: buffer list to be dropepd
*
* Return: int (number of bufs dropped)
*/
static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
qdf_nbuf_t buf_list)
{
struct cdp_tid_rx_stats *stats = NULL;
uint8_t tid = 0, ring_id = 0;
int num_dropped = 0;
qdf_nbuf_t buf, next_buf;
buf = buf_list;
while (buf) {
ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
next_buf = qdf_nbuf_queue_next(buf);
tid = qdf_nbuf_get_tid_val(buf);
if (qdf_likely(pdev)) {
stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
stats->fail_cnt[INVALID_PEER_VDEV]++;
stats->delivered_to_stack--;
}
dp_rx_nbuf_free(buf);
buf = next_buf;
num_dropped++;
}
return num_dropped;
}
#ifdef QCA_SUPPORT_WDS_EXTENDED
/**
* dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta
* @soc: core txrx main context
* @vdev: vdev
* @txrx_peer: txrx peer
* @nbuf_head: skb list head
*
* Return: true if packet is delivered to netdev per STA.
*/
static inline bool
dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head)
{
/*
* When extended WDS is disabled, frames are sent to AP netdevice.
*/
if (qdf_likely(!vdev->wds_ext_enabled))
return false;
/*
* There can be 2 cases:
* 1. Send frame to parent netdev if its not for netdev per STA
* 2. If frame is meant for netdev per STA:
* a. Send frame to appropriate netdev using registered fp.
* b. If fp is NULL, drop the frames.
*/
if (!txrx_peer->wds_ext.init)
return false;
if (txrx_peer->osif_rx)
txrx_peer->osif_rx(txrx_peer->wds_ext.osif_peer, nbuf_head);
else
dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
return true;
}
#else
static inline bool
dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head)
{
return false;
}
#endif
#ifdef PEER_CACHE_RX_PKTS
/**
* dp_rx_flush_rx_cached() - flush cached rx frames
* @peer: peer
* @drop: flag to drop frames or forward to net stack
*
* Return: None
*/
void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
{
struct dp_peer_cached_bufq *bufqi;
struct dp_rx_cached_buf *cache_buf = NULL;
ol_txrx_rx_fp data_rx = NULL;
int num_buff_elem;
QDF_STATUS status;
/*
* Flush dp cached frames only for mld peers and legacy peers, as
* link peers don't store cached frames
*/
if (IS_MLO_DP_LINK_PEER(peer))
return;
if (!peer->txrx_peer) {
if (!peer->sta_self_peer) {
qdf_err("txrx_peer NULL!!");
qdf_assert_always(0);
}
return;
}
if (qdf_atomic_inc_return(&peer->txrx_peer->flush_in_progress) > 1) {
qdf_atomic_dec(&peer->txrx_peer->flush_in_progress);
return;
}
qdf_spin_lock_bh(&peer->peer_info_lock);
if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
data_rx = peer->vdev->osif_rx;
else
drop = true;
qdf_spin_unlock_bh(&peer->peer_info_lock);
bufqi = &peer->txrx_peer->bufq_info;
qdf_spin_lock_bh(&bufqi->bufq_lock);
qdf_list_remove_front(&bufqi->cached_bufq,
(qdf_list_node_t **)&cache_buf);
while (cache_buf) {
num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
cache_buf->buf);
bufqi->entries -= num_buff_elem;
qdf_spin_unlock_bh(&bufqi->bufq_lock);
if (drop) {
bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
cache_buf->buf);
} else {
/* Flush the cached frames to OSIF DEV */
status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
if (status != QDF_STATUS_SUCCESS)
bufqi->dropped = dp_rx_drop_nbuf_list(
peer->vdev->pdev,
cache_buf->buf);
}
qdf_mem_free(cache_buf);
cache_buf = NULL;
qdf_spin_lock_bh(&bufqi->bufq_lock);
qdf_list_remove_front(&bufqi->cached_bufq,
(qdf_list_node_t **)&cache_buf);
}
qdf_spin_unlock_bh(&bufqi->bufq_lock);
qdf_atomic_dec(&peer->txrx_peer->flush_in_progress);
}
/**
* dp_rx_enqueue_rx() - cache rx frames
* @peer: peer
* @rx_buf_list: cache buffer list
*
* Return: None
*/
static QDF_STATUS
dp_rx_enqueue_rx(struct dp_txrx_peer *txrx_peer, qdf_nbuf_t rx_buf_list)
{
struct dp_rx_cached_buf *cache_buf;
struct dp_peer_cached_bufq *bufqi = &txrx_peer->bufq_info;
int num_buff_elem;
QDF_STATUS ret = QDF_STATUS_SUCCESS;
struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
struct dp_peer *peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id,
DP_MOD_ID_RX);
if (!peer) {
bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
rx_buf_list);
return QDF_STATUS_E_INVAL;
}
dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
bufqi->dropped);
if (!peer->valid) {
bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
rx_buf_list);
ret = QDF_STATUS_E_INVAL;
goto fail;
}
qdf_spin_lock_bh(&bufqi->bufq_lock);
if (bufqi->entries >= bufqi->thresh) {
bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
rx_buf_list);
qdf_spin_unlock_bh(&bufqi->bufq_lock);
ret = QDF_STATUS_E_RESOURCES;
goto fail;
}
qdf_spin_unlock_bh(&bufqi->bufq_lock);
num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
if (!cache_buf) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"Failed to allocate buf to cache rx frames");
bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
rx_buf_list);
ret = QDF_STATUS_E_NOMEM;
goto fail;
}
cache_buf->buf = rx_buf_list;
qdf_spin_lock_bh(&bufqi->bufq_lock);
qdf_list_insert_back(&bufqi->cached_bufq,
&cache_buf->node);
bufqi->entries += num_buff_elem;
qdf_spin_unlock_bh(&bufqi->bufq_lock);
fail:
dp_peer_unref_delete(peer, DP_MOD_ID_RX);
return ret;
}
static inline
bool dp_rx_is_peer_cache_bufq_supported(void)
{
return true;
}
#else
static inline
bool dp_rx_is_peer_cache_bufq_supported(void)
{
return false;
}
static inline QDF_STATUS
dp_rx_enqueue_rx(struct dp_txrx_peer *txrx_peer, qdf_nbuf_t rx_buf_list)
{
return QDF_STATUS_SUCCESS;
}
#endif
#ifndef DELIVERY_TO_STACK_STATUS_CHECK
/**
* dp_rx_check_delivery_to_stack() - Deliver pkts to network
* using the appropriate call back functions.
* @soc: soc
* @vdev: vdev
* @peer: peer
* @nbuf_head: skb list head
* @nbuf_tail: skb list tail
*
* Return: None
*/
static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
struct dp_vdev *vdev,
struct dp_txrx_peer *txrx_peer,
qdf_nbuf_t nbuf_head)
{
if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev,
txrx_peer, nbuf_head)))
return;
/* Function pointer initialized only when FISA is enabled */
if (vdev->osif_fisa_rx)
/* on failure send it via regular path */
vdev->osif_fisa_rx(soc, vdev, nbuf_head);
else
vdev->osif_rx(vdev->osif_vdev, nbuf_head);
}
#else
/**
* dp_rx_check_delivery_to_stack() - Deliver pkts to network
* using the appropriate call back functions.
* @soc: soc
* @vdev: vdev
* @txrx_peer: txrx peer
* @nbuf_head: skb list head
* @nbuf_tail: skb list tail
*
* Check the return status of the call back function and drop
* the packets if the return status indicates a failure.
*
* Return: None
*/
static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
struct dp_vdev *vdev,
struct dp_txrx_peer *txrx_peer,
qdf_nbuf_t nbuf_head)
{
int num_nbuf = 0;
QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
/* Function pointer initialized only when FISA is enabled */
if (vdev->osif_fisa_rx)
/* on failure send it via regular path */
ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
else if (vdev->osif_rx)
ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
if (txrx_peer)
DP_PEER_STATS_FLAT_DEC(txrx_peer, to_stack.num,
num_nbuf);
}
}
#endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
/*
* dp_rx_validate_rx_callbacks() - validate rx callbacks
* @soc DP soc
* @vdev: DP vdev handle
* @txrx_peer: pointer to the txrx peer object
* nbuf_head: skb list head
*
* Return: QDF_STATUS - QDF_STATUS_SUCCESS
* QDF_STATUS_E_FAILURE
*/
static inline QDF_STATUS
dp_rx_validate_rx_callbacks(struct dp_soc *soc,
struct dp_vdev *vdev,
struct dp_txrx_peer *txrx_peer,
qdf_nbuf_t nbuf_head)
{
int num_nbuf;
if (qdf_unlikely(!vdev || vdev->delete.pending)) {
num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
/*
* This is a special case where vdev is invalid,
* so we cannot know the pdev to which this packet
* belonged. Hence we update the soc rx error stats.
*/
DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
return QDF_STATUS_E_FAILURE;
}
/*
* highly unlikely to have a vdev without a registered rx
* callback function. if so let us free the nbuf_list.
*/
if (qdf_unlikely(!vdev->osif_rx)) {
if (txrx_peer && dp_rx_is_peer_cache_bufq_supported()) {
dp_rx_enqueue_rx(txrx_peer, nbuf_head);
} else {
num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
nbuf_head);
DP_PEER_TO_STACK_DECC(txrx_peer, num_nbuf,
vdev->pdev->enhanced_stats_en);
}
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
QDF_STATUS dp_rx_deliver_to_stack(struct dp_soc *soc,
struct dp_vdev *vdev,
struct dp_txrx_peer *txrx_peer,
qdf_nbuf_t nbuf_head,
qdf_nbuf_t nbuf_tail)
{
if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) !=
QDF_STATUS_SUCCESS)
return QDF_STATUS_E_FAILURE;
if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
(vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
&nbuf_tail);
}
dp_rx_check_delivery_to_stack(soc, vdev, txrx_peer, nbuf_head);
return QDF_STATUS_SUCCESS;
}
#ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT
QDF_STATUS dp_rx_eapol_deliver_to_stack(struct dp_soc *soc,
struct dp_vdev *vdev,
struct dp_txrx_peer *txrx_peer,
qdf_nbuf_t nbuf_head,
qdf_nbuf_t nbuf_tail)
{
if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) !=
QDF_STATUS_SUCCESS)
return QDF_STATUS_E_FAILURE;
vdev->osif_rx_eapol(vdev->osif_vdev, nbuf_head);
return QDF_STATUS_SUCCESS;
}
#endif
#ifndef QCA_HOST_MODE_WIFI_DISABLED
#ifdef VDEV_PEER_PROTOCOL_COUNT
#define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer) \
{ \
qdf_nbuf_t nbuf_local; \
struct dp_txrx_peer *txrx_peer_local; \
struct dp_vdev *vdev_local = vdev_hdl; \
do { \
if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
break; \
nbuf_local = nbuf; \
txrx_peer_local = txrx_peer; \
if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
break; \
else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
break; \
dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
(nbuf_local), \
(txrx_peer_local), 0, 1); \
} while (0); \
}
#else
#define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer)
#endif
#ifndef QCA_ENHANCED_STATS_SUPPORT
/**
* dp_rx_msdu_extd_stats_update(): Update Rx extended path stats for peer
*
* @soc: datapath soc handle
* @nbuf: received msdu buffer
* @rx_tlv_hdr: rx tlv header
* @txrx_peer: datapath txrx_peer handle
*
* Return: void
*/
static inline
void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr,
struct dp_txrx_peer *txrx_peer)
{
bool is_ampdu;
uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
/*
* TODO - For KIWI this field is present in ring_desc
* Try to use ring desc instead of tlv.
*/
is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(soc->hal_soc, rx_tlv_hdr);
DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.ampdu_cnt, 1, is_ampdu);
DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
sgi = hal_rx_tlv_sgi_get(soc->hal_soc, rx_tlv_hdr);
mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
tid = qdf_nbuf_get_tid_val(nbuf);
bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
rx_tlv_hdr);
nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[mcs], 1,
((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
DP_PEER_EXTD_STATS_INC(txrx_peer, rx.bw[bw], 1);
/*
* only if nss > 0 and pkt_type is 11N/AC/AX,
* then increase index [nss - 1] in array counter.
*/
if (nss > 0 && (pkt_type == DOT11_N ||
pkt_type == DOT11_AC ||
pkt_type == DOT11_AX))
DP_PEER_EXTD_STATS_INC(txrx_peer, rx.nss[nss - 1], 1);
DP_PEER_EXTD_STATS_INC(txrx_peer, rx.sgi_count[sgi], 1);
DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.mic_err, 1,
hal_rx_tlv_mic_err_get(soc->hal_soc,
rx_tlv_hdr));
DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.decrypt_err, 1,
hal_rx_tlv_decrypt_err_get(soc->hal_soc,
rx_tlv_hdr));
DP_PEER_EXTD_STATS_INC(txrx_peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
DP_PEER_EXTD_STATS_INC(txrx_peer, rx.reception_type[reception_type], 1);
DP_PEER_EXTD_STATS_INCC(txrx_peer,
rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
DP_PEER_EXTD_STATS_INCC(txrx_peer,
rx.pkt_type[pkt_type].mcs_count[mcs], 1,
((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
DP_PEER_EXTD_STATS_INCC(txrx_peer,
rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
DP_PEER_EXTD_STATS_INCC(txrx_peer,
rx.pkt_type[pkt_type].mcs_count[mcs], 1,
((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
DP_PEER_EXTD_STATS_INCC(txrx_peer,
rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
DP_PEER_EXTD_STATS_INCC(txrx_peer,
rx.pkt_type[pkt_type].mcs_count[mcs], 1,
((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
DP_PEER_EXTD_STATS_INCC(txrx_peer,
rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
DP_PEER_EXTD_STATS_INCC(txrx_peer,
rx.pkt_type[pkt_type].mcs_count[mcs], 1,
((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
DP_PEER_EXTD_STATS_INCC(txrx_peer,
rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
DP_PEER_EXTD_STATS_INCC(txrx_peer,
rx.pkt_type[pkt_type].mcs_count[mcs], 1,
((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
}
#else
static inline
void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr,
struct dp_txrx_peer *txrx_peer)
{
}
#endif
/**
* dp_rx_msdu_stats_update() - update per msdu stats.
* @soc: core txrx main context
* @nbuf: pointer to the first msdu of an amsdu.
* @rx_tlv_hdr: pointer to the start of RX TLV headers.
* @txrx_peer: pointer to the txrx peer object.
* @ring_id: reo dest ring number on which pkt is reaped.
* @tid_stats: per tid rx stats.
*
* update all the per msdu stats for that nbuf.
* Return: void
*/
void dp_rx_msdu_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr,
struct dp_txrx_peer *txrx_peer,
uint8_t ring_id,
struct cdp_tid_rx_stats *tid_stats)
{
bool is_not_amsdu;
struct dp_vdev *vdev = txrx_peer->vdev;
bool enh_flag;
qdf_ether_header_t *eh;
uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, txrx_peer);
is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
qdf_nbuf_is_rx_chfrag_end(nbuf);
DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.rcvd_reo[ring_id], 1,
msdu_len);
DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.non_amsdu_cnt, 1,
is_not_amsdu);
DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.amsdu_cnt, 1, !is_not_amsdu);
DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.rx_retries, 1,
qdf_nbuf_is_rx_retry_flag(nbuf));
tid_stats->msdu_cnt++;
if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
(vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
enh_flag = vdev->pdev->enhanced_stats_en;
DP_PEER_MC_INCC_PKT(txrx_peer, 1, msdu_len, enh_flag);
tid_stats->mcast_msdu_cnt++;
if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
DP_PEER_BC_INCC_PKT(txrx_peer, 1, msdu_len, enh_flag);
tid_stats->bcast_msdu_cnt++;
}
}
txrx_peer->stats.per_pkt_stats.rx.last_rx_ts = qdf_system_ticks();
dp_rx_msdu_extd_stats_update(soc, nbuf, rx_tlv_hdr, txrx_peer);
}
#ifndef WDS_VENDOR_EXTENSION
int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
struct dp_vdev *vdev,
struct dp_txrx_peer *txrx_peer)
{
return 1;
}
#endif
#ifdef RX_DESC_DEBUG_CHECK
/**
* dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
* corruption
*
* @ring_desc: REO ring descriptor
* @rx_desc: Rx descriptor
*
* Return: NONE
*/
QDF_STATUS dp_rx_desc_nbuf_sanity_check(struct dp_soc *soc,
hal_ring_desc_t ring_desc,
struct dp_rx_desc *rx_desc)
{
struct hal_buf_info hbi;
hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
/* Sanity check for possible buffer paddr corruption */
if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
return QDF_STATUS_SUCCESS;
return QDF_STATUS_E_FAILURE;
}
/**
* dp_rx_desc_nbuf_len_sanity_check - Add sanity check to catch Rx buffer
* out of bound access from H.W
*
* @soc: DP soc
* @pkt_len: Packet length received from H.W
*
* Return: NONE
*/
static inline void
dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc,
uint32_t pkt_len)
{
struct rx_desc_pool *rx_desc_pool;
rx_desc_pool = &soc->rx_desc_buf[0];
qdf_assert_always(pkt_len <= rx_desc_pool->buf_size);
}
#else
static inline void
dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc, uint32_t pkt_len) { }
#endif
#ifdef DP_RX_PKT_NO_PEER_DELIVER
/**
* dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
* no corresbonding peer found
* @soc: core txrx main context
* @nbuf: pkt skb pointer
*
* This function will try to deliver some RX special frames to stack
* even there is no peer matched found. for instance, LFR case, some
* eapol data will be sent to host before peer_map done.
*
* Return: None
*/
void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
{
uint16_t peer_id;
uint8_t vdev_id;
struct dp_vdev *vdev = NULL;
uint32_t l2_hdr_offset = 0;
uint16_t msdu_len = 0;
uint32_t pkt_len = 0;
uint8_t *rx_tlv_hdr;
uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
if (peer_id > soc->max_peer_id)
goto deliver_fail;
vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX);
if (!vdev || vdev->delete.pending || !vdev->osif_rx)
goto deliver_fail;
if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
goto deliver_fail;
rx_tlv_hdr = qdf_nbuf_data(nbuf);
l2_hdr_offset =
hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
pkt_len = msdu_len + l2_hdr_offset + soc->rx_pkt_tlv_size;
QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
qdf_nbuf_set_pktlen(nbuf, pkt_len);
qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + l2_hdr_offset);
if (dp_rx_is_special_frame(nbuf, frame_mask)) {
qdf_nbuf_set_exc_frame(nbuf, 1);
if (QDF_STATUS_SUCCESS !=
vdev->osif_rx(vdev->osif_vdev, nbuf))
goto deliver_fail;
DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
return;
}
deliver_fail:
DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
QDF_NBUF_CB_RX_PKT_LEN(nbuf));
dp_rx_nbuf_free(nbuf);
if (vdev)
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
}
#else
void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
{
DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
QDF_NBUF_CB_RX_PKT_LEN(nbuf));
dp_rx_nbuf_free(nbuf);
}
#endif
/**
* dp_rx_srng_get_num_pending() - get number of pending entries
* @hal_soc: hal soc opaque pointer
* @hal_ring: opaque pointer to the HAL Rx Ring
* @num_entries: number of entries in the hal_ring.
* @near_full: pointer to a boolean. This is set if ring is near full.
*
* The function returns the number of entries in a destination ring which are
* yet to be reaped. The function also checks if the ring is near full.
* If more than half of the ring needs to be reaped, the ring is considered
* approaching full.
* The function useses hal_srng_dst_num_valid_locked to get the number of valid
* entries. It should not be called within a SRNG lock. HW pointer value is
* synced into cached_hp.
*
* Return: Number of pending entries if any
*/
uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
hal_ring_handle_t hal_ring_hdl,
uint32_t num_entries,
bool *near_full)
{
uint32_t num_pending = 0;
num_pending = hal_srng_dst_num_valid_locked(hal_soc,
hal_ring_hdl,
true);
if (num_entries && (num_pending >= num_entries >> 1))
*near_full = true;
else
*near_full = false;
return num_pending;
}
#endif /* QCA_HOST_MODE_WIFI_DISABLED */
#ifdef WLAN_SUPPORT_RX_FISA
void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
{
QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
}
/**
* dp_rx_set_hdr_pad() - set l3 padding in nbuf cb
* @nbuf: pkt skb pointer
* @l3_padding: l3 padding
*
* Return: None
*/
static inline
void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
{
QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
}
#else
void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
{
qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
}
static inline
void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
{
}
#endif
#ifndef QCA_HOST_MODE_WIFI_DISABLED
#ifdef DP_RX_DROP_RAW_FRM
/**
* dp_rx_is_raw_frame_dropped() - if raw frame nbuf, free and drop
* @nbuf: pkt skb pointer
*
* Return: true - raw frame, dropped
* false - not raw frame, do nothing
*/
bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
{
if (qdf_nbuf_is_raw_frame(nbuf)) {
dp_rx_nbuf_free(nbuf);
return true;
}
return false;
}
#endif
#ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
/**
* dp_rx_ring_record_entry() - Record an entry into the rx ring history.
* @soc: Datapath soc structure
* @ring_num: REO ring number
* @ring_desc: REO ring descriptor
*
* Returns: None
*/
void
dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
hal_ring_desc_t ring_desc)
{
struct dp_buf_info_record *record;
struct hal_buf_info hbi;
uint32_t idx;
if (qdf_unlikely(!soc->rx_ring_history[ring_num]))
return;
hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
/* buffer_addr_info is the first element of ring_desc */
hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)ring_desc,
&hbi);
idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
DP_RX_HIST_MAX);
/* No NULL check needed for record since its an array */
record = &soc->rx_ring_history[ring_num]->entry[idx];
record->timestamp = qdf_get_log_timestamp();
record->hbi.paddr = hbi.paddr;
record->hbi.sw_cookie = hbi.sw_cookie;
record->hbi.rbm = hbi.rbm;
}
#endif
#ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
/**
* dp_rx_update_stats() - Update soc level rx packet count
* @soc: DP soc handle
* @nbuf: nbuf received
*
* Returns: none
*/
void dp_rx_update_stats(struct dp_soc *soc, qdf_nbuf_t nbuf)
{
DP_STATS_INC_PKT(soc, rx.ingress, 1,
QDF_NBUF_CB_RX_PKT_LEN(nbuf));
}
#endif
#ifdef WLAN_FEATURE_PKT_CAPTURE_V2
/**
* dp_rx_deliver_to_pkt_capture() - deliver rx packet to packet capture
* @soc : dp_soc handle
* @pdev: dp_pdev handle
* @peer_id: peer_id of the peer for which completion came
* @ppdu_id: ppdu_id
* @netbuf: Buffer pointer
*
* This function is used to deliver rx packet to packet capture
*/
void dp_rx_deliver_to_pkt_capture(struct dp_soc *soc, struct dp_pdev *pdev,
uint16_t peer_id, uint32_t is_offload,
qdf_nbuf_t netbuf)
{
if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, netbuf,
peer_id, is_offload, pdev->pdev_id);
}
void dp_rx_deliver_to_pkt_capture_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf,
uint32_t is_offload)
{
if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA_NO_PEER,
soc, nbuf, HTT_INVALID_VDEV,
is_offload, 0);
}
#endif
#endif /* QCA_HOST_MODE_WIFI_DISABLED */
QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
{
QDF_STATUS ret;
if (vdev->osif_rx_flush) {
ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
if (!QDF_IS_STATUS_SUCCESS(ret)) {
dp_err("Failed to flush rx pkts for vdev %d\n",
vdev->vdev_id);
return ret;
}
}
return QDF_STATUS_SUCCESS;
}
static QDF_STATUS
dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
struct dp_pdev *dp_pdev,
struct rx_desc_pool *rx_desc_pool)
{
QDF_STATUS ret = QDF_STATUS_E_FAILURE;
(nbuf_frag_info_t->virt_addr).nbuf =
qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
RX_BUFFER_RESERVATION,
rx_desc_pool->buf_alignment, FALSE);
if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
dp_err("nbuf alloc failed");
DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
return ret;
}
ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
(nbuf_frag_info_t->virt_addr).nbuf,
QDF_DMA_FROM_DEVICE,
rx_desc_pool->buf_size);
if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
dp_err("nbuf map failed");
DP_STATS_INC(dp_pdev, replenish.map_err, 1);
return ret;
}
nbuf_frag_info_t->paddr =
qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
&nbuf_frag_info_t->paddr,
rx_desc_pool);
if (ret == QDF_STATUS_E_FAILURE) {
dp_err("nbuf check x86 failed");
DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
return ret;
}
return QDF_STATUS_SUCCESS;
}
QDF_STATUS
dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
struct dp_srng *dp_rxdma_srng,
struct rx_desc_pool *rx_desc_pool,
uint32_t num_req_buffers)
{
struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
union dp_rx_desc_list_elem_t *next;
void *rxdma_ring_entry;
qdf_dma_addr_t paddr;
struct dp_rx_nbuf_frag_info *nf_info;
uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
uint32_t buffer_index, nbuf_ptrs_per_page;
qdf_nbuf_t nbuf;
QDF_STATUS ret;
int page_idx, total_pages;
union dp_rx_desc_list_elem_t *desc_list = NULL;
union dp_rx_desc_list_elem_t *tail = NULL;
int sync_hw_ptr = 1;
uint32_t num_entries_avail;
if (qdf_unlikely(!dp_pdev)) {
dp_rx_err("%pK: pdev is null for mac_id = %d",
dp_soc, mac_id);
return QDF_STATUS_E_FAILURE;
}
if (qdf_unlikely(!rxdma_srng)) {
DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
return QDF_STATUS_E_FAILURE;
}
dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
rxdma_srng,
sync_hw_ptr);
hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
if (!num_entries_avail) {
dp_err("Num of available entries is zero, nothing to do");
return QDF_STATUS_E_NOMEM;
}
if (num_entries_avail < num_req_buffers)
num_req_buffers = num_entries_avail;
nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
num_req_buffers, &desc_list, &tail);
if (!nr_descs) {
dp_err("no free rx_descs in freelist");
DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
return QDF_STATUS_E_NOMEM;
}
dp_debug("got %u RX descs for driver attach", nr_descs);
/*
* Try to allocate pointers to the nbuf one page at a time.
* Take pointers that can fit in one page of memory and
* iterate through the total descriptors that need to be
* allocated in order of pages. Reuse the pointers that
* have been allocated to fit in one page across each
* iteration to index into the nbuf.
*/
total_pages = (nr_descs * sizeof(*nf_info)) / PAGE_SIZE;
/*
* Add an extra page to store the remainder if any
*/
if ((nr_descs * sizeof(*nf_info)) % PAGE_SIZE)
total_pages++;
nf_info = qdf_mem_malloc(PAGE_SIZE);
if (!nf_info) {
dp_err("failed to allocate nbuf array");
DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
QDF_BUG(0);
return QDF_STATUS_E_NOMEM;
}
nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*nf_info);
for (page_idx = 0; page_idx < total_pages; page_idx++) {
qdf_mem_zero(nf_info, PAGE_SIZE);
for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
/*
* The last page of buffer pointers may not be required
* completely based on the number of descriptors. Below
* check will ensure we are allocating only the
* required number of descriptors.
*/
if (nr_nbuf_total >= nr_descs)
break;
/* Flag is set while pdev rx_desc_pool initialization */
if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
ret = dp_pdev_frag_alloc_and_map(dp_soc,
&nf_info[nr_nbuf], dp_pdev,
rx_desc_pool);
else
ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
&nf_info[nr_nbuf], dp_pdev,
rx_desc_pool);
if (QDF_IS_STATUS_ERROR(ret))
break;
nr_nbuf_total++;
}
hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
rxdma_ring_entry =
hal_srng_src_get_next(dp_soc->hal_soc,
rxdma_srng);
qdf_assert_always(rxdma_ring_entry);
next = desc_list->next;
paddr = nf_info[buffer_index].paddr;
nbuf = nf_info[buffer_index].virt_addr.nbuf;
/* Flag is set while pdev rx_desc_pool initialization */
if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
dp_rx_desc_frag_prep(&desc_list->rx_desc,
&nf_info[buffer_index]);
else
dp_rx_desc_prep(&desc_list->rx_desc,
&nf_info[buffer_index]);
desc_list->rx_desc.in_use = 1;
dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
__func__,
RX_DESC_REPLENISHED);
hal_rxdma_buff_addr_info_set(dp_soc->hal_soc ,rxdma_ring_entry, paddr,
desc_list->rx_desc.cookie,
rx_desc_pool->owner);
dp_ipa_handle_rx_buf_smmu_mapping(
dp_soc, nbuf,
rx_desc_pool->buf_size,
true);
desc_list = next;
}
dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id,
rxdma_srng, nr_nbuf, nr_nbuf);
hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
}
dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
qdf_mem_free(nf_info);
if (!nr_nbuf_total) {
dp_err("No nbuf's allocated");
QDF_BUG(0);
return QDF_STATUS_E_RESOURCES;
}
/* No need to count the number of bytes received during replenish.
* Therefore set replenish.pkts.bytes as 0.
*/
DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
return QDF_STATUS_SUCCESS;
}
qdf_export_symbol(dp_pdev_rx_buffers_attach);
/**
* dp_rx_enable_mon_dest_frag() - Enable frag processing for
* monitor destination ring via frag.
*
* Enable this flag only for monitor destination buffer processing
* if DP_RX_MON_MEM_FRAG feature is enabled.
* If flag is set then frag based function will be called for alloc,
* map, prep desc and free ops for desc buffer else normal nbuf based
* function will be called.
*
* @rx_desc_pool: Rx desc pool
* @is_mon_dest_desc: Is it for monitor dest buffer
*
* Return: None
*/
#ifdef DP_RX_MON_MEM_FRAG
void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
bool is_mon_dest_desc)
{
rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
if (is_mon_dest_desc)
dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled");
}
#else
void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
bool is_mon_dest_desc)
{
rx_desc_pool->rx_mon_dest_frag_enable = false;
if (is_mon_dest_desc)
dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled");
}
#endif
qdf_export_symbol(dp_rx_enable_mon_dest_frag);
/*
* dp_rx_pdev_desc_pool_alloc() - allocate memory for software rx descriptor
* pool
*
* @pdev: core txrx pdev context
*
* Return: QDF_STATUS - QDF_STATUS_SUCCESS
* QDF_STATUS_E_NOMEM
*/
QDF_STATUS
dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
{
struct dp_soc *soc = pdev->soc;
uint32_t rxdma_entries;
uint32_t rx_sw_desc_num;
struct dp_srng *dp_rxdma_srng;
struct rx_desc_pool *rx_desc_pool;
uint32_t status = QDF_STATUS_SUCCESS;
int mac_for_pdev;
mac_for_pdev = pdev->lmac_id;
if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
soc, mac_for_pdev);
return status;
}
dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
rxdma_entries = dp_rxdma_srng->num_entries;
rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
rx_desc_pool->desc_type = DP_RX_DESC_BUF_TYPE;
status = dp_rx_desc_pool_alloc(soc,
rx_sw_desc_num,
rx_desc_pool);
if (status != QDF_STATUS_SUCCESS)
return status;
return status;
}
/*
* dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
*
* @pdev: core txrx pdev context
*/
void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
{
int mac_for_pdev = pdev->lmac_id;
struct dp_soc *soc = pdev->soc;
struct rx_desc_pool *rx_desc_pool;
rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
dp_rx_desc_pool_free(soc, rx_desc_pool);
}
/*
* dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
*
* @pdev: core txrx pdev context
*
* Return: QDF_STATUS - QDF_STATUS_SUCCESS
* QDF_STATUS_E_NOMEM
*/
QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
{
int mac_for_pdev = pdev->lmac_id;
struct dp_soc *soc = pdev->soc;
uint32_t rxdma_entries;
uint32_t rx_sw_desc_num;
struct dp_srng *dp_rxdma_srng;
struct rx_desc_pool *rx_desc_pool;
rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
/**
* If NSS is enabled, rx_desc_pool is already filled.
* Hence, just disable desc_pool frag flag.
*/
dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
soc, mac_for_pdev);
return QDF_STATUS_SUCCESS;
}
if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
return QDF_STATUS_E_NOMEM;
dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
rxdma_entries = dp_rxdma_srng->num_entries;
soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
rx_sw_desc_num =
wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
rx_desc_pool->owner = dp_rx_get_rx_bm_id(soc);
rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
/* Disable monitor dest processing via frag */
dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
dp_rx_desc_pool_init(soc, mac_for_pdev,
rx_sw_desc_num, rx_desc_pool);
return QDF_STATUS_SUCCESS;
}
/*
* dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
* @pdev: core txrx pdev context
*
* This function resets the freelist of rx descriptors and destroys locks
* associated with this list of descriptors.
*/
void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
{
int mac_for_pdev = pdev->lmac_id;
struct dp_soc *soc = pdev->soc;
struct rx_desc_pool *rx_desc_pool;
rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
dp_rx_desc_pool_deinit(soc, rx_desc_pool, mac_for_pdev);
}
/*
* dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
*
* @pdev: core txrx pdev context
*
* Return: QDF_STATUS - QDF_STATUS_SUCCESS
* QDF_STATUS_E_NOMEM
*/
QDF_STATUS
dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
{
int mac_for_pdev = pdev->lmac_id;
struct dp_soc *soc = pdev->soc;
struct dp_srng *dp_rxdma_srng;
struct rx_desc_pool *rx_desc_pool;
uint32_t rxdma_entries;
dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
rxdma_entries = dp_rxdma_srng->num_entries;
rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
/* Initialize RX buffer pool which will be
* used during low memory conditions
*/
dp_rx_buffer_pool_init(soc, mac_for_pdev);
return dp_pdev_rx_buffers_attach_simple(soc, mac_for_pdev,
dp_rxdma_srng,
rx_desc_pool,
rxdma_entries - 1);
}
/*
* dp_rx_pdev_buffers_free - Free nbufs (skbs)
*
* @pdev: core txrx pdev context
*/
void
dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
{
int mac_for_pdev = pdev->lmac_id;
struct dp_soc *soc = pdev->soc;
struct rx_desc_pool *rx_desc_pool;
rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
dp_rx_desc_nbuf_free(soc, rx_desc_pool);
dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
}
#ifdef DP_RX_SPECIAL_FRAME_NEED
bool dp_rx_deliver_special_frame(struct dp_soc *soc,
struct dp_txrx_peer *txrx_peer,
qdf_nbuf_t nbuf, uint32_t frame_mask,
uint8_t *rx_tlv_hdr)
{
uint32_t l2_hdr_offset = 0;
uint16_t msdu_len = 0;
uint32_t skip_len;
l2_hdr_offset =
hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
skip_len = l2_hdr_offset;
} else {
msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
skip_len = l2_hdr_offset + soc->rx_pkt_tlv_size;
qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
}
QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
qdf_nbuf_pull_head(nbuf, skip_len);
if (dp_rx_is_special_frame(nbuf, frame_mask)) {
dp_info("special frame, mpdu sn 0x%x",
hal_rx_get_rx_sequence(soc->hal_soc, rx_tlv_hdr));
qdf_nbuf_set_exc_frame(nbuf, 1);
dp_rx_deliver_to_stack(soc, txrx_peer->vdev, txrx_peer,
nbuf, NULL);
return true;
}
return false;
}
#endif