btpower.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2021 Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. /*
  7. * Bluetooth Power Switch Module
  8. * controls power to external Bluetooth device
  9. * with interface to power management device
  10. */
  11. #include <linux/init.h>
  12. #include <linux/module.h>
  13. #include <linux/kernel.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/rfkill.h>
  16. #include <linux/gpio.h>
  17. #include <linux/of_gpio.h>
  18. #include <linux/delay.h>
  19. #include <linux/slab.h>
  20. #include <linux/regulator/consumer.h>
  21. #include <linux/clk.h>
  22. #include <linux/uaccess.h>
  23. #include <linux/of_device.h>
  24. #include <soc/qcom/cmd-db.h>
  25. #include "btpower.h"
  26. #if (defined CONFIG_BT_SLIM)
  27. #include "btfm_slim.h"
  28. #endif
  29. #include <linux/fs.h>
  30. #define PWR_SRC_NOT_AVAILABLE -2
  31. #define DEFAULT_INVALID_VALUE -1
  32. #define PWR_SRC_INIT_STATE_IDX 0
  33. #define BTPOWER_MBOX_MSG_MAX_LEN 64
  34. #define BTPOWER_MBOX_TIMEOUT_MS 1000
  35. #define XO_CLK_RETRY_COUNT_MAX 5
  36. /**
  37. * enum btpower_vreg_param: Voltage regulator TCS param
  38. * @BTPOWER_VREG_VOLTAGE: Provides voltage level to be configured in TCS
  39. * @BTPOWER_VREG_MODE: Regulator mode
  40. * @BTPOWER_VREG_TCS_ENABLE: Set Voltage regulator enable config in TCS
  41. */
  42. enum btpower_vreg_param {
  43. BTPOWER_VREG_VOLTAGE,
  44. BTPOWER_VREG_MODE,
  45. BTPOWER_VREG_ENABLE,
  46. };
  47. /**
  48. * enum btpower_tcs_seq: TCS sequence ID for trigger
  49. * BTPOWER_TCS_UP_SEQ: TCS Sequence based on up trigger / Wake TCS
  50. * BTPOWER_TCS_DOWN_SEQ: TCS Sequence based on down trigger / Sleep TCS
  51. * BTPOWER_TCS_ALL_SEQ: Update for both up and down triggers
  52. */
  53. enum btpower_tcs_seq {
  54. BTPOWER_TCS_UP_SEQ,
  55. BTPOWER_TCS_DOWN_SEQ,
  56. BTPOWER_TCS_ALL_SEQ,
  57. };
  58. enum power_src_pos {
  59. BT_RESET_GPIO = PWR_SRC_INIT_STATE_IDX,
  60. BT_SW_CTRL_GPIO,
  61. BT_VDD_AON_LDO,
  62. BT_VDD_DIG_LDO,
  63. BT_VDD_RFA1_LDO,
  64. BT_VDD_RFA2_LDO,
  65. BT_VDD_ASD_LDO,
  66. BT_VDD_XTAL_LDO,
  67. BT_VDD_PA_LDO,
  68. BT_VDD_CORE_LDO,
  69. BT_VDD_IO_LDO,
  70. BT_VDD_LDO,
  71. BT_VDD_RFA_0p8,
  72. BT_VDD_RFACMN,
  73. // these indexes GPIOs/regs value are fetched during crash.
  74. BT_RESET_GPIO_CURRENT,
  75. BT_SW_CTRL_GPIO_CURRENT,
  76. BT_VDD_AON_LDO_CURRENT,
  77. BT_VDD_DIG_LDO_CURRENT,
  78. BT_VDD_RFA1_LDO_CURRENT,
  79. BT_VDD_RFA2_LDO_CURRENT,
  80. BT_VDD_ASD_LDO_CURRENT,
  81. BT_VDD_XTAL_LDO_CURRENT,
  82. BT_VDD_PA_LDO_CURRENT,
  83. BT_VDD_CORE_LDO_CURRENT,
  84. BT_VDD_IO_LDO_CURRENT,
  85. BT_VDD_LDO_CURRENT,
  86. BT_VDD_RFA_0p8_CURRENT,
  87. BT_VDD_RFACMN_CURRENT,
  88. BT_VDD_IPA_2p2,
  89. BT_VDD_IPA_2p2_CURRENT,
  90. /* The below bucks are voted for HW WAR on some platform which supports
  91. * WNC39xx.
  92. */
  93. BT_VDD_SMPS,
  94. BT_VDD_SMPS_CURRENT,
  95. /* New entries need to be added before PWR_SRC_SIZE.
  96. * Its hold the max size of power sources states.
  97. */
  98. BT_POWER_SRC_SIZE,
  99. };
  100. // Regulator structure for QCA6174/QCA9377/QCA9379 BT SoC series
  101. static struct bt_power_vreg_data bt_vregs_info_qca61x4_937x[] = {
  102. {NULL, "qcom,bt-vdd-aon", 928000, 928000, 0, false, false,
  103. {BT_VDD_AON_LDO, BT_VDD_AON_LDO_CURRENT}},
  104. {NULL, "qcom,bt-vdd-io", 1710000, 3460000, 0, false, false,
  105. {BT_VDD_IO_LDO, BT_VDD_IO_LDO_CURRENT}},
  106. {NULL, "qcom,bt-vdd-core", 3135000, 3465000, 0, false, false,
  107. {BT_VDD_CORE_LDO, BT_VDD_CORE_LDO_CURRENT}},
  108. };
  109. // Regulator structure for QCA6390,QCA6490 and WCN6750 BT SoC series
  110. static struct bt_power_vreg_data bt_vregs_info_qca6xx0[] = {
  111. {NULL, "qcom,bt-vdd-io", 1800000, 1800000, 0, false, true,
  112. {BT_VDD_IO_LDO, BT_VDD_IO_LDO_CURRENT}},
  113. {NULL, "qcom,bt-vdd-aon", 966000, 966000, 0, false, true,
  114. {BT_VDD_AON_LDO, BT_VDD_AON_LDO_CURRENT}},
  115. {NULL, "qcom,bt-vdd-rfacmn", 950000, 950000, 0, false, true,
  116. {BT_VDD_RFACMN, BT_VDD_RFACMN_CURRENT}},
  117. /* BT_CX_MX */
  118. {NULL, "qcom,bt-vdd-dig", 966000, 966000, 0, false, true,
  119. {BT_VDD_DIG_LDO, BT_VDD_DIG_LDO_CURRENT}},
  120. {NULL, "qcom,bt-vdd-rfa-0p8", 950000, 952000, 0, false, true,
  121. {BT_VDD_RFA_0p8, BT_VDD_RFA_0p8_CURRENT}},
  122. {NULL, "qcom,bt-vdd-rfa1", 1900000, 1900000, 0, false, true,
  123. {BT_VDD_RFA1_LDO, BT_VDD_RFA1_LDO_CURRENT}},
  124. {NULL, "qcom,bt-vdd-rfa2", 1900000, 1900000, 0, false, true,
  125. {BT_VDD_RFA2_LDO, BT_VDD_RFA2_LDO_CURRENT}},
  126. {NULL, "qcom,bt-vdd-asd", 2800000, 2800000, 0, false, true,
  127. {BT_VDD_ASD_LDO, BT_VDD_ASD_LDO_CURRENT}},
  128. {NULL, "qcom,bt-vdd-ipa-2p2", 2200000, 2210000, 0, false, true,
  129. {BT_VDD_IPA_2p2, BT_VDD_IPA_2p2_CURRENT}},
  130. };
  131. // Regulator structure for kiwi BT SoC series
  132. static struct bt_power_vreg_data bt_vregs_info_kiwi[] = {
  133. {NULL, "qcom,bt-vdd18-aon", 1800000, 1800000, 0, false, true,
  134. {BT_VDD_IO_LDO, BT_VDD_IO_LDO_CURRENT}},
  135. {NULL, "qcom,bt-vdd-aon", 950000, 950000, 0, false, true,
  136. {BT_VDD_AON_LDO, BT_VDD_AON_LDO_CURRENT}},
  137. {NULL, "qcom,bt-vdd-rfaOp8", 950000, 950000, 0, false, true,
  138. {BT_VDD_RFACMN, BT_VDD_RFACMN_CURRENT}},
  139. /* BT_CX_MX */
  140. {NULL, "qcom,bt-vdd-dig", 950000, 950000, 0, false, true,
  141. {BT_VDD_DIG_LDO, BT_VDD_DIG_LDO_CURRENT}},
  142. {NULL, "qcom,bt-vdd-rfaOp8", 950000, 952000, 0, false, true,
  143. {BT_VDD_RFA_0p8, BT_VDD_RFA_0p8_CURRENT}},
  144. {NULL, "qcom,bt-vdd-rfa1", 1350000, 1350000, 0, false, true,
  145. {BT_VDD_RFA1_LDO, BT_VDD_RFA1_LDO_CURRENT}},
  146. {NULL, "qcom,bt-vdd-rfa2", 1900000, 1900000, 0, false, true,
  147. {BT_VDD_RFA2_LDO, BT_VDD_RFA2_LDO_CURRENT}},
  148. };
  149. // Regulator structure for WCN399x BT SoC series
  150. static struct bt_power bt_vreg_info_wcn399x = {
  151. .compatible = "qcom,wcn3990",
  152. .vregs = (struct bt_power_vreg_data []) {
  153. {NULL, "qcom,bt-vdd-smps", 984000, 984000, 0, false, false,
  154. {BT_VDD_SMPS, BT_VDD_SMPS_CURRENT}},
  155. {NULL, "qcom,bt-vdd-io", 1700000, 1900000, 0, false, false,
  156. {BT_VDD_IO_LDO, BT_VDD_IO_LDO_CURRENT}},
  157. {NULL, "qcom,bt-vdd-core", 1304000, 1304000, 0, false, false,
  158. {BT_VDD_CORE_LDO, BT_VDD_CORE_LDO_CURRENT}},
  159. {NULL, "qcom,bt-vdd-pa", 3000000, 3312000, 0, false, false,
  160. {BT_VDD_PA_LDO, BT_VDD_PA_LDO_CURRENT}},
  161. {NULL, "qcom,bt-vdd-xtal", 1700000, 1900000, 0, false, false,
  162. {BT_VDD_XTAL_LDO, BT_VDD_XTAL_LDO_CURRENT}},
  163. },
  164. .num_vregs = 5,
  165. };
  166. static struct bt_power bt_vreg_info_qca6174 = {
  167. .compatible = "qcom,qca6174",
  168. .vregs = bt_vregs_info_qca61x4_937x,
  169. .num_vregs = ARRAY_SIZE(bt_vregs_info_qca61x4_937x),
  170. };
  171. static struct bt_power bt_vreg_info_qca6390 = {
  172. .compatible = "qcom,qca6390",
  173. .vregs = bt_vregs_info_qca6xx0,
  174. .num_vregs = ARRAY_SIZE(bt_vregs_info_qca6xx0),
  175. };
  176. static struct bt_power bt_vreg_info_qca6490 = {
  177. .compatible = "qcom,qca6490",
  178. .vregs = bt_vregs_info_qca6xx0,
  179. .num_vregs = ARRAY_SIZE(bt_vregs_info_qca6xx0),
  180. };
  181. static struct bt_power bt_vreg_info_kiwi = {
  182. .compatible = "qcom,kiwi",
  183. .vregs = bt_vregs_info_kiwi,
  184. .num_vregs = ARRAY_SIZE(bt_vregs_info_kiwi),
  185. };
  186. static struct bt_power bt_vreg_info_wcn6750 = {
  187. .compatible = "qcom,wcn6750-bt",
  188. .vregs = bt_vregs_info_qca6xx0,
  189. .num_vregs = ARRAY_SIZE(bt_vregs_info_qca6xx0),
  190. };
  191. static const struct of_device_id bt_power_match_table[] = {
  192. { .compatible = "qcom,qca6174", .data = &bt_vreg_info_qca6174},
  193. { .compatible = "qcom,wcn3990", .data = &bt_vreg_info_wcn399x},
  194. { .compatible = "qcom,qca6390", .data = &bt_vreg_info_qca6390},
  195. { .compatible = "qcom,qca6490", .data = &bt_vreg_info_qca6490},
  196. { .compatible = "qcom,kiwi", .data = &bt_vreg_info_kiwi},
  197. { .compatible = "qcom,wcn6750-bt", .data = &bt_vreg_info_wcn6750},
  198. {},
  199. };
  200. static int bt_power_vreg_set(enum bt_power_modes mode);
  201. static int btpower_enable_ipa_vreg(struct btpower_platform_data *pdata);
  202. static int bt_power_src_status[BT_POWER_SRC_SIZE];
  203. static struct btpower_platform_data *bt_power_pdata;
  204. static bool previous;
  205. static int pwr_state;
  206. static struct class *bt_class;
  207. static int bt_major;
  208. static int soc_id;
  209. static bool probe_finished;
  210. #ifdef CONFIG_MSM_BT_OOBS
  211. static void btpower_uart_transport_locked(struct btpower_platform_data *drvdata,
  212. bool locked)
  213. {
  214. pr_debug("%s: %s\n", __func__, (locked ? "busy" : "idle"));
  215. }
  216. static irqreturn_t btpower_host_wake_isr(int irq, void *data)
  217. {
  218. struct btpower_platform_data *drvdata = data;
  219. int host_waking = gpio_get_value(drvdata->bt_gpio_host_wake);
  220. struct kernel_siginfo siginfo;
  221. int rc = 0;
  222. pr_debug("%s: bt-hostwake-gpio(%d) IRQ(%d) value(%d)\n", __func__,
  223. drvdata->bt_gpio_host_wake, drvdata->irq, host_waking);
  224. if (drvdata->reftask_obs == NULL) {
  225. pr_info("%s: ignore BT-HOSTWAKE IRQ\n", __func__);
  226. return IRQ_HANDLED;
  227. }
  228. // Sending signal to HAL layer
  229. memset(&siginfo, 0, sizeof(siginfo));
  230. siginfo.si_signo = SIGIO;
  231. siginfo.si_code = SI_QUEUE;
  232. siginfo.si_int = host_waking;
  233. rc = send_sig_info(siginfo.si_signo, &siginfo, drvdata->reftask_obs);
  234. if (rc < 0) {
  235. pr_err("%s: failed (%d) to send SIG to HAL(%d)\n", __func__,
  236. rc, drvdata->reftask_obs->pid);
  237. }
  238. return IRQ_HANDLED;
  239. }
  240. #endif
  241. static int bt_vreg_enable(struct bt_power_vreg_data *vreg)
  242. {
  243. int rc = 0;
  244. pr_debug("%s: vreg_en for : %s\n", __func__, vreg->name);
  245. if (!vreg->is_enabled) {
  246. if ((vreg->min_vol != 0) && (vreg->max_vol != 0)) {
  247. rc = regulator_set_voltage(vreg->reg,
  248. vreg->min_vol,
  249. vreg->max_vol);
  250. if (rc < 0) {
  251. pr_err("%s: regulator_set_voltage(%s) failed rc=%d\n",
  252. __func__, vreg->name, rc);
  253. goto out;
  254. }
  255. }
  256. if (vreg->load_curr >= 0) {
  257. rc = regulator_set_load(vreg->reg,
  258. vreg->load_curr);
  259. if (rc < 0) {
  260. pr_err("%s: regulator_set_load(%s) failed rc=%d\n",
  261. __func__, vreg->name, rc);
  262. goto out;
  263. }
  264. }
  265. rc = regulator_enable(vreg->reg);
  266. if (rc < 0) {
  267. pr_err("%s: regulator_enable(%s) failed. rc=%d\n",
  268. __func__, vreg->name, rc);
  269. goto out;
  270. }
  271. vreg->is_enabled = true;
  272. }
  273. out:
  274. return rc;
  275. }
  276. static int bt_vreg_enable_retention(struct bt_power_vreg_data *vreg)
  277. {
  278. int rc = 0;
  279. if (!vreg)
  280. return rc;
  281. pr_debug("%s: enable_retention for : %s\n", __func__, vreg->name);
  282. if ((vreg->is_enabled) && (vreg->is_retention_supp)) {
  283. if ((vreg->min_vol != 0) && (vreg->max_vol != 0)) {
  284. /* Set the min voltage to 0 */
  285. rc = regulator_set_voltage(vreg->reg, 0, vreg->max_vol);
  286. if (rc < 0) {
  287. pr_err("%s: regulator_set_voltage(%s) failed rc=%d\n",
  288. __func__, vreg->name, rc);
  289. goto out;
  290. }
  291. }
  292. if (vreg->load_curr >= 0) {
  293. rc = regulator_set_load(vreg->reg, 0);
  294. if (rc < 0) {
  295. pr_err("%s: regulator_set_load(%s) failed rc=%d\n",
  296. __func__, vreg->name, rc);
  297. }
  298. }
  299. }
  300. out:
  301. return rc;
  302. }
  303. static int bt_vreg_disable(struct bt_power_vreg_data *vreg)
  304. {
  305. int rc = 0;
  306. if (!vreg)
  307. return rc;
  308. pr_debug("%s for : %s\n", __func__, vreg->name);
  309. if (vreg->is_enabled) {
  310. rc = regulator_disable(vreg->reg);
  311. if (rc < 0) {
  312. pr_err("%s, regulator_disable(%s) failed. rc=%d\n",
  313. __func__, vreg->name, rc);
  314. goto out;
  315. }
  316. vreg->is_enabled = false;
  317. if ((vreg->min_vol != 0) && (vreg->max_vol != 0)) {
  318. /* Set the min voltage to 0 */
  319. rc = regulator_set_voltage(vreg->reg, 0,
  320. vreg->max_vol);
  321. if (rc < 0) {
  322. pr_err("%s: regulator_set_voltage(%s) failed rc=%d\n",
  323. __func__, vreg->name, rc);
  324. goto out;
  325. }
  326. }
  327. if (vreg->load_curr >= 0) {
  328. rc = regulator_set_load(vreg->reg, 0);
  329. if (rc < 0) {
  330. pr_err("%s: regulator_set_load(%s) failed rc=%d\n",
  331. __func__, vreg->name, rc);
  332. }
  333. }
  334. }
  335. out:
  336. return rc;
  337. }
  338. static int bt_clk_enable(struct bt_power_clk_data *clk)
  339. {
  340. int rc = 0;
  341. pr_info("%s: %s\n", __func__, clk->name);
  342. /* Get the clock handle for vreg */
  343. if (!clk->clk || clk->is_enabled) {
  344. pr_err("%s: error - node: %p, clk->is_enabled:%d\n",
  345. __func__, clk->clk, clk->is_enabled);
  346. return -EINVAL;
  347. }
  348. rc = clk_prepare_enable(clk->clk);
  349. if (rc) {
  350. pr_err("%s: failed to enable %s, rc(%d)\n",
  351. __func__, clk->name, rc);
  352. return rc;
  353. }
  354. clk->is_enabled = true;
  355. return rc;
  356. }
  357. static int bt_clk_disable(struct bt_power_clk_data *clk)
  358. {
  359. int rc = 0;
  360. pr_debug("%s: %s\n", __func__, clk->name);
  361. /* Get the clock handle for vreg */
  362. if (!clk->clk || !clk->is_enabled) {
  363. pr_err("%s: error - node: %p, clk->is_enabled:%d\n",
  364. __func__, clk->clk, clk->is_enabled);
  365. return -EINVAL;
  366. }
  367. clk_disable_unprepare(clk->clk);
  368. clk->is_enabled = false;
  369. return rc;
  370. }
  371. static void btpower_set_xo_clk_gpio_state(bool enable)
  372. {
  373. int xo_clk_gpio = bt_power_pdata->xo_gpio_clk;
  374. int retry = 0;
  375. int rc = 0;
  376. if (xo_clk_gpio < 0)
  377. return;
  378. retry_gpio_req:
  379. rc = gpio_request(xo_clk_gpio, "bt_xo_clk_gpio");
  380. if (rc) {
  381. if (retry++ < XO_CLK_RETRY_COUNT_MAX) {
  382. /* wait for ~(10 - 20) ms */
  383. usleep_range(10000, 20000);
  384. goto retry_gpio_req;
  385. }
  386. }
  387. if (rc) {
  388. pr_err("%s: unable to request XO clk gpio %d (%d)\n",
  389. __func__, xo_clk_gpio, rc);
  390. return;
  391. }
  392. if (enable) {
  393. gpio_direction_output(xo_clk_gpio, 1);
  394. /*XO CLK must be asserted for some time before BT_EN */
  395. usleep_range(100, 200);
  396. } else {
  397. /* Assert XO CLK ~(2-5)ms before off for valid latch in HW */
  398. usleep_range(4000, 6000);
  399. gpio_direction_output(xo_clk_gpio, 0);
  400. }
  401. pr_info("%s:gpio(%d) success\n", __func__, xo_clk_gpio);
  402. gpio_free(xo_clk_gpio);
  403. }
  404. #ifdef CONFIG_MSM_BT_OOBS
  405. void bt_configure_wakeup_gpios(int on)
  406. {
  407. int bt_gpio_dev_wake = bt_power_pdata->bt_gpio_dev_wake;
  408. int bt_host_wake_gpio = bt_power_pdata->bt_gpio_host_wake;
  409. int rc;
  410. if (on) {
  411. if (gpio_is_valid(bt_gpio_dev_wake)) {
  412. gpio_set_value(bt_gpio_dev_wake, 1);
  413. pr_debug("%s: BT-ON asserting BT_WAKE(%d)\n", __func__,
  414. bt_gpio_dev_wake);
  415. }
  416. if (gpio_is_valid(bt_host_wake_gpio)) {
  417. bt_power_pdata->irq = gpio_to_irq(bt_host_wake_gpio);
  418. pr_debug("%s: BT-ON bt-host_wake-gpio(%d) IRQ(%d)\n",
  419. __func__, bt_host_wake_gpio, bt_power_pdata->irq);
  420. rc = request_irq(bt_power_pdata->irq,
  421. btpower_host_wake_isr,
  422. IRQF_TRIGGER_FALLING |
  423. IRQF_TRIGGER_RISING,
  424. "btpower_hostwake_isr", bt_power_pdata);
  425. if (rc)
  426. pr_err("%s: unable to request IRQ %d (%d)\n",
  427. __func__, bt_host_wake_gpio, rc);
  428. }
  429. } else {
  430. if (gpio_is_valid(bt_host_wake_gpio)) {
  431. pr_debug("%s: BT-OFF bt-hostwake-gpio(%d) IRQ(%d) value(%d)\n",
  432. __func__, bt_host_wake_gpio, bt_power_pdata->irq,
  433. gpio_get_value(bt_host_wake_gpio));
  434. free_irq(bt_power_pdata->irq, bt_power_pdata);
  435. }
  436. if (gpio_is_valid(bt_gpio_dev_wake))
  437. gpio_set_value(bt_gpio_dev_wake, 0);
  438. }
  439. }
  440. #endif
  441. static int bt_configure_gpios(int on)
  442. {
  443. int rc = 0;
  444. int bt_reset_gpio = bt_power_pdata->bt_gpio_sys_rst;
  445. int wl_reset_gpio = bt_power_pdata->wl_gpio_sys_rst;
  446. int bt_sw_ctrl_gpio = bt_power_pdata->bt_gpio_sw_ctrl;
  447. int bt_debug_gpio = bt_power_pdata->bt_gpio_debug;
  448. int assert_dbg_gpio = 0;
  449. if (on) {
  450. rc = gpio_request(bt_reset_gpio, "bt_sys_rst_n");
  451. if (rc) {
  452. pr_err("%s: unable to request gpio %d (%d)\n",
  453. __func__, bt_reset_gpio, rc);
  454. return rc;
  455. }
  456. pr_info("BTON:Turn Bt OFF asserting BT_EN to low\n");
  457. pr_info("bt-reset-gpio(%d) value(%d)\n", bt_reset_gpio,
  458. gpio_get_value(bt_reset_gpio));
  459. rc = gpio_direction_output(bt_reset_gpio, 0);
  460. if (rc) {
  461. pr_err("%s: Unable to set direction\n", __func__);
  462. return rc;
  463. }
  464. bt_power_src_status[BT_RESET_GPIO] =
  465. gpio_get_value(bt_reset_gpio);
  466. msleep(50);
  467. pr_info("BTON:Turn Bt OFF post asserting BT_EN to low\n");
  468. pr_info("bt-reset-gpio(%d) value(%d)\n", bt_reset_gpio,
  469. gpio_get_value(bt_reset_gpio));
  470. if (bt_sw_ctrl_gpio >= 0) {
  471. bt_power_src_status[BT_SW_CTRL_GPIO] =
  472. gpio_get_value(bt_sw_ctrl_gpio);
  473. pr_info("BTON:Turn Bt OFF bt-sw-ctrl-gpio(%d) value(%d)\n",
  474. bt_sw_ctrl_gpio,
  475. bt_power_src_status[BT_SW_CTRL_GPIO]);
  476. }
  477. if (wl_reset_gpio >= 0)
  478. pr_info("BTON:Turn Bt ON wl-reset-gpio(%d) value(%d)\n",
  479. wl_reset_gpio, gpio_get_value(wl_reset_gpio));
  480. if ((wl_reset_gpio < 0) ||
  481. ((wl_reset_gpio >= 0) && gpio_get_value(wl_reset_gpio))) {
  482. btpower_set_xo_clk_gpio_state(true);
  483. pr_info("BTON: WLAN ON Asserting BT_EN to high\n");
  484. rc = gpio_direction_output(bt_reset_gpio, 1);
  485. if (rc) {
  486. pr_err("%s: Unable to set direction\n", __func__);
  487. return rc;
  488. }
  489. bt_power_src_status[BT_RESET_GPIO] =
  490. gpio_get_value(bt_reset_gpio);
  491. btpower_set_xo_clk_gpio_state(false);
  492. }
  493. if ((wl_reset_gpio >= 0) && (gpio_get_value(wl_reset_gpio) == 0)) {
  494. if (gpio_get_value(bt_reset_gpio)) {
  495. pr_info("BTON: WLAN OFF and BT ON are too close\n");
  496. pr_info("reset BT_EN, enable it after delay\n");
  497. rc = gpio_direction_output(bt_reset_gpio, 0);
  498. if (rc) {
  499. pr_err("%s: Unable to set direction\n",
  500. __func__);
  501. return rc;
  502. }
  503. bt_power_src_status[BT_RESET_GPIO] =
  504. gpio_get_value(bt_reset_gpio);
  505. }
  506. pr_info("BTON: WLAN OFF waiting for 100ms delay\n");
  507. pr_info("for AON output to fully discharge\n");
  508. msleep(100);
  509. pr_info("BTON: WLAN OFF Asserting BT_EN to high\n");
  510. btpower_set_xo_clk_gpio_state(true);
  511. rc = gpio_direction_output(bt_reset_gpio, 1);
  512. if (rc) {
  513. pr_err("%s: Unable to set direction\n", __func__);
  514. return rc;
  515. }
  516. bt_power_src_status[BT_RESET_GPIO] =
  517. gpio_get_value(bt_reset_gpio);
  518. btpower_set_xo_clk_gpio_state(false);
  519. }
  520. /* Below block of code executes if WL_EN is pulled high when
  521. * BT_EN is about to pull high. so above two if conditions are
  522. * not executed.
  523. */
  524. if (!gpio_get_value(bt_reset_gpio)) {
  525. btpower_set_xo_clk_gpio_state(true);
  526. pr_info("BTON: WLAN ON and BT ON are too close\n");
  527. pr_info("Asserting BT_EN to high\n");
  528. rc = gpio_direction_output(bt_reset_gpio, 1);
  529. if (rc) {
  530. pr_err("%s: Unable to set direction\n", __func__);
  531. return rc;
  532. }
  533. bt_power_src_status[BT_RESET_GPIO] =
  534. gpio_get_value(bt_reset_gpio);
  535. btpower_set_xo_clk_gpio_state(false);
  536. }
  537. msleep(50);
  538. #ifdef CONFIG_MSM_BT_OOBS
  539. bt_configure_wakeup_gpios(on);
  540. #endif
  541. /* Check if SW_CTRL is asserted */
  542. if (bt_sw_ctrl_gpio >= 0) {
  543. rc = gpio_direction_input(bt_sw_ctrl_gpio);
  544. if (rc) {
  545. pr_err("%s:SWCTRL Dir Set Problem:%d\n",
  546. __func__, rc);
  547. } else if (!gpio_get_value(bt_sw_ctrl_gpio)) {
  548. /* SW_CTRL not asserted, assert debug GPIO */
  549. if (bt_debug_gpio >= 0)
  550. assert_dbg_gpio = 1;
  551. }
  552. }
  553. if (assert_dbg_gpio) {
  554. rc = gpio_request(bt_debug_gpio, "bt_debug_n");
  555. if (rc) {
  556. pr_err("unable to request Debug Gpio\n");
  557. } else {
  558. rc = gpio_direction_output(bt_debug_gpio, 1);
  559. if (rc)
  560. pr_err("%s:Prob Set Debug-Gpio\n",
  561. __func__);
  562. }
  563. }
  564. pr_info("BTON:Turn Bt On bt-reset-gpio(%d) value(%d)\n",
  565. bt_reset_gpio, gpio_get_value(bt_reset_gpio));
  566. if (bt_sw_ctrl_gpio >= 0) {
  567. bt_power_src_status[BT_SW_CTRL_GPIO] =
  568. gpio_get_value(bt_sw_ctrl_gpio);
  569. pr_info("BTON: Turn BT ON bt-sw-ctrl-gpio(%d) value(%d)\n",
  570. bt_sw_ctrl_gpio,
  571. bt_power_src_status[BT_SW_CTRL_GPIO]);
  572. }
  573. } else {
  574. #ifdef CONFIG_MSM_BT_OOBS
  575. bt_configure_wakeup_gpios(on);
  576. #endif
  577. gpio_set_value(bt_reset_gpio, 0);
  578. msleep(100);
  579. pr_info("BT-OFF:bt-reset-gpio(%d) value(%d)\n",
  580. bt_reset_gpio, gpio_get_value(bt_reset_gpio));
  581. if (bt_sw_ctrl_gpio >= 0) {
  582. pr_info("BT-OFF:bt-sw-ctrl-gpio(%d) value(%d)\n",
  583. bt_sw_ctrl_gpio,
  584. gpio_get_value(bt_sw_ctrl_gpio));
  585. }
  586. }
  587. pr_info("%s: bt_gpio= %d on: %d\n", __func__, bt_reset_gpio, on);
  588. return rc;
  589. }
  590. static int bluetooth_power(int on)
  591. {
  592. int rc = 0;
  593. pr_debug("%s: on: %d\n", __func__, on);
  594. if (on == 1) {
  595. rc = bt_power_vreg_set(BT_POWER_ENABLE);
  596. if (rc < 0) {
  597. pr_err("%s: bt_power regulators config failed\n",
  598. __func__);
  599. goto regulator_fail;
  600. }
  601. /* Parse dt_info and check if a target requires clock voting.
  602. * Enable BT clock when BT is on and disable it when BT is off
  603. */
  604. if (bt_power_pdata->bt_chip_clk) {
  605. rc = bt_clk_enable(bt_power_pdata->bt_chip_clk);
  606. if (rc < 0) {
  607. pr_err("%s: bt_power gpio config failed\n",
  608. __func__);
  609. goto clk_fail;
  610. }
  611. }
  612. if (bt_power_pdata->bt_gpio_sys_rst > 0) {
  613. bt_power_src_status[BT_RESET_GPIO] =
  614. DEFAULT_INVALID_VALUE;
  615. bt_power_src_status[BT_SW_CTRL_GPIO] =
  616. DEFAULT_INVALID_VALUE;
  617. rc = bt_configure_gpios(on);
  618. if (rc < 0) {
  619. pr_err("%s: bt_power gpio config failed\n",
  620. __func__);
  621. goto gpio_fail;
  622. }
  623. }
  624. } else if (on == 0) {
  625. // Power Off
  626. if (bt_power_pdata->bt_gpio_sys_rst > 0)
  627. bt_configure_gpios(on);
  628. gpio_fail:
  629. if (bt_power_pdata->bt_gpio_sys_rst > 0)
  630. gpio_free(bt_power_pdata->bt_gpio_sys_rst);
  631. if (bt_power_pdata->bt_gpio_debug > 0)
  632. gpio_free(bt_power_pdata->bt_gpio_debug);
  633. if (bt_power_pdata->bt_chip_clk)
  634. bt_clk_disable(bt_power_pdata->bt_chip_clk);
  635. clk_fail:
  636. regulator_fail:
  637. bt_power_vreg_set(BT_POWER_DISABLE);
  638. } else if (on == 2) {
  639. /* Retention mode */
  640. bt_power_vreg_set(BT_POWER_RETENTION);
  641. } else {
  642. pr_err("%s: Invalid power mode: %d\n", __func__, on);
  643. rc = -1;
  644. }
  645. return rc;
  646. }
  647. static int btpower_toggle_radio(void *data, bool blocked)
  648. {
  649. int ret = 0;
  650. int (*power_control)(int enable);
  651. power_control =
  652. ((struct btpower_platform_data *)data)->bt_power_setup;
  653. if (previous != blocked)
  654. ret = (*power_control)(!blocked);
  655. if (!ret)
  656. previous = blocked;
  657. return ret;
  658. }
  659. static const struct rfkill_ops btpower_rfkill_ops = {
  660. .set_block = btpower_toggle_radio,
  661. };
  662. static ssize_t extldo_show(struct device *dev, struct device_attribute *attr,
  663. char *buf)
  664. {
  665. return scnprintf(buf, 6, "false\n");
  666. }
  667. static DEVICE_ATTR_RO(extldo);
  668. static int btpower_rfkill_probe(struct platform_device *pdev)
  669. {
  670. struct rfkill *rfkill;
  671. int ret;
  672. rfkill = rfkill_alloc("bt_power", &pdev->dev, RFKILL_TYPE_BLUETOOTH,
  673. &btpower_rfkill_ops,
  674. pdev->dev.platform_data);
  675. if (!rfkill) {
  676. dev_err(&pdev->dev, "rfkill allocate failed\n");
  677. return -ENOMEM;
  678. }
  679. /* add file into rfkill0 to handle LDO27 */
  680. ret = device_create_file(&pdev->dev, &dev_attr_extldo);
  681. if (ret < 0)
  682. pr_err("%s: device create file error\n", __func__);
  683. /* force Bluetooth off during init to allow for user control */
  684. rfkill_init_sw_state(rfkill, 1);
  685. previous = true;
  686. ret = rfkill_register(rfkill);
  687. if (ret) {
  688. dev_err(&pdev->dev, "rfkill register failed=%d\n", ret);
  689. rfkill_destroy(rfkill);
  690. return ret;
  691. }
  692. platform_set_drvdata(pdev, rfkill);
  693. return 0;
  694. }
  695. static void btpower_rfkill_remove(struct platform_device *pdev)
  696. {
  697. struct rfkill *rfkill;
  698. pr_debug("%s\n", __func__);
  699. rfkill = platform_get_drvdata(pdev);
  700. if (rfkill)
  701. rfkill_unregister(rfkill);
  702. rfkill_destroy(rfkill);
  703. platform_set_drvdata(pdev, NULL);
  704. }
  705. #define MAX_PROP_SIZE 32
  706. static int bt_dt_parse_vreg_info(struct device *dev,
  707. struct bt_power_vreg_data *vreg_data)
  708. {
  709. int len, ret = 0;
  710. const __be32 *prop;
  711. char prop_name[MAX_PROP_SIZE];
  712. struct bt_power_vreg_data *vreg = vreg_data;
  713. struct device_node *np = dev->of_node;
  714. const char *vreg_name = vreg_data->name;
  715. pr_debug("%s: vreg dev tree parse for %s\n", __func__, vreg_name);
  716. snprintf(prop_name, sizeof(prop_name), "%s-supply", vreg_name);
  717. if (of_parse_phandle(np, prop_name, 0)) {
  718. vreg->reg = regulator_get(dev, vreg_name);
  719. if (IS_ERR(vreg->reg)) {
  720. ret = PTR_ERR(vreg->reg);
  721. vreg->reg = NULL;
  722. pr_warn("%s: failed to get: %s error:%d\n", __func__,
  723. vreg_name, ret);
  724. return ret;
  725. }
  726. snprintf(prop_name, sizeof(prop_name), "%s-config", vreg->name);
  727. prop = of_get_property(dev->of_node, prop_name, &len);
  728. if (!prop || len != (4 * sizeof(__be32))) {
  729. pr_debug("%s: Property %s %s, use default\n",
  730. __func__, prop_name,
  731. prop ? "invalid format" : "doesn't exist");
  732. } else {
  733. vreg->min_vol = be32_to_cpup(&prop[0]);
  734. vreg->max_vol = be32_to_cpup(&prop[1]);
  735. vreg->load_curr = be32_to_cpup(&prop[2]);
  736. vreg->is_retention_supp = be32_to_cpup(&prop[3]);
  737. }
  738. pr_debug("%s: Got regulator: %s, min_vol: %u, max_vol: %u, load_curr: %u,is_retention_supp: %u\n",
  739. __func__, vreg->name, vreg->min_vol, vreg->max_vol,
  740. vreg->load_curr, vreg->is_retention_supp);
  741. } else {
  742. pr_info("%s: %s is not provided in device tree\n", __func__,
  743. vreg_name);
  744. }
  745. return ret;
  746. }
  747. static int bt_dt_parse_clk_info(struct device *dev,
  748. struct bt_power_clk_data **clk_data)
  749. {
  750. int ret = -EINVAL;
  751. struct bt_power_clk_data *clk = NULL;
  752. struct device_node *np = dev->of_node;
  753. pr_debug("%s\n", __func__);
  754. *clk_data = NULL;
  755. if (of_parse_phandle(np, "clocks", 0)) {
  756. clk = devm_kzalloc(dev, sizeof(*clk), GFP_KERNEL);
  757. if (!clk) {
  758. ret = -ENOMEM;
  759. goto err;
  760. }
  761. /* Allocated 20 bytes size buffer for clock name string */
  762. clk->name = devm_kzalloc(dev, 20, GFP_KERNEL);
  763. /* Parse clock name from node */
  764. ret = of_property_read_string_index(np, "clock-names", 0,
  765. &(clk->name));
  766. if (ret < 0) {
  767. pr_err("%s: reading \"clock-names\" failed\n",
  768. __func__);
  769. return ret;
  770. }
  771. clk->clk = devm_clk_get(dev, clk->name);
  772. if (IS_ERR(clk->clk)) {
  773. ret = PTR_ERR(clk->clk);
  774. pr_err("%s: failed to get %s, ret (%d)\n",
  775. __func__, clk->name, ret);
  776. clk->clk = NULL;
  777. return ret;
  778. }
  779. *clk_data = clk;
  780. } else {
  781. pr_err("%s: clocks is not provided in device tree\n", __func__);
  782. }
  783. err:
  784. return ret;
  785. }
  786. static int bt_power_vreg_get(struct platform_device *pdev)
  787. {
  788. int num_vregs, i = 0, ret = 0;
  789. const struct bt_power *data;
  790. data = of_device_get_match_data(&pdev->dev);
  791. if (!data) {
  792. pr_err("%s: failed to get dev node\n", __func__);
  793. return -EINVAL;
  794. }
  795. memcpy(&bt_power_pdata->compatible, &data->compatible, MAX_PROP_SIZE);
  796. bt_power_pdata->vreg_info = data->vregs;
  797. num_vregs = bt_power_pdata->num_vregs = data->num_vregs;
  798. for (; i < num_vregs; i++) {
  799. ret = bt_dt_parse_vreg_info(&(pdev->dev),
  800. &bt_power_pdata->vreg_info[i]);
  801. /* No point to go further if failed to get regulator handler */
  802. if (ret)
  803. break;
  804. }
  805. return ret;
  806. }
  807. static int bt_power_vreg_set(enum bt_power_modes mode)
  808. {
  809. int num_vregs, i = 0, ret = 0;
  810. int log_indx;
  811. struct bt_power_vreg_data *vreg_info = NULL;
  812. num_vregs = bt_power_pdata->num_vregs;
  813. if (mode == BT_POWER_ENABLE) {
  814. for (; i < num_vregs; i++) {
  815. vreg_info = &bt_power_pdata->vreg_info[i];
  816. log_indx = vreg_info->indx.init;
  817. if (vreg_info->reg) {
  818. bt_power_src_status[log_indx] =
  819. DEFAULT_INVALID_VALUE;
  820. ret = bt_vreg_enable(vreg_info);
  821. if (ret < 0)
  822. goto out;
  823. if (vreg_info->is_enabled) {
  824. bt_power_src_status[log_indx] =
  825. regulator_get_voltage(
  826. vreg_info->reg);
  827. }
  828. }
  829. }
  830. } else if (mode == BT_POWER_DISABLE) {
  831. for (; i < num_vregs; i++) {
  832. vreg_info = &bt_power_pdata->vreg_info[i];
  833. ret = bt_vreg_disable(vreg_info);
  834. }
  835. } else if (mode == BT_POWER_RETENTION) {
  836. for (; i < num_vregs; i++) {
  837. vreg_info = &bt_power_pdata->vreg_info[i];
  838. ret = bt_vreg_enable_retention(vreg_info);
  839. }
  840. } else {
  841. pr_err("%s: Invalid power mode: %d\n", __func__, mode);
  842. ret = -1;
  843. }
  844. out:
  845. return ret;
  846. }
  847. static void bt_power_vreg_put(void)
  848. {
  849. int i = 0;
  850. struct bt_power_vreg_data *vreg_info = NULL;
  851. int num_vregs = bt_power_pdata->num_vregs;
  852. for (; i < num_vregs; i++) {
  853. vreg_info = &bt_power_pdata->vreg_info[i];
  854. if (vreg_info->reg)
  855. regulator_put(vreg_info->reg);
  856. }
  857. }
  858. static int bt_power_populate_dt_pinfo(struct platform_device *pdev)
  859. {
  860. int rc;
  861. pr_debug("%s\n", __func__);
  862. if (!bt_power_pdata)
  863. return -ENOMEM;
  864. if (pdev->dev.of_node) {
  865. rc = bt_power_vreg_get(pdev);
  866. if (rc)
  867. return rc;
  868. bt_power_pdata->bt_gpio_sys_rst =
  869. of_get_named_gpio(pdev->dev.of_node,
  870. "qcom,bt-reset-gpio", 0);
  871. if (bt_power_pdata->bt_gpio_sys_rst < 0)
  872. pr_warn("bt-reset-gpio not provided in devicetree\n");
  873. bt_power_pdata->wl_gpio_sys_rst =
  874. of_get_named_gpio(pdev->dev.of_node,
  875. "qcom,wl-reset-gpio", 0);
  876. if (bt_power_pdata->wl_gpio_sys_rst < 0)
  877. pr_err("%s: wl-reset-gpio not provided in device tree\n",
  878. __func__);
  879. bt_power_pdata->bt_gpio_sw_ctrl =
  880. of_get_named_gpio(pdev->dev.of_node,
  881. "qcom,bt-sw-ctrl-gpio", 0);
  882. if (bt_power_pdata->bt_gpio_sw_ctrl < 0)
  883. pr_warn("bt-sw-ctrl-gpio not provided in devicetree\n");
  884. bt_power_pdata->bt_gpio_debug =
  885. of_get_named_gpio(pdev->dev.of_node,
  886. "qcom,bt-debug-gpio", 0);
  887. if (bt_power_pdata->bt_gpio_debug < 0)
  888. pr_warn("bt-debug-gpio not provided in devicetree\n");
  889. bt_power_pdata->xo_gpio_clk =
  890. of_get_named_gpio(pdev->dev.of_node,
  891. "qcom,xo-clk-gpio", 0);
  892. if (bt_power_pdata->xo_gpio_clk < 0)
  893. pr_warn("xo-clk-gpio not provided in devicetree\n");
  894. rc = bt_dt_parse_clk_info(&pdev->dev,
  895. &bt_power_pdata->bt_chip_clk);
  896. if (rc < 0)
  897. pr_warn("%s: clock not provided in device tree\n",
  898. __func__);
  899. #ifdef CONFIG_MSM_BT_OOBS
  900. bt_power_pdata->bt_gpio_dev_wake =
  901. of_get_named_gpio(pdev->dev.of_node,
  902. "qcom,btwake_gpio", 0);
  903. if (bt_power_pdata->bt_gpio_dev_wake < 0)
  904. pr_warn("%s: btwake-gpio not provided in device tree\n",
  905. __func__);
  906. bt_power_pdata->bt_gpio_host_wake =
  907. of_get_named_gpio(pdev->dev.of_node,
  908. "qcom,bthostwake_gpio", 0);
  909. if (bt_power_pdata->bt_gpio_host_wake < 0)
  910. pr_warn("%s: bthostwake_gpio not provided in device tree\n",
  911. __func__);
  912. #endif
  913. }
  914. bt_power_pdata->bt_power_setup = bluetooth_power;
  915. return 0;
  916. }
  917. static int bt_power_probe(struct platform_device *pdev)
  918. {
  919. int ret = 0;
  920. int itr;
  921. pr_debug("%s\n", __func__);
  922. /* Fill whole array with -2 i.e NOT_AVAILABLE state by default
  923. * for any GPIO or Reg handle.
  924. */
  925. for (itr = PWR_SRC_INIT_STATE_IDX;
  926. itr < BT_POWER_SRC_SIZE; ++itr)
  927. bt_power_src_status[itr] = PWR_SRC_NOT_AVAILABLE;
  928. bt_power_pdata = kzalloc(sizeof(*bt_power_pdata), GFP_KERNEL);
  929. if (!bt_power_pdata)
  930. return -ENOMEM;
  931. bt_power_pdata->pdev = pdev;
  932. if (pdev->dev.of_node) {
  933. ret = bt_power_populate_dt_pinfo(pdev);
  934. if (ret < 0) {
  935. pr_err("%s, Failed to populate device tree info\n",
  936. __func__);
  937. goto free_pdata;
  938. }
  939. pdev->dev.platform_data = bt_power_pdata;
  940. } else if (pdev->dev.platform_data) {
  941. /* Optional data set to default if not provided */
  942. if (!((struct btpower_platform_data *)
  943. (pdev->dev.platform_data))->bt_power_setup)
  944. ((struct btpower_platform_data *)
  945. (pdev->dev.platform_data))->bt_power_setup =
  946. bluetooth_power;
  947. memcpy(bt_power_pdata, pdev->dev.platform_data,
  948. sizeof(struct btpower_platform_data));
  949. pwr_state = 0;
  950. } else {
  951. pr_err("%s: Failed to get platform data\n", __func__);
  952. goto free_pdata;
  953. }
  954. if (btpower_rfkill_probe(pdev) < 0)
  955. goto free_pdata;
  956. btpower_aop_mbox_init(bt_power_pdata);
  957. probe_finished = true;
  958. return 0;
  959. free_pdata:
  960. kfree(bt_power_pdata);
  961. return ret;
  962. }
  963. static int bt_power_remove(struct platform_device *pdev)
  964. {
  965. dev_dbg(&pdev->dev, "%s\n", __func__);
  966. probe_finished = false;
  967. btpower_rfkill_remove(pdev);
  968. bt_power_vreg_put();
  969. kfree(bt_power_pdata);
  970. return 0;
  971. }
  972. int btpower_register_slimdev(struct device *dev)
  973. {
  974. pr_debug("%s\n", __func__);
  975. if (!bt_power_pdata || (dev == NULL)) {
  976. pr_err("%s: Failed to allocate memory\n", __func__);
  977. return -EINVAL;
  978. }
  979. bt_power_pdata->slim_dev = dev;
  980. return 0;
  981. }
  982. EXPORT_SYMBOL(btpower_register_slimdev);
  983. int btpower_get_chipset_version(void)
  984. {
  985. pr_debug("%s\n", __func__);
  986. return soc_id;
  987. }
  988. EXPORT_SYMBOL(btpower_get_chipset_version);
  989. static void set_pwr_srcs_status(struct bt_power_vreg_data *handle)
  990. {
  991. int ldo_index;
  992. if (handle) {
  993. ldo_index = handle->indx.crash;
  994. bt_power_src_status[ldo_index] =
  995. DEFAULT_INVALID_VALUE;
  996. if (handle->is_enabled &&
  997. (regulator_is_enabled(handle->reg))) {
  998. bt_power_src_status[ldo_index] =
  999. (int)regulator_get_voltage(handle->reg);
  1000. pr_err("%s(%p) value(%d)\n", handle->name,
  1001. handle, bt_power_src_status[ldo_index]);
  1002. } else {
  1003. pr_err("%s:%s is_enabled: %d\n",
  1004. __func__, handle->name,
  1005. handle->is_enabled);
  1006. }
  1007. }
  1008. }
  1009. static void set_gpios_srcs_status(char *gpio_name,
  1010. int gpio_index, int handle)
  1011. {
  1012. if (handle >= 0) {
  1013. bt_power_src_status[gpio_index] =
  1014. DEFAULT_INVALID_VALUE;
  1015. bt_power_src_status[gpio_index] =
  1016. gpio_get_value(handle);
  1017. pr_err("%s(%d) value(%d)\n", gpio_name,
  1018. handle, bt_power_src_status[gpio_index]);
  1019. } else {
  1020. pr_err("%s: %s not configured\n",
  1021. __func__, gpio_name);
  1022. }
  1023. }
  1024. static long bt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1025. {
  1026. int ret = 0, pwr_cntrl = 0;
  1027. int chipset_version = 0;
  1028. int itr, num_vregs;
  1029. struct bt_power_vreg_data *vreg_info = NULL;
  1030. #ifdef CONFIG_MSM_BT_OOBS
  1031. enum btpower_obs_param clk_cntrl;
  1032. #endif
  1033. if (!bt_power_pdata || !probe_finished) {
  1034. pr_err("%s: BTPower Probing Pending.Try Again\n", __func__);
  1035. return -EAGAIN;
  1036. }
  1037. switch (cmd) {
  1038. #ifdef CONFIG_MSM_BT_OOBS
  1039. case BT_CMD_OBS_SIGNAL_TASK:
  1040. bt_power_pdata->reffilp_obs = file;
  1041. bt_power_pdata->reftask_obs = get_current();
  1042. pr_info("%s: BT_CMD_OBS_SIGNAL_TASK tid %d file %pK\n",
  1043. __func__, bt_power_pdata->reftask_obs->pid, file);
  1044. break;
  1045. case BT_CMD_OBS_VOTE_CLOCK:
  1046. if (!gpio_is_valid(bt_power_pdata->bt_gpio_dev_wake)) {
  1047. pr_debug("%s: BT_CMD_OBS_VOTE_CLOCK bt_dev_wake_n(%d) not configured\n",
  1048. __func__, bt_power_pdata->bt_gpio_dev_wake);
  1049. return -EIO;
  1050. }
  1051. clk_cntrl = (enum btpower_obs_param)arg;
  1052. switch (clk_cntrl) {
  1053. case BTPOWER_OBS_CLK_OFF:
  1054. btpower_uart_transport_locked(bt_power_pdata, false);
  1055. ret = 0;
  1056. break;
  1057. case BTPOWER_OBS_CLK_ON:
  1058. btpower_uart_transport_locked(bt_power_pdata, true);
  1059. ret = 0;
  1060. break;
  1061. case BTPOWER_OBS_DEV_OFF:
  1062. gpio_set_value(bt_power_pdata->bt_gpio_dev_wake, 0);
  1063. ret = 0;
  1064. break;
  1065. case BTPOWER_OBS_DEV_ON:
  1066. gpio_set_value(bt_power_pdata->bt_gpio_dev_wake, 1);
  1067. ret = 0;
  1068. break;
  1069. default:
  1070. pr_debug("%s: BT_CMD_OBS_VOTE_CLOCK clk_cntrl(%d)\n",
  1071. __func__, clk_cntrl);
  1072. return -EINVAL;
  1073. }
  1074. pr_debug("%s: BT_CMD_OBS_VOTE_CLOCK clk_cntrl(%d) %s\n",
  1075. __func__, clk_cntrl,
  1076. gpio_get_value(bt_power_pdata->bt_gpio_dev_wake) ?
  1077. "Assert" : "Deassert");
  1078. break;
  1079. #endif
  1080. case BT_CMD_SLIM_TEST:
  1081. #if (defined CONFIG_BT_SLIM)
  1082. if (!bt_power_pdata->slim_dev) {
  1083. pr_err("%s: slim_dev is null\n", __func__);
  1084. return -EINVAL;
  1085. }
  1086. ret = btfm_slim_hw_init(
  1087. bt_power_pdata->slim_dev->platform_data
  1088. );
  1089. #endif
  1090. break;
  1091. case BT_CMD_PWR_CTRL:
  1092. pwr_cntrl = (int)arg;
  1093. pr_warn("%s: BT_CMD_PWR_CTRL pwr_cntrl: %d\n",
  1094. __func__, pwr_cntrl);
  1095. if (pwr_state != pwr_cntrl) {
  1096. ret = bluetooth_power(pwr_cntrl);
  1097. if (!ret)
  1098. pwr_state = pwr_cntrl;
  1099. } else {
  1100. pr_err("%s: BT chip state is already: %d no change\n",
  1101. __func__, pwr_state);
  1102. ret = 0;
  1103. }
  1104. break;
  1105. case BT_CMD_CHIPSET_VERS:
  1106. chipset_version = (int)arg;
  1107. pr_warn("%s: unified Current SOC Version : %x\n", __func__,
  1108. chipset_version);
  1109. if (chipset_version) {
  1110. soc_id = chipset_version;
  1111. } else {
  1112. pr_err("%s: got invalid soc version\n", __func__);
  1113. soc_id = 0;
  1114. }
  1115. break;
  1116. case BT_CMD_GET_CHIPSET_ID:
  1117. if (copy_to_user((void __user *)arg, bt_power_pdata->compatible,
  1118. MAX_PROP_SIZE)) {
  1119. pr_err("%s: copy to user failed\n", __func__);
  1120. ret = -EFAULT;
  1121. }
  1122. break;
  1123. case BT_CMD_CHECK_SW_CTRL:
  1124. /* Check if SW_CTRL is asserted */
  1125. pr_info("BT_CMD_CHECK_SW_CTRL\n");
  1126. if (bt_power_pdata->bt_gpio_sw_ctrl > 0) {
  1127. bt_power_src_status[BT_SW_CTRL_GPIO] =
  1128. DEFAULT_INVALID_VALUE;
  1129. ret = gpio_direction_input(
  1130. bt_power_pdata->bt_gpio_sw_ctrl);
  1131. if (ret) {
  1132. pr_err("%s:gpio_direction_input api\n",
  1133. __func__);
  1134. pr_err("%s:failed for SW_CTRL:%d\n",
  1135. __func__, ret);
  1136. } else {
  1137. bt_power_src_status[BT_SW_CTRL_GPIO] =
  1138. gpio_get_value(
  1139. bt_power_pdata->bt_gpio_sw_ctrl);
  1140. pr_info("bt-sw-ctrl-gpio(%d) value(%d)\n",
  1141. bt_power_pdata->bt_gpio_sw_ctrl,
  1142. bt_power_src_status[BT_SW_CTRL_GPIO]);
  1143. }
  1144. } else {
  1145. pr_err("bt_gpio_sw_ctrl not configured\n");
  1146. return -EINVAL;
  1147. }
  1148. break;
  1149. case BT_CMD_GETVAL_POWER_SRCS:
  1150. pr_err("BT_CMD_GETVAL_POWER_SRCS\n");
  1151. set_gpios_srcs_status("BT_RESET_GPIO", BT_RESET_GPIO_CURRENT,
  1152. bt_power_pdata->bt_gpio_sys_rst);
  1153. set_gpios_srcs_status("SW_CTRL_GPIO", BT_SW_CTRL_GPIO_CURRENT,
  1154. bt_power_pdata->bt_gpio_sw_ctrl);
  1155. num_vregs = bt_power_pdata->num_vregs;
  1156. for (itr = 0; itr < num_vregs; itr++) {
  1157. vreg_info = &bt_power_pdata->vreg_info[itr];
  1158. set_pwr_srcs_status(vreg_info);
  1159. }
  1160. if (copy_to_user((void __user *)arg,
  1161. bt_power_src_status, sizeof(bt_power_src_status))) {
  1162. pr_err("%s: copy to user failed\n", __func__);
  1163. ret = -EFAULT;
  1164. }
  1165. break;
  1166. case BT_CMD_SET_IPA_TCS_INFO:
  1167. pr_err("%s: BT_CMD_SET_IPA_TCS_INFO\n", __func__);
  1168. btpower_enable_ipa_vreg(bt_power_pdata);
  1169. break;
  1170. default:
  1171. return -ENOIOCTLCMD;
  1172. }
  1173. return ret;
  1174. }
  1175. static struct platform_driver bt_power_driver = {
  1176. .probe = bt_power_probe,
  1177. .remove = bt_power_remove,
  1178. .driver = {
  1179. .name = "bt_power",
  1180. .of_match_table = bt_power_match_table,
  1181. },
  1182. };
  1183. static const struct file_operations bt_dev_fops = {
  1184. .unlocked_ioctl = bt_ioctl,
  1185. .compat_ioctl = bt_ioctl,
  1186. };
  1187. static int __init btpower_init(void)
  1188. {
  1189. int ret = 0;
  1190. probe_finished = false;
  1191. ret = platform_driver_register(&bt_power_driver);
  1192. if (ret) {
  1193. pr_err("%s: platform_driver_register error: %d\n",
  1194. __func__, ret);
  1195. goto driver_err;
  1196. }
  1197. bt_major = register_chrdev(0, "bt", &bt_dev_fops);
  1198. if (bt_major < 0) {
  1199. pr_err("%s: failed to allocate char dev\n", __func__);
  1200. ret = -1;
  1201. goto chrdev_err;
  1202. }
  1203. bt_class = class_create(THIS_MODULE, "bt-dev");
  1204. if (IS_ERR(bt_class)) {
  1205. pr_err("%s: coudn't create class\n", __func__);
  1206. ret = -1;
  1207. goto class_err;
  1208. }
  1209. if (device_create(bt_class, NULL, MKDEV(bt_major, 0),
  1210. NULL, "btpower") == NULL) {
  1211. pr_err("%s: failed to allocate char dev\n", __func__);
  1212. goto device_err;
  1213. }
  1214. return 0;
  1215. device_err:
  1216. class_destroy(bt_class);
  1217. class_err:
  1218. unregister_chrdev(bt_major, "bt");
  1219. chrdev_err:
  1220. platform_driver_unregister(&bt_power_driver);
  1221. driver_err:
  1222. return ret;
  1223. }
  1224. int btpower_aop_mbox_init(struct btpower_platform_data *pdata)
  1225. {
  1226. struct mbox_client *mbox = &pdata->mbox_client_data;
  1227. struct mbox_chan *chan;
  1228. int ret = 0;
  1229. mbox->dev = &pdata->pdev->dev;
  1230. mbox->tx_block = true;
  1231. mbox->tx_tout = BTPOWER_MBOX_TIMEOUT_MS;
  1232. mbox->knows_txdone = false;
  1233. pdata->mbox_chan = NULL;
  1234. chan = mbox_request_channel(mbox, 0);
  1235. if (IS_ERR(chan)) {
  1236. pr_err("%s: failed to get mbox channel\n", __func__);
  1237. return PTR_ERR(chan);
  1238. }
  1239. pdata->mbox_chan = chan;
  1240. ret = of_property_read_string(pdata->pdev->dev.of_node,
  1241. "qcom,vreg_ipa",
  1242. &pdata->vreg_ipa);
  1243. if (ret)
  1244. pr_info("%s: vreg for iPA not configured\n", __func__);
  1245. else
  1246. pr_info("%s: Mbox channel initialized\n", __func__);
  1247. return 0;
  1248. }
  1249. static int btpower_aop_set_vreg_param(struct btpower_platform_data *pdata,
  1250. const char *vreg_name,
  1251. enum btpower_vreg_param param,
  1252. enum btpower_tcs_seq seq, int val)
  1253. {
  1254. struct qmp_pkt pkt;
  1255. char mbox_msg[BTPOWER_MBOX_MSG_MAX_LEN];
  1256. static const char * const vreg_param_str[] = {"v", "m", "e"};
  1257. static const char *const tcs_seq_str[] = {"upval", "dwnval", "enable"};
  1258. int ret = 0;
  1259. if (param > BTPOWER_VREG_ENABLE || seq > BTPOWER_TCS_ALL_SEQ || !vreg_name)
  1260. return -EINVAL;
  1261. snprintf(mbox_msg, BTPOWER_MBOX_MSG_MAX_LEN,
  1262. "{class: wlan_pdc, res: %s.%s, %s: %d}", vreg_name,
  1263. vreg_param_str[param], tcs_seq_str[seq], val);
  1264. pr_info("%s: sending AOP Mbox msg: %s\n", __func__, mbox_msg);
  1265. pkt.size = BTPOWER_MBOX_MSG_MAX_LEN;
  1266. pkt.data = mbox_msg;
  1267. ret = mbox_send_message(pdata->mbox_chan, &pkt);
  1268. if (ret < 0)
  1269. pr_err("%s:Failed to send AOP mbox msg(%s), err(%d)\n",
  1270. __func__, mbox_msg, ret);
  1271. return ret;
  1272. }
  1273. static int btpower_enable_ipa_vreg(struct btpower_platform_data *pdata)
  1274. {
  1275. int ret = 0;
  1276. static bool config_done;
  1277. if (config_done) {
  1278. pr_info("%s: IPA Vreg already configured\n", __func__);
  1279. return 0;
  1280. }
  1281. if (!pdata->vreg_ipa || !pdata->mbox_chan) {
  1282. pr_info("%s: mbox/iPA vreg not configured\n", __func__);
  1283. } else {
  1284. ret = btpower_aop_set_vreg_param(pdata,
  1285. pdata->vreg_ipa,
  1286. BTPOWER_VREG_ENABLE,
  1287. BTPOWER_TCS_UP_SEQ, 1);
  1288. if (ret >= 0) {
  1289. pr_info("%s:Enabled iPA\n", __func__);
  1290. config_done = true;
  1291. }
  1292. }
  1293. return ret;
  1294. }
  1295. static void __exit btpower_exit(void)
  1296. {
  1297. platform_driver_unregister(&bt_power_driver);
  1298. }
  1299. MODULE_LICENSE("GPL v2");
  1300. MODULE_DESCRIPTION("MSM Bluetooth power control driver");
  1301. module_init(btpower_init);
  1302. module_exit(btpower_exit);