// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2016-2021, The Linux Foundation. All rights reserved. * Copyright (c) 2021 Qualcomm Innovation Center, Inc. All rights reserved. */ /* * Bluetooth Power Switch Module * controls power to external Bluetooth device * with interface to power management device */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "btpower.h" #if (defined CONFIG_BT_SLIM) #include "btfm_slim.h" #endif #include #define PWR_SRC_NOT_AVAILABLE -2 #define DEFAULT_INVALID_VALUE -1 #define PWR_SRC_INIT_STATE_IDX 0 #define BTPOWER_MBOX_MSG_MAX_LEN 64 #define BTPOWER_MBOX_TIMEOUT_MS 1000 #define XO_CLK_RETRY_COUNT_MAX 5 /** * enum btpower_vreg_param: Voltage regulator TCS param * @BTPOWER_VREG_VOLTAGE: Provides voltage level to be configured in TCS * @BTPOWER_VREG_MODE: Regulator mode * @BTPOWER_VREG_TCS_ENABLE: Set Voltage regulator enable config in TCS */ enum btpower_vreg_param { BTPOWER_VREG_VOLTAGE, BTPOWER_VREG_MODE, BTPOWER_VREG_ENABLE, }; /** * enum btpower_tcs_seq: TCS sequence ID for trigger * BTPOWER_TCS_UP_SEQ: TCS Sequence based on up trigger / Wake TCS * BTPOWER_TCS_DOWN_SEQ: TCS Sequence based on down trigger / Sleep TCS * BTPOWER_TCS_ALL_SEQ: Update for both up and down triggers */ enum btpower_tcs_seq { BTPOWER_TCS_UP_SEQ, BTPOWER_TCS_DOWN_SEQ, BTPOWER_TCS_ALL_SEQ, }; enum power_src_pos { BT_RESET_GPIO = PWR_SRC_INIT_STATE_IDX, BT_SW_CTRL_GPIO, BT_VDD_AON_LDO, BT_VDD_DIG_LDO, BT_VDD_RFA1_LDO, BT_VDD_RFA2_LDO, BT_VDD_ASD_LDO, BT_VDD_XTAL_LDO, BT_VDD_PA_LDO, BT_VDD_CORE_LDO, BT_VDD_IO_LDO, BT_VDD_LDO, BT_VDD_RFA_0p8, BT_VDD_RFACMN, // these indexes GPIOs/regs value are fetched during crash. BT_RESET_GPIO_CURRENT, BT_SW_CTRL_GPIO_CURRENT, BT_VDD_AON_LDO_CURRENT, BT_VDD_DIG_LDO_CURRENT, BT_VDD_RFA1_LDO_CURRENT, BT_VDD_RFA2_LDO_CURRENT, BT_VDD_ASD_LDO_CURRENT, BT_VDD_XTAL_LDO_CURRENT, BT_VDD_PA_LDO_CURRENT, BT_VDD_CORE_LDO_CURRENT, BT_VDD_IO_LDO_CURRENT, BT_VDD_LDO_CURRENT, BT_VDD_RFA_0p8_CURRENT, BT_VDD_RFACMN_CURRENT, BT_VDD_IPA_2p2, BT_VDD_IPA_2p2_CURRENT, /* The below bucks are voted for HW WAR on some platform which supports * WNC39xx. */ BT_VDD_SMPS, BT_VDD_SMPS_CURRENT, /* New entries need to be added before PWR_SRC_SIZE. * Its hold the max size of power sources states. */ BT_POWER_SRC_SIZE, }; // Regulator structure for QCA6174/QCA9377/QCA9379 BT SoC series static struct bt_power_vreg_data bt_vregs_info_qca61x4_937x[] = { {NULL, "qcom,bt-vdd-aon", 928000, 928000, 0, false, false, {BT_VDD_AON_LDO, BT_VDD_AON_LDO_CURRENT}}, {NULL, "qcom,bt-vdd-io", 1710000, 3460000, 0, false, false, {BT_VDD_IO_LDO, BT_VDD_IO_LDO_CURRENT}}, {NULL, "qcom,bt-vdd-core", 3135000, 3465000, 0, false, false, {BT_VDD_CORE_LDO, BT_VDD_CORE_LDO_CURRENT}}, }; // Regulator structure for QCA6390,QCA6490 and WCN6750 BT SoC series static struct bt_power_vreg_data bt_vregs_info_qca6xx0[] = { {NULL, "qcom,bt-vdd-io", 1800000, 1800000, 0, false, true, {BT_VDD_IO_LDO, BT_VDD_IO_LDO_CURRENT}}, {NULL, "qcom,bt-vdd-aon", 966000, 966000, 0, false, true, {BT_VDD_AON_LDO, BT_VDD_AON_LDO_CURRENT}}, {NULL, "qcom,bt-vdd-rfacmn", 950000, 950000, 0, false, true, {BT_VDD_RFACMN, BT_VDD_RFACMN_CURRENT}}, /* BT_CX_MX */ {NULL, "qcom,bt-vdd-dig", 966000, 966000, 0, false, true, {BT_VDD_DIG_LDO, BT_VDD_DIG_LDO_CURRENT}}, {NULL, "qcom,bt-vdd-rfa-0p8", 950000, 952000, 0, false, true, {BT_VDD_RFA_0p8, BT_VDD_RFA_0p8_CURRENT}}, {NULL, "qcom,bt-vdd-rfa1", 1900000, 1900000, 0, false, true, {BT_VDD_RFA1_LDO, BT_VDD_RFA1_LDO_CURRENT}}, {NULL, "qcom,bt-vdd-rfa2", 1900000, 1900000, 0, false, true, {BT_VDD_RFA2_LDO, BT_VDD_RFA2_LDO_CURRENT}}, {NULL, "qcom,bt-vdd-asd", 2800000, 2800000, 0, false, true, {BT_VDD_ASD_LDO, BT_VDD_ASD_LDO_CURRENT}}, {NULL, "qcom,bt-vdd-ipa-2p2", 2200000, 2210000, 0, false, true, {BT_VDD_IPA_2p2, BT_VDD_IPA_2p2_CURRENT}}, }; // Regulator structure for kiwi BT SoC series static struct bt_power_vreg_data bt_vregs_info_kiwi[] = { {NULL, "qcom,bt-vdd18-aon", 1800000, 1800000, 0, false, true, {BT_VDD_IO_LDO, BT_VDD_IO_LDO_CURRENT}}, {NULL, "qcom,bt-vdd-aon", 950000, 950000, 0, false, true, {BT_VDD_AON_LDO, BT_VDD_AON_LDO_CURRENT}}, {NULL, "qcom,bt-vdd-rfaOp8", 950000, 950000, 0, false, true, {BT_VDD_RFACMN, BT_VDD_RFACMN_CURRENT}}, /* BT_CX_MX */ {NULL, "qcom,bt-vdd-dig", 950000, 950000, 0, false, true, {BT_VDD_DIG_LDO, BT_VDD_DIG_LDO_CURRENT}}, {NULL, "qcom,bt-vdd-rfaOp8", 950000, 952000, 0, false, true, {BT_VDD_RFA_0p8, BT_VDD_RFA_0p8_CURRENT}}, {NULL, "qcom,bt-vdd-rfa1", 1350000, 1350000, 0, false, true, {BT_VDD_RFA1_LDO, BT_VDD_RFA1_LDO_CURRENT}}, {NULL, "qcom,bt-vdd-rfa2", 1900000, 1900000, 0, false, true, {BT_VDD_RFA2_LDO, BT_VDD_RFA2_LDO_CURRENT}}, }; // Regulator structure for WCN399x BT SoC series static struct bt_power bt_vreg_info_wcn399x = { .compatible = "qcom,wcn3990", .vregs = (struct bt_power_vreg_data []) { {NULL, "qcom,bt-vdd-smps", 984000, 984000, 0, false, false, {BT_VDD_SMPS, BT_VDD_SMPS_CURRENT}}, {NULL, "qcom,bt-vdd-io", 1700000, 1900000, 0, false, false, {BT_VDD_IO_LDO, BT_VDD_IO_LDO_CURRENT}}, {NULL, "qcom,bt-vdd-core", 1304000, 1304000, 0, false, false, {BT_VDD_CORE_LDO, BT_VDD_CORE_LDO_CURRENT}}, {NULL, "qcom,bt-vdd-pa", 3000000, 3312000, 0, false, false, {BT_VDD_PA_LDO, BT_VDD_PA_LDO_CURRENT}}, {NULL, "qcom,bt-vdd-xtal", 1700000, 1900000, 0, false, false, {BT_VDD_XTAL_LDO, BT_VDD_XTAL_LDO_CURRENT}}, }, .num_vregs = 5, }; static struct bt_power bt_vreg_info_qca6174 = { .compatible = "qcom,qca6174", .vregs = bt_vregs_info_qca61x4_937x, .num_vregs = ARRAY_SIZE(bt_vregs_info_qca61x4_937x), }; static struct bt_power bt_vreg_info_qca6390 = { .compatible = "qcom,qca6390", .vregs = bt_vregs_info_qca6xx0, .num_vregs = ARRAY_SIZE(bt_vregs_info_qca6xx0), }; static struct bt_power bt_vreg_info_qca6490 = { .compatible = "qcom,qca6490", .vregs = bt_vregs_info_qca6xx0, .num_vregs = ARRAY_SIZE(bt_vregs_info_qca6xx0), }; static struct bt_power bt_vreg_info_kiwi = { .compatible = "qcom,kiwi", .vregs = bt_vregs_info_kiwi, .num_vregs = ARRAY_SIZE(bt_vregs_info_kiwi), }; static struct bt_power bt_vreg_info_wcn6750 = { .compatible = "qcom,wcn6750-bt", .vregs = bt_vregs_info_qca6xx0, .num_vregs = ARRAY_SIZE(bt_vregs_info_qca6xx0), }; static const struct of_device_id bt_power_match_table[] = { { .compatible = "qcom,qca6174", .data = &bt_vreg_info_qca6174}, { .compatible = "qcom,wcn3990", .data = &bt_vreg_info_wcn399x}, { .compatible = "qcom,qca6390", .data = &bt_vreg_info_qca6390}, { .compatible = "qcom,qca6490", .data = &bt_vreg_info_qca6490}, { .compatible = "qcom,kiwi", .data = &bt_vreg_info_kiwi}, { .compatible = "qcom,wcn6750-bt", .data = &bt_vreg_info_wcn6750}, {}, }; static int bt_power_vreg_set(enum bt_power_modes mode); static int btpower_enable_ipa_vreg(struct btpower_platform_data *pdata); static int bt_power_src_status[BT_POWER_SRC_SIZE]; static struct btpower_platform_data *bt_power_pdata; static bool previous; static int pwr_state; static struct class *bt_class; static int bt_major; static int soc_id; static bool probe_finished; #ifdef CONFIG_MSM_BT_OOBS static void btpower_uart_transport_locked(struct btpower_platform_data *drvdata, bool locked) { pr_debug("%s: %s\n", __func__, (locked ? "busy" : "idle")); } static irqreturn_t btpower_host_wake_isr(int irq, void *data) { struct btpower_platform_data *drvdata = data; int host_waking = gpio_get_value(drvdata->bt_gpio_host_wake); struct kernel_siginfo siginfo; int rc = 0; pr_debug("%s: bt-hostwake-gpio(%d) IRQ(%d) value(%d)\n", __func__, drvdata->bt_gpio_host_wake, drvdata->irq, host_waking); if (drvdata->reftask_obs == NULL) { pr_info("%s: ignore BT-HOSTWAKE IRQ\n", __func__); return IRQ_HANDLED; } // Sending signal to HAL layer memset(&siginfo, 0, sizeof(siginfo)); siginfo.si_signo = SIGIO; siginfo.si_code = SI_QUEUE; siginfo.si_int = host_waking; rc = send_sig_info(siginfo.si_signo, &siginfo, drvdata->reftask_obs); if (rc < 0) { pr_err("%s: failed (%d) to send SIG to HAL(%d)\n", __func__, rc, drvdata->reftask_obs->pid); } return IRQ_HANDLED; } #endif static int bt_vreg_enable(struct bt_power_vreg_data *vreg) { int rc = 0; pr_debug("%s: vreg_en for : %s\n", __func__, vreg->name); if (!vreg->is_enabled) { if ((vreg->min_vol != 0) && (vreg->max_vol != 0)) { rc = regulator_set_voltage(vreg->reg, vreg->min_vol, vreg->max_vol); if (rc < 0) { pr_err("%s: regulator_set_voltage(%s) failed rc=%d\n", __func__, vreg->name, rc); goto out; } } if (vreg->load_curr >= 0) { rc = regulator_set_load(vreg->reg, vreg->load_curr); if (rc < 0) { pr_err("%s: regulator_set_load(%s) failed rc=%d\n", __func__, vreg->name, rc); goto out; } } rc = regulator_enable(vreg->reg); if (rc < 0) { pr_err("%s: regulator_enable(%s) failed. rc=%d\n", __func__, vreg->name, rc); goto out; } vreg->is_enabled = true; } out: return rc; } static int bt_vreg_enable_retention(struct bt_power_vreg_data *vreg) { int rc = 0; if (!vreg) return rc; pr_debug("%s: enable_retention for : %s\n", __func__, vreg->name); if ((vreg->is_enabled) && (vreg->is_retention_supp)) { if ((vreg->min_vol != 0) && (vreg->max_vol != 0)) { /* Set the min voltage to 0 */ rc = regulator_set_voltage(vreg->reg, 0, vreg->max_vol); if (rc < 0) { pr_err("%s: regulator_set_voltage(%s) failed rc=%d\n", __func__, vreg->name, rc); goto out; } } if (vreg->load_curr >= 0) { rc = regulator_set_load(vreg->reg, 0); if (rc < 0) { pr_err("%s: regulator_set_load(%s) failed rc=%d\n", __func__, vreg->name, rc); } } } out: return rc; } static int bt_vreg_disable(struct bt_power_vreg_data *vreg) { int rc = 0; if (!vreg) return rc; pr_debug("%s for : %s\n", __func__, vreg->name); if (vreg->is_enabled) { rc = regulator_disable(vreg->reg); if (rc < 0) { pr_err("%s, regulator_disable(%s) failed. rc=%d\n", __func__, vreg->name, rc); goto out; } vreg->is_enabled = false; if ((vreg->min_vol != 0) && (vreg->max_vol != 0)) { /* Set the min voltage to 0 */ rc = regulator_set_voltage(vreg->reg, 0, vreg->max_vol); if (rc < 0) { pr_err("%s: regulator_set_voltage(%s) failed rc=%d\n", __func__, vreg->name, rc); goto out; } } if (vreg->load_curr >= 0) { rc = regulator_set_load(vreg->reg, 0); if (rc < 0) { pr_err("%s: regulator_set_load(%s) failed rc=%d\n", __func__, vreg->name, rc); } } } out: return rc; } static int bt_clk_enable(struct bt_power_clk_data *clk) { int rc = 0; pr_info("%s: %s\n", __func__, clk->name); /* Get the clock handle for vreg */ if (!clk->clk || clk->is_enabled) { pr_err("%s: error - node: %p, clk->is_enabled:%d\n", __func__, clk->clk, clk->is_enabled); return -EINVAL; } rc = clk_prepare_enable(clk->clk); if (rc) { pr_err("%s: failed to enable %s, rc(%d)\n", __func__, clk->name, rc); return rc; } clk->is_enabled = true; return rc; } static int bt_clk_disable(struct bt_power_clk_data *clk) { int rc = 0; pr_debug("%s: %s\n", __func__, clk->name); /* Get the clock handle for vreg */ if (!clk->clk || !clk->is_enabled) { pr_err("%s: error - node: %p, clk->is_enabled:%d\n", __func__, clk->clk, clk->is_enabled); return -EINVAL; } clk_disable_unprepare(clk->clk); clk->is_enabled = false; return rc; } static void btpower_set_xo_clk_gpio_state(bool enable) { int xo_clk_gpio = bt_power_pdata->xo_gpio_clk; int retry = 0; int rc = 0; if (xo_clk_gpio < 0) return; retry_gpio_req: rc = gpio_request(xo_clk_gpio, "bt_xo_clk_gpio"); if (rc) { if (retry++ < XO_CLK_RETRY_COUNT_MAX) { /* wait for ~(10 - 20) ms */ usleep_range(10000, 20000); goto retry_gpio_req; } } if (rc) { pr_err("%s: unable to request XO clk gpio %d (%d)\n", __func__, xo_clk_gpio, rc); return; } if (enable) { gpio_direction_output(xo_clk_gpio, 1); /*XO CLK must be asserted for some time before BT_EN */ usleep_range(100, 200); } else { /* Assert XO CLK ~(2-5)ms before off for valid latch in HW */ usleep_range(4000, 6000); gpio_direction_output(xo_clk_gpio, 0); } pr_info("%s:gpio(%d) success\n", __func__, xo_clk_gpio); gpio_free(xo_clk_gpio); } #ifdef CONFIG_MSM_BT_OOBS void bt_configure_wakeup_gpios(int on) { int bt_gpio_dev_wake = bt_power_pdata->bt_gpio_dev_wake; int bt_host_wake_gpio = bt_power_pdata->bt_gpio_host_wake; int rc; if (on) { if (gpio_is_valid(bt_gpio_dev_wake)) { gpio_set_value(bt_gpio_dev_wake, 1); pr_debug("%s: BT-ON asserting BT_WAKE(%d)\n", __func__, bt_gpio_dev_wake); } if (gpio_is_valid(bt_host_wake_gpio)) { bt_power_pdata->irq = gpio_to_irq(bt_host_wake_gpio); pr_debug("%s: BT-ON bt-host_wake-gpio(%d) IRQ(%d)\n", __func__, bt_host_wake_gpio, bt_power_pdata->irq); rc = request_irq(bt_power_pdata->irq, btpower_host_wake_isr, IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING, "btpower_hostwake_isr", bt_power_pdata); if (rc) pr_err("%s: unable to request IRQ %d (%d)\n", __func__, bt_host_wake_gpio, rc); } } else { if (gpio_is_valid(bt_host_wake_gpio)) { pr_debug("%s: BT-OFF bt-hostwake-gpio(%d) IRQ(%d) value(%d)\n", __func__, bt_host_wake_gpio, bt_power_pdata->irq, gpio_get_value(bt_host_wake_gpio)); free_irq(bt_power_pdata->irq, bt_power_pdata); } if (gpio_is_valid(bt_gpio_dev_wake)) gpio_set_value(bt_gpio_dev_wake, 0); } } #endif static int bt_configure_gpios(int on) { int rc = 0; int bt_reset_gpio = bt_power_pdata->bt_gpio_sys_rst; int wl_reset_gpio = bt_power_pdata->wl_gpio_sys_rst; int bt_sw_ctrl_gpio = bt_power_pdata->bt_gpio_sw_ctrl; int bt_debug_gpio = bt_power_pdata->bt_gpio_debug; int assert_dbg_gpio = 0; if (on) { rc = gpio_request(bt_reset_gpio, "bt_sys_rst_n"); if (rc) { pr_err("%s: unable to request gpio %d (%d)\n", __func__, bt_reset_gpio, rc); return rc; } pr_info("BTON:Turn Bt OFF asserting BT_EN to low\n"); pr_info("bt-reset-gpio(%d) value(%d)\n", bt_reset_gpio, gpio_get_value(bt_reset_gpio)); rc = gpio_direction_output(bt_reset_gpio, 0); if (rc) { pr_err("%s: Unable to set direction\n", __func__); return rc; } bt_power_src_status[BT_RESET_GPIO] = gpio_get_value(bt_reset_gpio); msleep(50); pr_info("BTON:Turn Bt OFF post asserting BT_EN to low\n"); pr_info("bt-reset-gpio(%d) value(%d)\n", bt_reset_gpio, gpio_get_value(bt_reset_gpio)); if (bt_sw_ctrl_gpio >= 0) { bt_power_src_status[BT_SW_CTRL_GPIO] = gpio_get_value(bt_sw_ctrl_gpio); pr_info("BTON:Turn Bt OFF bt-sw-ctrl-gpio(%d) value(%d)\n", bt_sw_ctrl_gpio, bt_power_src_status[BT_SW_CTRL_GPIO]); } if (wl_reset_gpio >= 0) pr_info("BTON:Turn Bt ON wl-reset-gpio(%d) value(%d)\n", wl_reset_gpio, gpio_get_value(wl_reset_gpio)); if ((wl_reset_gpio < 0) || ((wl_reset_gpio >= 0) && gpio_get_value(wl_reset_gpio))) { btpower_set_xo_clk_gpio_state(true); pr_info("BTON: WLAN ON Asserting BT_EN to high\n"); rc = gpio_direction_output(bt_reset_gpio, 1); if (rc) { pr_err("%s: Unable to set direction\n", __func__); return rc; } bt_power_src_status[BT_RESET_GPIO] = gpio_get_value(bt_reset_gpio); btpower_set_xo_clk_gpio_state(false); } if ((wl_reset_gpio >= 0) && (gpio_get_value(wl_reset_gpio) == 0)) { if (gpio_get_value(bt_reset_gpio)) { pr_info("BTON: WLAN OFF and BT ON are too close\n"); pr_info("reset BT_EN, enable it after delay\n"); rc = gpio_direction_output(bt_reset_gpio, 0); if (rc) { pr_err("%s: Unable to set direction\n", __func__); return rc; } bt_power_src_status[BT_RESET_GPIO] = gpio_get_value(bt_reset_gpio); } pr_info("BTON: WLAN OFF waiting for 100ms delay\n"); pr_info("for AON output to fully discharge\n"); msleep(100); pr_info("BTON: WLAN OFF Asserting BT_EN to high\n"); btpower_set_xo_clk_gpio_state(true); rc = gpio_direction_output(bt_reset_gpio, 1); if (rc) { pr_err("%s: Unable to set direction\n", __func__); return rc; } bt_power_src_status[BT_RESET_GPIO] = gpio_get_value(bt_reset_gpio); btpower_set_xo_clk_gpio_state(false); } /* Below block of code executes if WL_EN is pulled high when * BT_EN is about to pull high. so above two if conditions are * not executed. */ if (!gpio_get_value(bt_reset_gpio)) { btpower_set_xo_clk_gpio_state(true); pr_info("BTON: WLAN ON and BT ON are too close\n"); pr_info("Asserting BT_EN to high\n"); rc = gpio_direction_output(bt_reset_gpio, 1); if (rc) { pr_err("%s: Unable to set direction\n", __func__); return rc; } bt_power_src_status[BT_RESET_GPIO] = gpio_get_value(bt_reset_gpio); btpower_set_xo_clk_gpio_state(false); } msleep(50); #ifdef CONFIG_MSM_BT_OOBS bt_configure_wakeup_gpios(on); #endif /* Check if SW_CTRL is asserted */ if (bt_sw_ctrl_gpio >= 0) { rc = gpio_direction_input(bt_sw_ctrl_gpio); if (rc) { pr_err("%s:SWCTRL Dir Set Problem:%d\n", __func__, rc); } else if (!gpio_get_value(bt_sw_ctrl_gpio)) { /* SW_CTRL not asserted, assert debug GPIO */ if (bt_debug_gpio >= 0) assert_dbg_gpio = 1; } } if (assert_dbg_gpio) { rc = gpio_request(bt_debug_gpio, "bt_debug_n"); if (rc) { pr_err("unable to request Debug Gpio\n"); } else { rc = gpio_direction_output(bt_debug_gpio, 1); if (rc) pr_err("%s:Prob Set Debug-Gpio\n", __func__); } } pr_info("BTON:Turn Bt On bt-reset-gpio(%d) value(%d)\n", bt_reset_gpio, gpio_get_value(bt_reset_gpio)); if (bt_sw_ctrl_gpio >= 0) { bt_power_src_status[BT_SW_CTRL_GPIO] = gpio_get_value(bt_sw_ctrl_gpio); pr_info("BTON: Turn BT ON bt-sw-ctrl-gpio(%d) value(%d)\n", bt_sw_ctrl_gpio, bt_power_src_status[BT_SW_CTRL_GPIO]); } } else { #ifdef CONFIG_MSM_BT_OOBS bt_configure_wakeup_gpios(on); #endif gpio_set_value(bt_reset_gpio, 0); msleep(100); pr_info("BT-OFF:bt-reset-gpio(%d) value(%d)\n", bt_reset_gpio, gpio_get_value(bt_reset_gpio)); if (bt_sw_ctrl_gpio >= 0) { pr_info("BT-OFF:bt-sw-ctrl-gpio(%d) value(%d)\n", bt_sw_ctrl_gpio, gpio_get_value(bt_sw_ctrl_gpio)); } } pr_info("%s: bt_gpio= %d on: %d\n", __func__, bt_reset_gpio, on); return rc; } static int bluetooth_power(int on) { int rc = 0; pr_debug("%s: on: %d\n", __func__, on); if (on == 1) { rc = bt_power_vreg_set(BT_POWER_ENABLE); if (rc < 0) { pr_err("%s: bt_power regulators config failed\n", __func__); goto regulator_fail; } /* Parse dt_info and check if a target requires clock voting. * Enable BT clock when BT is on and disable it when BT is off */ if (bt_power_pdata->bt_chip_clk) { rc = bt_clk_enable(bt_power_pdata->bt_chip_clk); if (rc < 0) { pr_err("%s: bt_power gpio config failed\n", __func__); goto clk_fail; } } if (bt_power_pdata->bt_gpio_sys_rst > 0) { bt_power_src_status[BT_RESET_GPIO] = DEFAULT_INVALID_VALUE; bt_power_src_status[BT_SW_CTRL_GPIO] = DEFAULT_INVALID_VALUE; rc = bt_configure_gpios(on); if (rc < 0) { pr_err("%s: bt_power gpio config failed\n", __func__); goto gpio_fail; } } } else if (on == 0) { // Power Off if (bt_power_pdata->bt_gpio_sys_rst > 0) bt_configure_gpios(on); gpio_fail: if (bt_power_pdata->bt_gpio_sys_rst > 0) gpio_free(bt_power_pdata->bt_gpio_sys_rst); if (bt_power_pdata->bt_gpio_debug > 0) gpio_free(bt_power_pdata->bt_gpio_debug); if (bt_power_pdata->bt_chip_clk) bt_clk_disable(bt_power_pdata->bt_chip_clk); clk_fail: regulator_fail: bt_power_vreg_set(BT_POWER_DISABLE); } else if (on == 2) { /* Retention mode */ bt_power_vreg_set(BT_POWER_RETENTION); } else { pr_err("%s: Invalid power mode: %d\n", __func__, on); rc = -1; } return rc; } static int btpower_toggle_radio(void *data, bool blocked) { int ret = 0; int (*power_control)(int enable); power_control = ((struct btpower_platform_data *)data)->bt_power_setup; if (previous != blocked) ret = (*power_control)(!blocked); if (!ret) previous = blocked; return ret; } static const struct rfkill_ops btpower_rfkill_ops = { .set_block = btpower_toggle_radio, }; static ssize_t extldo_show(struct device *dev, struct device_attribute *attr, char *buf) { return scnprintf(buf, 6, "false\n"); } static DEVICE_ATTR_RO(extldo); static int btpower_rfkill_probe(struct platform_device *pdev) { struct rfkill *rfkill; int ret; rfkill = rfkill_alloc("bt_power", &pdev->dev, RFKILL_TYPE_BLUETOOTH, &btpower_rfkill_ops, pdev->dev.platform_data); if (!rfkill) { dev_err(&pdev->dev, "rfkill allocate failed\n"); return -ENOMEM; } /* add file into rfkill0 to handle LDO27 */ ret = device_create_file(&pdev->dev, &dev_attr_extldo); if (ret < 0) pr_err("%s: device create file error\n", __func__); /* force Bluetooth off during init to allow for user control */ rfkill_init_sw_state(rfkill, 1); previous = true; ret = rfkill_register(rfkill); if (ret) { dev_err(&pdev->dev, "rfkill register failed=%d\n", ret); rfkill_destroy(rfkill); return ret; } platform_set_drvdata(pdev, rfkill); return 0; } static void btpower_rfkill_remove(struct platform_device *pdev) { struct rfkill *rfkill; pr_debug("%s\n", __func__); rfkill = platform_get_drvdata(pdev); if (rfkill) rfkill_unregister(rfkill); rfkill_destroy(rfkill); platform_set_drvdata(pdev, NULL); } #define MAX_PROP_SIZE 32 static int bt_dt_parse_vreg_info(struct device *dev, struct bt_power_vreg_data *vreg_data) { int len, ret = 0; const __be32 *prop; char prop_name[MAX_PROP_SIZE]; struct bt_power_vreg_data *vreg = vreg_data; struct device_node *np = dev->of_node; const char *vreg_name = vreg_data->name; pr_debug("%s: vreg dev tree parse for %s\n", __func__, vreg_name); snprintf(prop_name, sizeof(prop_name), "%s-supply", vreg_name); if (of_parse_phandle(np, prop_name, 0)) { vreg->reg = regulator_get(dev, vreg_name); if (IS_ERR(vreg->reg)) { ret = PTR_ERR(vreg->reg); vreg->reg = NULL; pr_warn("%s: failed to get: %s error:%d\n", __func__, vreg_name, ret); return ret; } snprintf(prop_name, sizeof(prop_name), "%s-config", vreg->name); prop = of_get_property(dev->of_node, prop_name, &len); if (!prop || len != (4 * sizeof(__be32))) { pr_debug("%s: Property %s %s, use default\n", __func__, prop_name, prop ? "invalid format" : "doesn't exist"); } else { vreg->min_vol = be32_to_cpup(&prop[0]); vreg->max_vol = be32_to_cpup(&prop[1]); vreg->load_curr = be32_to_cpup(&prop[2]); vreg->is_retention_supp = be32_to_cpup(&prop[3]); } pr_debug("%s: Got regulator: %s, min_vol: %u, max_vol: %u, load_curr: %u,is_retention_supp: %u\n", __func__, vreg->name, vreg->min_vol, vreg->max_vol, vreg->load_curr, vreg->is_retention_supp); } else { pr_info("%s: %s is not provided in device tree\n", __func__, vreg_name); } return ret; } static int bt_dt_parse_clk_info(struct device *dev, struct bt_power_clk_data **clk_data) { int ret = -EINVAL; struct bt_power_clk_data *clk = NULL; struct device_node *np = dev->of_node; pr_debug("%s\n", __func__); *clk_data = NULL; if (of_parse_phandle(np, "clocks", 0)) { clk = devm_kzalloc(dev, sizeof(*clk), GFP_KERNEL); if (!clk) { ret = -ENOMEM; goto err; } /* Allocated 20 bytes size buffer for clock name string */ clk->name = devm_kzalloc(dev, 20, GFP_KERNEL); /* Parse clock name from node */ ret = of_property_read_string_index(np, "clock-names", 0, &(clk->name)); if (ret < 0) { pr_err("%s: reading \"clock-names\" failed\n", __func__); return ret; } clk->clk = devm_clk_get(dev, clk->name); if (IS_ERR(clk->clk)) { ret = PTR_ERR(clk->clk); pr_err("%s: failed to get %s, ret (%d)\n", __func__, clk->name, ret); clk->clk = NULL; return ret; } *clk_data = clk; } else { pr_err("%s: clocks is not provided in device tree\n", __func__); } err: return ret; } static int bt_power_vreg_get(struct platform_device *pdev) { int num_vregs, i = 0, ret = 0; const struct bt_power *data; data = of_device_get_match_data(&pdev->dev); if (!data) { pr_err("%s: failed to get dev node\n", __func__); return -EINVAL; } memcpy(&bt_power_pdata->compatible, &data->compatible, MAX_PROP_SIZE); bt_power_pdata->vreg_info = data->vregs; num_vregs = bt_power_pdata->num_vregs = data->num_vregs; for (; i < num_vregs; i++) { ret = bt_dt_parse_vreg_info(&(pdev->dev), &bt_power_pdata->vreg_info[i]); /* No point to go further if failed to get regulator handler */ if (ret) break; } return ret; } static int bt_power_vreg_set(enum bt_power_modes mode) { int num_vregs, i = 0, ret = 0; int log_indx; struct bt_power_vreg_data *vreg_info = NULL; num_vregs = bt_power_pdata->num_vregs; if (mode == BT_POWER_ENABLE) { for (; i < num_vregs; i++) { vreg_info = &bt_power_pdata->vreg_info[i]; log_indx = vreg_info->indx.init; if (vreg_info->reg) { bt_power_src_status[log_indx] = DEFAULT_INVALID_VALUE; ret = bt_vreg_enable(vreg_info); if (ret < 0) goto out; if (vreg_info->is_enabled) { bt_power_src_status[log_indx] = regulator_get_voltage( vreg_info->reg); } } } } else if (mode == BT_POWER_DISABLE) { for (; i < num_vregs; i++) { vreg_info = &bt_power_pdata->vreg_info[i]; ret = bt_vreg_disable(vreg_info); } } else if (mode == BT_POWER_RETENTION) { for (; i < num_vregs; i++) { vreg_info = &bt_power_pdata->vreg_info[i]; ret = bt_vreg_enable_retention(vreg_info); } } else { pr_err("%s: Invalid power mode: %d\n", __func__, mode); ret = -1; } out: return ret; } static void bt_power_vreg_put(void) { int i = 0; struct bt_power_vreg_data *vreg_info = NULL; int num_vregs = bt_power_pdata->num_vregs; for (; i < num_vregs; i++) { vreg_info = &bt_power_pdata->vreg_info[i]; if (vreg_info->reg) regulator_put(vreg_info->reg); } } static int bt_power_populate_dt_pinfo(struct platform_device *pdev) { int rc; pr_debug("%s\n", __func__); if (!bt_power_pdata) return -ENOMEM; if (pdev->dev.of_node) { rc = bt_power_vreg_get(pdev); if (rc) return rc; bt_power_pdata->bt_gpio_sys_rst = of_get_named_gpio(pdev->dev.of_node, "qcom,bt-reset-gpio", 0); if (bt_power_pdata->bt_gpio_sys_rst < 0) pr_warn("bt-reset-gpio not provided in devicetree\n"); bt_power_pdata->wl_gpio_sys_rst = of_get_named_gpio(pdev->dev.of_node, "qcom,wl-reset-gpio", 0); if (bt_power_pdata->wl_gpio_sys_rst < 0) pr_err("%s: wl-reset-gpio not provided in device tree\n", __func__); bt_power_pdata->bt_gpio_sw_ctrl = of_get_named_gpio(pdev->dev.of_node, "qcom,bt-sw-ctrl-gpio", 0); if (bt_power_pdata->bt_gpio_sw_ctrl < 0) pr_warn("bt-sw-ctrl-gpio not provided in devicetree\n"); bt_power_pdata->bt_gpio_debug = of_get_named_gpio(pdev->dev.of_node, "qcom,bt-debug-gpio", 0); if (bt_power_pdata->bt_gpio_debug < 0) pr_warn("bt-debug-gpio not provided in devicetree\n"); bt_power_pdata->xo_gpio_clk = of_get_named_gpio(pdev->dev.of_node, "qcom,xo-clk-gpio", 0); if (bt_power_pdata->xo_gpio_clk < 0) pr_warn("xo-clk-gpio not provided in devicetree\n"); rc = bt_dt_parse_clk_info(&pdev->dev, &bt_power_pdata->bt_chip_clk); if (rc < 0) pr_warn("%s: clock not provided in device tree\n", __func__); #ifdef CONFIG_MSM_BT_OOBS bt_power_pdata->bt_gpio_dev_wake = of_get_named_gpio(pdev->dev.of_node, "qcom,btwake_gpio", 0); if (bt_power_pdata->bt_gpio_dev_wake < 0) pr_warn("%s: btwake-gpio not provided in device tree\n", __func__); bt_power_pdata->bt_gpio_host_wake = of_get_named_gpio(pdev->dev.of_node, "qcom,bthostwake_gpio", 0); if (bt_power_pdata->bt_gpio_host_wake < 0) pr_warn("%s: bthostwake_gpio not provided in device tree\n", __func__); #endif } bt_power_pdata->bt_power_setup = bluetooth_power; return 0; } static int bt_power_probe(struct platform_device *pdev) { int ret = 0; int itr; pr_debug("%s\n", __func__); /* Fill whole array with -2 i.e NOT_AVAILABLE state by default * for any GPIO or Reg handle. */ for (itr = PWR_SRC_INIT_STATE_IDX; itr < BT_POWER_SRC_SIZE; ++itr) bt_power_src_status[itr] = PWR_SRC_NOT_AVAILABLE; bt_power_pdata = kzalloc(sizeof(*bt_power_pdata), GFP_KERNEL); if (!bt_power_pdata) return -ENOMEM; bt_power_pdata->pdev = pdev; if (pdev->dev.of_node) { ret = bt_power_populate_dt_pinfo(pdev); if (ret < 0) { pr_err("%s, Failed to populate device tree info\n", __func__); goto free_pdata; } pdev->dev.platform_data = bt_power_pdata; } else if (pdev->dev.platform_data) { /* Optional data set to default if not provided */ if (!((struct btpower_platform_data *) (pdev->dev.platform_data))->bt_power_setup) ((struct btpower_platform_data *) (pdev->dev.platform_data))->bt_power_setup = bluetooth_power; memcpy(bt_power_pdata, pdev->dev.platform_data, sizeof(struct btpower_platform_data)); pwr_state = 0; } else { pr_err("%s: Failed to get platform data\n", __func__); goto free_pdata; } if (btpower_rfkill_probe(pdev) < 0) goto free_pdata; btpower_aop_mbox_init(bt_power_pdata); probe_finished = true; return 0; free_pdata: kfree(bt_power_pdata); return ret; } static int bt_power_remove(struct platform_device *pdev) { dev_dbg(&pdev->dev, "%s\n", __func__); probe_finished = false; btpower_rfkill_remove(pdev); bt_power_vreg_put(); kfree(bt_power_pdata); return 0; } int btpower_register_slimdev(struct device *dev) { pr_debug("%s\n", __func__); if (!bt_power_pdata || (dev == NULL)) { pr_err("%s: Failed to allocate memory\n", __func__); return -EINVAL; } bt_power_pdata->slim_dev = dev; return 0; } EXPORT_SYMBOL(btpower_register_slimdev); int btpower_get_chipset_version(void) { pr_debug("%s\n", __func__); return soc_id; } EXPORT_SYMBOL(btpower_get_chipset_version); static void set_pwr_srcs_status(struct bt_power_vreg_data *handle) { int ldo_index; if (handle) { ldo_index = handle->indx.crash; bt_power_src_status[ldo_index] = DEFAULT_INVALID_VALUE; if (handle->is_enabled && (regulator_is_enabled(handle->reg))) { bt_power_src_status[ldo_index] = (int)regulator_get_voltage(handle->reg); pr_err("%s(%p) value(%d)\n", handle->name, handle, bt_power_src_status[ldo_index]); } else { pr_err("%s:%s is_enabled: %d\n", __func__, handle->name, handle->is_enabled); } } } static void set_gpios_srcs_status(char *gpio_name, int gpio_index, int handle) { if (handle >= 0) { bt_power_src_status[gpio_index] = DEFAULT_INVALID_VALUE; bt_power_src_status[gpio_index] = gpio_get_value(handle); pr_err("%s(%d) value(%d)\n", gpio_name, handle, bt_power_src_status[gpio_index]); } else { pr_err("%s: %s not configured\n", __func__, gpio_name); } } static long bt_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { int ret = 0, pwr_cntrl = 0; int chipset_version = 0; int itr, num_vregs; struct bt_power_vreg_data *vreg_info = NULL; #ifdef CONFIG_MSM_BT_OOBS enum btpower_obs_param clk_cntrl; #endif if (!bt_power_pdata || !probe_finished) { pr_err("%s: BTPower Probing Pending.Try Again\n", __func__); return -EAGAIN; } switch (cmd) { #ifdef CONFIG_MSM_BT_OOBS case BT_CMD_OBS_SIGNAL_TASK: bt_power_pdata->reffilp_obs = file; bt_power_pdata->reftask_obs = get_current(); pr_info("%s: BT_CMD_OBS_SIGNAL_TASK tid %d file %pK\n", __func__, bt_power_pdata->reftask_obs->pid, file); break; case BT_CMD_OBS_VOTE_CLOCK: if (!gpio_is_valid(bt_power_pdata->bt_gpio_dev_wake)) { pr_debug("%s: BT_CMD_OBS_VOTE_CLOCK bt_dev_wake_n(%d) not configured\n", __func__, bt_power_pdata->bt_gpio_dev_wake); return -EIO; } clk_cntrl = (enum btpower_obs_param)arg; switch (clk_cntrl) { case BTPOWER_OBS_CLK_OFF: btpower_uart_transport_locked(bt_power_pdata, false); ret = 0; break; case BTPOWER_OBS_CLK_ON: btpower_uart_transport_locked(bt_power_pdata, true); ret = 0; break; case BTPOWER_OBS_DEV_OFF: gpio_set_value(bt_power_pdata->bt_gpio_dev_wake, 0); ret = 0; break; case BTPOWER_OBS_DEV_ON: gpio_set_value(bt_power_pdata->bt_gpio_dev_wake, 1); ret = 0; break; default: pr_debug("%s: BT_CMD_OBS_VOTE_CLOCK clk_cntrl(%d)\n", __func__, clk_cntrl); return -EINVAL; } pr_debug("%s: BT_CMD_OBS_VOTE_CLOCK clk_cntrl(%d) %s\n", __func__, clk_cntrl, gpio_get_value(bt_power_pdata->bt_gpio_dev_wake) ? "Assert" : "Deassert"); break; #endif case BT_CMD_SLIM_TEST: #if (defined CONFIG_BT_SLIM) if (!bt_power_pdata->slim_dev) { pr_err("%s: slim_dev is null\n", __func__); return -EINVAL; } ret = btfm_slim_hw_init( bt_power_pdata->slim_dev->platform_data ); #endif break; case BT_CMD_PWR_CTRL: pwr_cntrl = (int)arg; pr_warn("%s: BT_CMD_PWR_CTRL pwr_cntrl: %d\n", __func__, pwr_cntrl); if (pwr_state != pwr_cntrl) { ret = bluetooth_power(pwr_cntrl); if (!ret) pwr_state = pwr_cntrl; } else { pr_err("%s: BT chip state is already: %d no change\n", __func__, pwr_state); ret = 0; } break; case BT_CMD_CHIPSET_VERS: chipset_version = (int)arg; pr_warn("%s: unified Current SOC Version : %x\n", __func__, chipset_version); if (chipset_version) { soc_id = chipset_version; } else { pr_err("%s: got invalid soc version\n", __func__); soc_id = 0; } break; case BT_CMD_GET_CHIPSET_ID: if (copy_to_user((void __user *)arg, bt_power_pdata->compatible, MAX_PROP_SIZE)) { pr_err("%s: copy to user failed\n", __func__); ret = -EFAULT; } break; case BT_CMD_CHECK_SW_CTRL: /* Check if SW_CTRL is asserted */ pr_info("BT_CMD_CHECK_SW_CTRL\n"); if (bt_power_pdata->bt_gpio_sw_ctrl > 0) { bt_power_src_status[BT_SW_CTRL_GPIO] = DEFAULT_INVALID_VALUE; ret = gpio_direction_input( bt_power_pdata->bt_gpio_sw_ctrl); if (ret) { pr_err("%s:gpio_direction_input api\n", __func__); pr_err("%s:failed for SW_CTRL:%d\n", __func__, ret); } else { bt_power_src_status[BT_SW_CTRL_GPIO] = gpio_get_value( bt_power_pdata->bt_gpio_sw_ctrl); pr_info("bt-sw-ctrl-gpio(%d) value(%d)\n", bt_power_pdata->bt_gpio_sw_ctrl, bt_power_src_status[BT_SW_CTRL_GPIO]); } } else { pr_err("bt_gpio_sw_ctrl not configured\n"); return -EINVAL; } break; case BT_CMD_GETVAL_POWER_SRCS: pr_err("BT_CMD_GETVAL_POWER_SRCS\n"); set_gpios_srcs_status("BT_RESET_GPIO", BT_RESET_GPIO_CURRENT, bt_power_pdata->bt_gpio_sys_rst); set_gpios_srcs_status("SW_CTRL_GPIO", BT_SW_CTRL_GPIO_CURRENT, bt_power_pdata->bt_gpio_sw_ctrl); num_vregs = bt_power_pdata->num_vregs; for (itr = 0; itr < num_vregs; itr++) { vreg_info = &bt_power_pdata->vreg_info[itr]; set_pwr_srcs_status(vreg_info); } if (copy_to_user((void __user *)arg, bt_power_src_status, sizeof(bt_power_src_status))) { pr_err("%s: copy to user failed\n", __func__); ret = -EFAULT; } break; case BT_CMD_SET_IPA_TCS_INFO: pr_err("%s: BT_CMD_SET_IPA_TCS_INFO\n", __func__); btpower_enable_ipa_vreg(bt_power_pdata); break; default: return -ENOIOCTLCMD; } return ret; } static struct platform_driver bt_power_driver = { .probe = bt_power_probe, .remove = bt_power_remove, .driver = { .name = "bt_power", .of_match_table = bt_power_match_table, }, }; static const struct file_operations bt_dev_fops = { .unlocked_ioctl = bt_ioctl, .compat_ioctl = bt_ioctl, }; static int __init btpower_init(void) { int ret = 0; probe_finished = false; ret = platform_driver_register(&bt_power_driver); if (ret) { pr_err("%s: platform_driver_register error: %d\n", __func__, ret); goto driver_err; } bt_major = register_chrdev(0, "bt", &bt_dev_fops); if (bt_major < 0) { pr_err("%s: failed to allocate char dev\n", __func__); ret = -1; goto chrdev_err; } bt_class = class_create(THIS_MODULE, "bt-dev"); if (IS_ERR(bt_class)) { pr_err("%s: coudn't create class\n", __func__); ret = -1; goto class_err; } if (device_create(bt_class, NULL, MKDEV(bt_major, 0), NULL, "btpower") == NULL) { pr_err("%s: failed to allocate char dev\n", __func__); goto device_err; } return 0; device_err: class_destroy(bt_class); class_err: unregister_chrdev(bt_major, "bt"); chrdev_err: platform_driver_unregister(&bt_power_driver); driver_err: return ret; } int btpower_aop_mbox_init(struct btpower_platform_data *pdata) { struct mbox_client *mbox = &pdata->mbox_client_data; struct mbox_chan *chan; int ret = 0; mbox->dev = &pdata->pdev->dev; mbox->tx_block = true; mbox->tx_tout = BTPOWER_MBOX_TIMEOUT_MS; mbox->knows_txdone = false; pdata->mbox_chan = NULL; chan = mbox_request_channel(mbox, 0); if (IS_ERR(chan)) { pr_err("%s: failed to get mbox channel\n", __func__); return PTR_ERR(chan); } pdata->mbox_chan = chan; ret = of_property_read_string(pdata->pdev->dev.of_node, "qcom,vreg_ipa", &pdata->vreg_ipa); if (ret) pr_info("%s: vreg for iPA not configured\n", __func__); else pr_info("%s: Mbox channel initialized\n", __func__); return 0; } static int btpower_aop_set_vreg_param(struct btpower_platform_data *pdata, const char *vreg_name, enum btpower_vreg_param param, enum btpower_tcs_seq seq, int val) { struct qmp_pkt pkt; char mbox_msg[BTPOWER_MBOX_MSG_MAX_LEN]; static const char * const vreg_param_str[] = {"v", "m", "e"}; static const char *const tcs_seq_str[] = {"upval", "dwnval", "enable"}; int ret = 0; if (param > BTPOWER_VREG_ENABLE || seq > BTPOWER_TCS_ALL_SEQ || !vreg_name) return -EINVAL; snprintf(mbox_msg, BTPOWER_MBOX_MSG_MAX_LEN, "{class: wlan_pdc, res: %s.%s, %s: %d}", vreg_name, vreg_param_str[param], tcs_seq_str[seq], val); pr_info("%s: sending AOP Mbox msg: %s\n", __func__, mbox_msg); pkt.size = BTPOWER_MBOX_MSG_MAX_LEN; pkt.data = mbox_msg; ret = mbox_send_message(pdata->mbox_chan, &pkt); if (ret < 0) pr_err("%s:Failed to send AOP mbox msg(%s), err(%d)\n", __func__, mbox_msg, ret); return ret; } static int btpower_enable_ipa_vreg(struct btpower_platform_data *pdata) { int ret = 0; static bool config_done; if (config_done) { pr_info("%s: IPA Vreg already configured\n", __func__); return 0; } if (!pdata->vreg_ipa || !pdata->mbox_chan) { pr_info("%s: mbox/iPA vreg not configured\n", __func__); } else { ret = btpower_aop_set_vreg_param(pdata, pdata->vreg_ipa, BTPOWER_VREG_ENABLE, BTPOWER_TCS_UP_SEQ, 1); if (ret >= 0) { pr_info("%s:Enabled iPA\n", __func__); config_done = true; } } return ret; } static void __exit btpower_exit(void) { platform_driver_unregister(&bt_power_driver); } MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("MSM Bluetooth power control driver"); module_init(btpower_init); module_exit(btpower_exit);