dp_rx.c 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461
  1. /*
  2. * Copyright (c) 2016-2019 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_rx.h"
  23. #include "hal_api.h"
  24. #include "qdf_nbuf.h"
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #include "dp_ipa.h"
  31. #ifdef CONFIG_MCL
  32. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  33. {
  34. if (vdev->opmode != wlan_op_mode_sta)
  35. return true;
  36. else
  37. return false;
  38. }
  39. #else
  40. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  41. {
  42. return vdev->ap_bridge_enabled;
  43. }
  44. #endif
  45. #ifdef ATH_RX_PRI_SAVE
  46. static inline void dp_rx_save_tid_ts(qdf_nbuf_t nbuf, uint8_t tid, bool flag)
  47. {
  48. qdf_nbuf_set_priority(nbuf, tid);
  49. if (qdf_unlikely(flag))
  50. qdf_nbuf_set_timestamp(nbuf);
  51. }
  52. #else
  53. static inline void dp_rx_save_tid_ts(qdf_nbuf_t nbuf, uint8_t tid, bool flag)
  54. {
  55. if (qdf_unlikely(flag)) {
  56. qdf_nbuf_set_priority(nbuf, tid);
  57. qdf_nbuf_set_timestamp(nbuf);
  58. }
  59. }
  60. #endif
  61. /*
  62. * dp_rx_dump_info_and_assert() - dump RX Ring info and Rx Desc info
  63. *
  64. * @soc: core txrx main context
  65. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  66. * @ring_desc: opaque pointer to the RX ring descriptor
  67. * @rx_desc: host rs descriptor
  68. *
  69. * Return: void
  70. */
  71. void dp_rx_dump_info_and_assert(struct dp_soc *soc, void *hal_ring,
  72. void *ring_desc, struct dp_rx_desc *rx_desc)
  73. {
  74. void *hal_soc = soc->hal_soc;
  75. dp_rx_desc_dump(rx_desc);
  76. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  77. hal_srng_dump_ring(hal_soc, hal_ring);
  78. qdf_assert_always(0);
  79. }
  80. /*
  81. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  82. * called during dp rx initialization
  83. * and at the end of dp_rx_process.
  84. *
  85. * @soc: core txrx main context
  86. * @mac_id: mac_id which is one of 3 mac_ids
  87. * @dp_rxdma_srng: dp rxdma circular ring
  88. * @rx_desc_pool: Pointer to free Rx descriptor pool
  89. * @num_req_buffers: number of buffer to be replenished
  90. * @desc_list: list of descs if called from dp_rx_process
  91. * or NULL during dp rx initialization or out of buffer
  92. * interrupt.
  93. * @tail: tail of descs list
  94. * Return: return success or failure
  95. */
  96. QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  97. struct dp_srng *dp_rxdma_srng,
  98. struct rx_desc_pool *rx_desc_pool,
  99. uint32_t num_req_buffers,
  100. union dp_rx_desc_list_elem_t **desc_list,
  101. union dp_rx_desc_list_elem_t **tail)
  102. {
  103. uint32_t num_alloc_desc;
  104. uint16_t num_desc_to_free = 0;
  105. struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
  106. uint32_t num_entries_avail;
  107. uint32_t count;
  108. int sync_hw_ptr = 1;
  109. qdf_dma_addr_t paddr;
  110. qdf_nbuf_t rx_netbuf;
  111. void *rxdma_ring_entry;
  112. union dp_rx_desc_list_elem_t *next;
  113. QDF_STATUS ret;
  114. void *rxdma_srng;
  115. rxdma_srng = dp_rxdma_srng->hal_srng;
  116. if (!rxdma_srng) {
  117. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  118. "rxdma srng not initialized");
  119. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  120. return QDF_STATUS_E_FAILURE;
  121. }
  122. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  123. "requested %d buffers for replenish", num_req_buffers);
  124. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  125. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  126. rxdma_srng,
  127. sync_hw_ptr);
  128. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  129. "no of available entries in rxdma ring: %d",
  130. num_entries_avail);
  131. if (!(*desc_list) && (num_entries_avail >
  132. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  133. num_req_buffers = num_entries_avail;
  134. } else if (num_entries_avail < num_req_buffers) {
  135. num_desc_to_free = num_req_buffers - num_entries_avail;
  136. num_req_buffers = num_entries_avail;
  137. }
  138. if (qdf_unlikely(!num_req_buffers)) {
  139. num_desc_to_free = num_req_buffers;
  140. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  141. goto free_descs;
  142. }
  143. /*
  144. * if desc_list is NULL, allocate the descs from freelist
  145. */
  146. if (!(*desc_list)) {
  147. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  148. rx_desc_pool,
  149. num_req_buffers,
  150. desc_list,
  151. tail);
  152. if (!num_alloc_desc) {
  153. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  154. "no free rx_descs in freelist");
  155. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  156. num_req_buffers);
  157. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  158. return QDF_STATUS_E_NOMEM;
  159. }
  160. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  161. "%d rx desc allocated", num_alloc_desc);
  162. num_req_buffers = num_alloc_desc;
  163. }
  164. count = 0;
  165. while (count < num_req_buffers) {
  166. rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
  167. RX_BUFFER_SIZE,
  168. RX_BUFFER_RESERVATION,
  169. RX_BUFFER_ALIGNMENT,
  170. FALSE);
  171. if (qdf_unlikely(!rx_netbuf)) {
  172. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  173. continue;
  174. }
  175. ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
  176. QDF_DMA_BIDIRECTIONAL);
  177. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  178. qdf_nbuf_free(rx_netbuf);
  179. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  180. continue;
  181. }
  182. paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
  183. /*
  184. * check if the physical address of nbuf->data is
  185. * less then 0x50000000 then free the nbuf and try
  186. * allocating new nbuf. We can try for 100 times.
  187. * this is a temp WAR till we fix it properly.
  188. */
  189. ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
  190. if (ret == QDF_STATUS_E_FAILURE) {
  191. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  192. break;
  193. }
  194. count++;
  195. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  196. rxdma_srng);
  197. qdf_assert_always(rxdma_ring_entry);
  198. next = (*desc_list)->next;
  199. dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
  200. /* rx_desc.in_use should be zero at this time*/
  201. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  202. (*desc_list)->rx_desc.in_use = 1;
  203. dp_verbose_debug("rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
  204. rx_netbuf, qdf_nbuf_data(rx_netbuf),
  205. (unsigned long long)paddr,
  206. (*desc_list)->rx_desc.cookie);
  207. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  208. (*desc_list)->rx_desc.cookie,
  209. rx_desc_pool->owner);
  210. *desc_list = next;
  211. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, rx_netbuf, true);
  212. }
  213. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  214. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  215. num_req_buffers, num_desc_to_free);
  216. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
  217. (RX_BUFFER_SIZE * num_req_buffers));
  218. free_descs:
  219. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  220. /*
  221. * add any available free desc back to the free list
  222. */
  223. if (*desc_list)
  224. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  225. mac_id, rx_desc_pool);
  226. return QDF_STATUS_SUCCESS;
  227. }
  228. /*
  229. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  230. * pkts to RAW mode simulation to
  231. * decapsulate the pkt.
  232. *
  233. * @vdev: vdev on which RAW mode is enabled
  234. * @nbuf_list: list of RAW pkts to process
  235. * @peer: peer object from which the pkt is rx
  236. *
  237. * Return: void
  238. */
  239. void
  240. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  241. struct dp_peer *peer)
  242. {
  243. qdf_nbuf_t deliver_list_head = NULL;
  244. qdf_nbuf_t deliver_list_tail = NULL;
  245. qdf_nbuf_t nbuf;
  246. nbuf = nbuf_list;
  247. while (nbuf) {
  248. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  249. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  250. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  251. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  252. /*
  253. * reset the chfrag_start and chfrag_end bits in nbuf cb
  254. * as this is a non-amsdu pkt and RAW mode simulation expects
  255. * these bit s to be 0 for non-amsdu pkt.
  256. */
  257. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  258. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  259. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  260. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  261. }
  262. nbuf = next;
  263. }
  264. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  265. &deliver_list_tail, (struct cdp_peer*) peer);
  266. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  267. }
  268. #ifdef DP_LFR
  269. /*
  270. * In case of LFR, data of a new peer might be sent up
  271. * even before peer is added.
  272. */
  273. static inline struct dp_vdev *
  274. dp_get_vdev_from_peer(struct dp_soc *soc,
  275. uint16_t peer_id,
  276. struct dp_peer *peer,
  277. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  278. {
  279. struct dp_vdev *vdev;
  280. uint8_t vdev_id;
  281. if (unlikely(!peer)) {
  282. if (peer_id != HTT_INVALID_PEER) {
  283. vdev_id = DP_PEER_METADATA_ID_GET(
  284. mpdu_desc_info.peer_meta_data);
  285. QDF_TRACE(QDF_MODULE_ID_DP,
  286. QDF_TRACE_LEVEL_DEBUG,
  287. FL("PeerID %d not found use vdevID %d"),
  288. peer_id, vdev_id);
  289. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
  290. vdev_id);
  291. } else {
  292. QDF_TRACE(QDF_MODULE_ID_DP,
  293. QDF_TRACE_LEVEL_DEBUG,
  294. FL("Invalid PeerID %d"),
  295. peer_id);
  296. return NULL;
  297. }
  298. } else {
  299. vdev = peer->vdev;
  300. }
  301. return vdev;
  302. }
  303. #else
  304. static inline struct dp_vdev *
  305. dp_get_vdev_from_peer(struct dp_soc *soc,
  306. uint16_t peer_id,
  307. struct dp_peer *peer,
  308. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  309. {
  310. if (unlikely(!peer)) {
  311. QDF_TRACE(QDF_MODULE_ID_DP,
  312. QDF_TRACE_LEVEL_DEBUG,
  313. FL("Peer not found for peerID %d"),
  314. peer_id);
  315. return NULL;
  316. } else {
  317. return peer->vdev;
  318. }
  319. }
  320. #endif
  321. /**
  322. * dp_rx_da_learn() - Add AST entry based on DA lookup
  323. * This is a WAR for HK 1.0 and will
  324. * be removed in HK 2.0
  325. *
  326. * @soc: core txrx main context
  327. * @rx_tlv_hdr : start address of rx tlvs
  328. * @ta_peer : Transmitter peer entry
  329. * @nbuf : nbuf to retrieve destination mac for which AST will be added
  330. *
  331. */
  332. #ifdef FEATURE_WDS
  333. static void
  334. dp_rx_da_learn(struct dp_soc *soc,
  335. uint8_t *rx_tlv_hdr,
  336. struct dp_peer *ta_peer,
  337. qdf_nbuf_t nbuf)
  338. {
  339. /* For HKv2 DA port learing is not needed */
  340. if (qdf_likely(soc->ast_override_support))
  341. return;
  342. if (qdf_unlikely(!ta_peer))
  343. return;
  344. if (qdf_unlikely(ta_peer->vdev->opmode != wlan_op_mode_ap))
  345. return;
  346. if (!soc->da_war_enabled)
  347. return;
  348. if (qdf_unlikely(!qdf_nbuf_is_da_valid(nbuf) &&
  349. !qdf_nbuf_is_da_mcbc(nbuf))) {
  350. dp_peer_add_ast(soc,
  351. ta_peer,
  352. qdf_nbuf_data(nbuf),
  353. CDP_TXRX_AST_TYPE_DA,
  354. IEEE80211_NODE_F_WDS_HM);
  355. }
  356. }
  357. #else
  358. static void
  359. dp_rx_da_learn(struct dp_soc *soc,
  360. uint8_t *rx_tlv_hdr,
  361. struct dp_peer *ta_peer,
  362. qdf_nbuf_t nbuf)
  363. {
  364. }
  365. #endif
  366. /**
  367. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  368. *
  369. * @soc: core txrx main context
  370. * @ta_peer : source peer entry
  371. * @rx_tlv_hdr : start address of rx tlvs
  372. * @nbuf : nbuf that has to be intrabss forwarded
  373. *
  374. * Return: bool: true if it is forwarded else false
  375. */
  376. static bool
  377. dp_rx_intrabss_fwd(struct dp_soc *soc,
  378. struct dp_peer *ta_peer,
  379. uint8_t *rx_tlv_hdr,
  380. qdf_nbuf_t nbuf)
  381. {
  382. uint16_t da_idx;
  383. uint16_t len;
  384. uint8_t is_frag;
  385. struct dp_peer *da_peer;
  386. struct dp_ast_entry *ast_entry;
  387. qdf_nbuf_t nbuf_copy;
  388. uint8_t tid = qdf_nbuf_get_priority(nbuf);
  389. struct cdp_tid_rx_stats *tid_stats =
  390. &ta_peer->vdev->pdev->stats.tid_stats.tid_rx_stats[tid];
  391. /* check if the destination peer is available in peer table
  392. * and also check if the source peer and destination peer
  393. * belong to the same vap and destination peer is not bss peer.
  394. */
  395. if ((qdf_nbuf_is_da_valid(nbuf) && !qdf_nbuf_is_da_mcbc(nbuf))) {
  396. da_idx = hal_rx_msdu_end_da_idx_get(soc->hal_soc, rx_tlv_hdr);
  397. ast_entry = soc->ast_table[da_idx];
  398. if (!ast_entry)
  399. return false;
  400. if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
  401. ast_entry->is_active = TRUE;
  402. return false;
  403. }
  404. da_peer = ast_entry->peer;
  405. if (!da_peer)
  406. return false;
  407. /* TA peer cannot be same as peer(DA) on which AST is present
  408. * this indicates a change in topology and that AST entries
  409. * are yet to be updated.
  410. */
  411. if (da_peer == ta_peer)
  412. return false;
  413. if (da_peer->vdev == ta_peer->vdev && !da_peer->bss_peer) {
  414. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  415. is_frag = qdf_nbuf_is_frag(nbuf);
  416. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  417. /* linearize the nbuf just before we send to
  418. * dp_tx_send()
  419. */
  420. if (qdf_unlikely(is_frag)) {
  421. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  422. return false;
  423. nbuf = qdf_nbuf_unshare(nbuf);
  424. if (!nbuf) {
  425. DP_STATS_INC_PKT(ta_peer,
  426. rx.intra_bss.fail,
  427. 1,
  428. len);
  429. /* return true even though the pkt is
  430. * not forwarded. Basically skb_unshare
  431. * failed and we want to continue with
  432. * next nbuf.
  433. */
  434. tid_stats->fail_cnt[INTRABSS_DROP]++;
  435. return true;
  436. }
  437. }
  438. if (!dp_tx_send(ta_peer->vdev, nbuf)) {
  439. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  440. len);
  441. return true;
  442. } else {
  443. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  444. len);
  445. tid_stats->fail_cnt[INTRABSS_DROP]++;
  446. return false;
  447. }
  448. }
  449. }
  450. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  451. * source, then clone the pkt and send the cloned pkt for
  452. * intra BSS forwarding and original pkt up the network stack
  453. * Note: how do we handle multicast pkts. do we forward
  454. * all multicast pkts as is or let a higher layer module
  455. * like igmpsnoop decide whether to forward or not with
  456. * Mcast enhancement.
  457. */
  458. else if (qdf_unlikely((qdf_nbuf_is_da_mcbc(nbuf) &&
  459. !ta_peer->bss_peer))) {
  460. nbuf_copy = qdf_nbuf_copy(nbuf);
  461. if (!nbuf_copy)
  462. return false;
  463. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  464. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  465. if (dp_tx_send(ta_peer->vdev, nbuf_copy)) {
  466. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  467. tid_stats->fail_cnt[INTRABSS_DROP]++;
  468. qdf_nbuf_free(nbuf_copy);
  469. } else {
  470. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  471. tid_stats->intrabss_cnt++;
  472. }
  473. }
  474. /* return false as we have to still send the original pkt
  475. * up the stack
  476. */
  477. return false;
  478. }
  479. #ifdef MESH_MODE_SUPPORT
  480. /**
  481. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  482. *
  483. * @vdev: DP Virtual device handle
  484. * @nbuf: Buffer pointer
  485. * @rx_tlv_hdr: start of rx tlv header
  486. * @peer: pointer to peer
  487. *
  488. * This function allocated memory for mesh receive stats and fill the
  489. * required stats. Stores the memory address in skb cb.
  490. *
  491. * Return: void
  492. */
  493. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  494. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  495. {
  496. struct mesh_recv_hdr_s *rx_info = NULL;
  497. uint32_t pkt_type;
  498. uint32_t nss;
  499. uint32_t rate_mcs;
  500. uint32_t bw;
  501. /* fill recv mesh stats */
  502. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  503. /* upper layers are resposible to free this memory */
  504. if (!rx_info) {
  505. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  506. "Memory allocation failed for mesh rx stats");
  507. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  508. return;
  509. }
  510. rx_info->rs_flags = MESH_RXHDR_VER1;
  511. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  512. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  513. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  514. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  515. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  516. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  517. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  518. if (vdev->osif_get_key)
  519. vdev->osif_get_key(vdev->osif_vdev,
  520. &rx_info->rs_decryptkey[0],
  521. &peer->mac_addr.raw[0],
  522. rx_info->rs_keyix);
  523. }
  524. rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  525. rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  526. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  527. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  528. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  529. nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
  530. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  531. (bw << 24);
  532. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  533. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  534. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  535. rx_info->rs_flags,
  536. rx_info->rs_rssi,
  537. rx_info->rs_channel,
  538. rx_info->rs_ratephy1,
  539. rx_info->rs_keyix);
  540. }
  541. /**
  542. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  543. *
  544. * @vdev: DP Virtual device handle
  545. * @nbuf: Buffer pointer
  546. * @rx_tlv_hdr: start of rx tlv header
  547. *
  548. * This checks if the received packet is matching any filter out
  549. * catogery and and drop the packet if it matches.
  550. *
  551. * Return: status(0 indicates drop, 1 indicate to no drop)
  552. */
  553. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  554. uint8_t *rx_tlv_hdr)
  555. {
  556. union dp_align_mac_addr mac_addr;
  557. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  558. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  559. if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
  560. return QDF_STATUS_SUCCESS;
  561. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  562. if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  563. return QDF_STATUS_SUCCESS;
  564. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  565. if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
  566. && !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  567. return QDF_STATUS_SUCCESS;
  568. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  569. if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
  570. &mac_addr.raw[0]))
  571. return QDF_STATUS_E_FAILURE;
  572. if (!qdf_mem_cmp(&mac_addr.raw[0],
  573. &vdev->mac_addr.raw[0],
  574. QDF_MAC_ADDR_SIZE))
  575. return QDF_STATUS_SUCCESS;
  576. }
  577. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  578. if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
  579. &mac_addr.raw[0]))
  580. return QDF_STATUS_E_FAILURE;
  581. if (!qdf_mem_cmp(&mac_addr.raw[0],
  582. &vdev->mac_addr.raw[0],
  583. QDF_MAC_ADDR_SIZE))
  584. return QDF_STATUS_SUCCESS;
  585. }
  586. }
  587. return QDF_STATUS_E_FAILURE;
  588. }
  589. #else
  590. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  591. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  592. {
  593. }
  594. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  595. uint8_t *rx_tlv_hdr)
  596. {
  597. return QDF_STATUS_E_FAILURE;
  598. }
  599. #endif
  600. #ifdef FEATURE_NAC_RSSI
  601. /**
  602. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  603. * clients
  604. * @pdev: DP pdev handle
  605. * @rx_pkt_hdr: Rx packet Header
  606. *
  607. * return: dp_vdev*
  608. */
  609. static
  610. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  611. uint8_t *rx_pkt_hdr)
  612. {
  613. struct ieee80211_frame *wh;
  614. struct dp_neighbour_peer *peer = NULL;
  615. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  616. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  617. return NULL;
  618. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  619. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  620. neighbour_peer_list_elem) {
  621. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  622. wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) {
  623. QDF_TRACE(
  624. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  625. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  626. peer->neighbour_peers_macaddr.raw[0],
  627. peer->neighbour_peers_macaddr.raw[1],
  628. peer->neighbour_peers_macaddr.raw[2],
  629. peer->neighbour_peers_macaddr.raw[3],
  630. peer->neighbour_peers_macaddr.raw[4],
  631. peer->neighbour_peers_macaddr.raw[5]);
  632. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  633. return pdev->monitor_vdev;
  634. }
  635. }
  636. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  637. return NULL;
  638. }
  639. /**
  640. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  641. * @soc: DP SOC handle
  642. * @mpdu: mpdu for which peer is invalid
  643. *
  644. * return: integer type
  645. */
  646. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  647. {
  648. struct dp_invalid_peer_msg msg;
  649. struct dp_vdev *vdev = NULL;
  650. struct dp_pdev *pdev = NULL;
  651. struct ieee80211_frame *wh;
  652. uint8_t i;
  653. qdf_nbuf_t curr_nbuf, next_nbuf;
  654. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  655. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  656. if (!HAL_IS_DECAP_FORMAT_RAW(rx_tlv_hdr)) {
  657. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  658. "Drop decapped frames");
  659. goto free;
  660. }
  661. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  662. if (!DP_FRAME_IS_DATA(wh)) {
  663. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  664. "NAWDS valid only for data frames");
  665. goto free;
  666. }
  667. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  668. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  669. "Invalid nbuf length");
  670. goto free;
  671. }
  672. for (i = 0; i < MAX_PDEV_CNT; i++) {
  673. pdev = soc->pdev_list[i];
  674. if (!pdev) {
  675. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  676. "PDEV not found");
  677. continue;
  678. }
  679. if (pdev->filter_neighbour_peers) {
  680. /* Next Hop scenario not yet handle */
  681. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  682. if (vdev) {
  683. dp_rx_mon_deliver(soc, i,
  684. pdev->invalid_peer_head_msdu,
  685. pdev->invalid_peer_tail_msdu);
  686. pdev->invalid_peer_head_msdu = NULL;
  687. pdev->invalid_peer_tail_msdu = NULL;
  688. return 0;
  689. }
  690. }
  691. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  692. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  693. QDF_MAC_ADDR_SIZE) == 0) {
  694. goto out;
  695. }
  696. }
  697. }
  698. if (!vdev) {
  699. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  700. "VDEV not found");
  701. goto free;
  702. }
  703. out:
  704. msg.wh = wh;
  705. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  706. msg.nbuf = mpdu;
  707. msg.vdev_id = vdev->vdev_id;
  708. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
  709. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(pdev->ctrl_pdev,
  710. &msg);
  711. free:
  712. /* Drop and free packet */
  713. curr_nbuf = mpdu;
  714. while (curr_nbuf) {
  715. next_nbuf = qdf_nbuf_next(curr_nbuf);
  716. qdf_nbuf_free(curr_nbuf);
  717. curr_nbuf = next_nbuf;
  718. }
  719. return 0;
  720. }
  721. /**
  722. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  723. * @soc: DP SOC handle
  724. * @mpdu: mpdu for which peer is invalid
  725. * @mpdu_done: if an mpdu is completed
  726. *
  727. * return: integer type
  728. */
  729. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  730. qdf_nbuf_t mpdu, bool mpdu_done)
  731. {
  732. /* Only trigger the process when mpdu is completed */
  733. if (mpdu_done)
  734. dp_rx_process_invalid_peer(soc, mpdu);
  735. }
  736. #else
  737. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  738. {
  739. qdf_nbuf_t curr_nbuf, next_nbuf;
  740. struct dp_pdev *pdev;
  741. uint8_t i;
  742. struct dp_vdev *vdev = NULL;
  743. struct ieee80211_frame *wh;
  744. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  745. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  746. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  747. if (!DP_FRAME_IS_DATA(wh)) {
  748. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  749. "only for data frames");
  750. goto free;
  751. }
  752. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  753. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  754. "Invalid nbuf length");
  755. goto free;
  756. }
  757. for (i = 0; i < MAX_PDEV_CNT; i++) {
  758. pdev = soc->pdev_list[i];
  759. if (!pdev) {
  760. QDF_TRACE(QDF_MODULE_ID_DP,
  761. QDF_TRACE_LEVEL_ERROR,
  762. "PDEV not found");
  763. continue;
  764. }
  765. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  766. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  767. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  768. QDF_MAC_ADDR_SIZE) == 0) {
  769. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  770. goto out;
  771. }
  772. }
  773. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  774. }
  775. if (!vdev) {
  776. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  777. "VDEV not found");
  778. goto free;
  779. }
  780. out:
  781. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  782. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  783. free:
  784. /* reset the head and tail pointers */
  785. for (i = 0; i < MAX_PDEV_CNT; i++) {
  786. pdev = soc->pdev_list[i];
  787. if (!pdev) {
  788. QDF_TRACE(QDF_MODULE_ID_DP,
  789. QDF_TRACE_LEVEL_ERROR,
  790. "PDEV not found");
  791. continue;
  792. }
  793. pdev->invalid_peer_head_msdu = NULL;
  794. pdev->invalid_peer_tail_msdu = NULL;
  795. }
  796. /* Drop and free packet */
  797. curr_nbuf = mpdu;
  798. while (curr_nbuf) {
  799. next_nbuf = qdf_nbuf_next(curr_nbuf);
  800. qdf_nbuf_free(curr_nbuf);
  801. curr_nbuf = next_nbuf;
  802. }
  803. return 0;
  804. }
  805. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  806. qdf_nbuf_t mpdu, bool mpdu_done)
  807. {
  808. /* Process the nbuf */
  809. dp_rx_process_invalid_peer(soc, mpdu);
  810. }
  811. #endif
  812. #ifdef RECEIVE_OFFLOAD
  813. /**
  814. * dp_rx_print_offload_info() - Print offload info from RX TLV
  815. * @rx_tlv: RX TLV for which offload information is to be printed
  816. *
  817. * Return: None
  818. */
  819. static void dp_rx_print_offload_info(uint8_t *rx_tlv)
  820. {
  821. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  822. dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  823. dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  824. dp_verbose_debug("chksum 0x%x", HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
  825. dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  826. dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  827. dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  828. dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  829. dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  830. dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  831. dp_verbose_debug("---------------------------------------------------------");
  832. }
  833. /**
  834. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  835. * @soc: DP SOC handle
  836. * @rx_tlv: RX TLV received for the msdu
  837. * @msdu: msdu for which GRO info needs to be filled
  838. *
  839. * Return: None
  840. */
  841. static
  842. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  843. qdf_nbuf_t msdu)
  844. {
  845. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  846. return;
  847. /* Filling up RX offload info only for TCP packets */
  848. if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
  849. return;
  850. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  851. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  852. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  853. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  854. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  855. HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
  856. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  857. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  858. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  859. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  860. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  861. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  862. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  863. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  864. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  865. HAL_RX_TLV_GET_IPV6(rx_tlv);
  866. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  867. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  868. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  869. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  870. dp_rx_print_offload_info(rx_tlv);
  871. }
  872. #else
  873. static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  874. qdf_nbuf_t msdu)
  875. {
  876. }
  877. #endif /* RECEIVE_OFFLOAD */
  878. /**
  879. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  880. *
  881. * @nbuf: pointer to msdu.
  882. * @mpdu_len: mpdu length
  883. *
  884. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  885. */
  886. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  887. {
  888. bool last_nbuf;
  889. if (*mpdu_len > (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  890. qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
  891. last_nbuf = false;
  892. } else {
  893. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  894. last_nbuf = true;
  895. }
  896. *mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  897. return last_nbuf;
  898. }
  899. /**
  900. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  901. * multiple nbufs.
  902. * @nbuf: pointer to the first msdu of an amsdu.
  903. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  904. *
  905. *
  906. * This function implements the creation of RX frag_list for cases
  907. * where an MSDU is spread across multiple nbufs.
  908. *
  909. * Return: returns the head nbuf which contains complete frag_list.
  910. */
  911. qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr)
  912. {
  913. qdf_nbuf_t parent, next, frag_list;
  914. uint16_t frag_list_len = 0;
  915. uint16_t mpdu_len;
  916. bool last_nbuf;
  917. mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  918. /*
  919. * this is a case where the complete msdu fits in one single nbuf.
  920. * in this case HW sets both start and end bit and we only need to
  921. * reset these bits for RAW mode simulator to decap the pkt
  922. */
  923. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  924. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  925. qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
  926. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  927. return nbuf;
  928. }
  929. /*
  930. * This is a case where we have multiple msdus (A-MSDU) spread across
  931. * multiple nbufs. here we create a fraglist out of these nbufs.
  932. *
  933. * the moment we encounter a nbuf with continuation bit set we
  934. * know for sure we have an MSDU which is spread across multiple
  935. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  936. */
  937. parent = nbuf;
  938. frag_list = nbuf->next;
  939. nbuf = nbuf->next;
  940. /*
  941. * set the start bit in the first nbuf we encounter with continuation
  942. * bit set. This has the proper mpdu length set as it is the first
  943. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  944. * nbufs will form the frag_list of the parent nbuf.
  945. */
  946. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  947. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  948. /*
  949. * this is where we set the length of the fragments which are
  950. * associated to the parent nbuf. We iterate through the frag_list
  951. * till we hit the last_nbuf of the list.
  952. */
  953. do {
  954. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  955. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  956. frag_list_len += qdf_nbuf_len(nbuf);
  957. if (last_nbuf) {
  958. next = nbuf->next;
  959. nbuf->next = NULL;
  960. break;
  961. }
  962. nbuf = nbuf->next;
  963. } while (!last_nbuf);
  964. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  965. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  966. parent->next = next;
  967. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  968. return parent;
  969. }
  970. /**
  971. * dp_rx_compute_delay() - Compute and fill in all timestamps
  972. * to pass in correct fields
  973. *
  974. * @vdev: pdev handle
  975. * @tx_desc: tx descriptor
  976. * @tid: tid value
  977. * Return: none
  978. */
  979. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  980. {
  981. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  982. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  983. uint8_t tid = qdf_nbuf_get_priority(nbuf);
  984. uint32_t interframe_delay =
  985. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  986. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  987. CDP_DELAY_STATS_REAP_STACK);
  988. /*
  989. * Update interframe delay stats calculated at deliver_data_ol point.
  990. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  991. * interframe delay will not be calculate correctly for 1st frame.
  992. * On the other side, this will help in avoiding extra per packet check
  993. * of vdev->prev_rx_deliver_tstamp.
  994. */
  995. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  996. CDP_DELAY_STATS_RX_INTERFRAME);
  997. vdev->prev_rx_deliver_tstamp = current_ts;
  998. }
  999. /**
  1000. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1001. * @pdev: dp pdev reference
  1002. * @buf_list: buffer list to be dropepd
  1003. *
  1004. * Return: int (number of bufs dropped)
  1005. */
  1006. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1007. qdf_nbuf_t buf_list)
  1008. {
  1009. struct cdp_tid_rx_stats *stats = NULL;
  1010. uint8_t tid = 0;
  1011. int num_dropped = 0;
  1012. qdf_nbuf_t buf, next_buf;
  1013. buf = buf_list;
  1014. while (buf) {
  1015. next_buf = qdf_nbuf_queue_next(buf);
  1016. tid = qdf_nbuf_get_priority(buf);
  1017. stats = &pdev->stats.tid_stats.tid_rx_stats[tid];
  1018. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1019. stats->delivered_to_stack--;
  1020. qdf_nbuf_free(buf);
  1021. buf = next_buf;
  1022. num_dropped++;
  1023. }
  1024. return num_dropped;
  1025. }
  1026. #ifdef PEER_CACHE_RX_PKTS
  1027. /**
  1028. * dp_rx_flush_rx_cached() - flush cached rx frames
  1029. * @peer: peer
  1030. * @drop: flag to drop frames or forward to net stack
  1031. *
  1032. * Return: None
  1033. */
  1034. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1035. {
  1036. struct dp_peer_cached_bufq *bufqi;
  1037. struct dp_rx_cached_buf *cache_buf = NULL;
  1038. ol_txrx_rx_fp data_rx = NULL;
  1039. int num_buff_elem;
  1040. QDF_STATUS status;
  1041. if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
  1042. qdf_atomic_dec(&peer->flush_in_progress);
  1043. return;
  1044. }
  1045. qdf_spin_lock_bh(&peer->peer_info_lock);
  1046. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1047. data_rx = peer->vdev->osif_rx;
  1048. else
  1049. drop = true;
  1050. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1051. bufqi = &peer->bufq_info;
  1052. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1053. if (qdf_list_empty(&bufqi->cached_bufq)) {
  1054. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1055. return;
  1056. }
  1057. qdf_list_remove_front(&bufqi->cached_bufq,
  1058. (qdf_list_node_t **)&cache_buf);
  1059. while (cache_buf) {
  1060. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1061. cache_buf->buf);
  1062. bufqi->entries -= num_buff_elem;
  1063. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1064. if (drop) {
  1065. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1066. cache_buf->buf);
  1067. } else {
  1068. /* Flush the cached frames to OSIF DEV */
  1069. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1070. if (status != QDF_STATUS_SUCCESS)
  1071. bufqi->dropped = dp_rx_drop_nbuf_list(
  1072. peer->vdev->pdev,
  1073. cache_buf->buf);
  1074. }
  1075. qdf_mem_free(cache_buf);
  1076. cache_buf = NULL;
  1077. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1078. qdf_list_remove_front(&bufqi->cached_bufq,
  1079. (qdf_list_node_t **)&cache_buf);
  1080. }
  1081. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1082. qdf_atomic_dec(&peer->flush_in_progress);
  1083. }
  1084. /**
  1085. * dp_rx_enqueue_rx() - cache rx frames
  1086. * @peer: peer
  1087. * @rx_buf_list: cache buffer list
  1088. *
  1089. * Return: None
  1090. */
  1091. static QDF_STATUS
  1092. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1093. {
  1094. struct dp_rx_cached_buf *cache_buf;
  1095. struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
  1096. int num_buff_elem;
  1097. QDF_TRACE_DEBUG_RL(QDF_MODULE_ID_TXRX, "bufq->curr %d bufq->drops %d",
  1098. bufqi->entries, bufqi->dropped);
  1099. if (!peer->valid) {
  1100. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1101. rx_buf_list);
  1102. return QDF_STATUS_E_INVAL;
  1103. }
  1104. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1105. if (bufqi->entries >= bufqi->thresh) {
  1106. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1107. rx_buf_list);
  1108. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1109. return QDF_STATUS_E_RESOURCES;
  1110. }
  1111. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1112. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1113. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1114. if (!cache_buf) {
  1115. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1116. "Failed to allocate buf to cache rx frames");
  1117. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1118. rx_buf_list);
  1119. return QDF_STATUS_E_NOMEM;
  1120. }
  1121. cache_buf->buf = rx_buf_list;
  1122. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1123. qdf_list_insert_back(&bufqi->cached_bufq,
  1124. &cache_buf->node);
  1125. bufqi->entries += num_buff_elem;
  1126. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1127. return QDF_STATUS_SUCCESS;
  1128. }
  1129. static inline
  1130. bool dp_rx_is_peer_cache_bufq_supported(void)
  1131. {
  1132. return true;
  1133. }
  1134. #else
  1135. static inline
  1136. bool dp_rx_is_peer_cache_bufq_supported(void)
  1137. {
  1138. return false;
  1139. }
  1140. static inline QDF_STATUS
  1141. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1142. {
  1143. return QDF_STATUS_SUCCESS;
  1144. }
  1145. #endif
  1146. static inline void dp_rx_deliver_to_stack(struct dp_vdev *vdev,
  1147. struct dp_peer *peer,
  1148. qdf_nbuf_t nbuf_head,
  1149. qdf_nbuf_t nbuf_tail)
  1150. {
  1151. /*
  1152. * highly unlikely to have a vdev without a registered rx
  1153. * callback function. if so let us free the nbuf_list.
  1154. */
  1155. if (qdf_unlikely(!vdev->osif_rx)) {
  1156. if (dp_rx_is_peer_cache_bufq_supported())
  1157. dp_rx_enqueue_rx(peer, nbuf_head);
  1158. else
  1159. dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1160. return;
  1161. }
  1162. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1163. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1164. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1165. &nbuf_tail, (struct cdp_peer *) peer);
  1166. }
  1167. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1168. }
  1169. /**
  1170. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  1171. * @nbuf: pointer to the first msdu of an amsdu.
  1172. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1173. *
  1174. * The ipsumed field of the skb is set based on whether HW validated the
  1175. * IP/TCP/UDP checksum.
  1176. *
  1177. * Return: void
  1178. */
  1179. static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
  1180. qdf_nbuf_t nbuf,
  1181. uint8_t *rx_tlv_hdr)
  1182. {
  1183. qdf_nbuf_rx_cksum_t cksum = {0};
  1184. bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
  1185. bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
  1186. if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
  1187. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  1188. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  1189. } else {
  1190. DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
  1191. DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
  1192. }
  1193. }
  1194. /**
  1195. * dp_rx_msdu_stats_update() - update per msdu stats.
  1196. * @soc: core txrx main context
  1197. * @nbuf: pointer to the first msdu of an amsdu.
  1198. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1199. * @peer: pointer to the peer object.
  1200. * @ring_id: reo dest ring number on which pkt is reaped.
  1201. * @tid_stats: per tid rx stats.
  1202. *
  1203. * update all the per msdu stats for that nbuf.
  1204. * Return: void
  1205. */
  1206. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  1207. qdf_nbuf_t nbuf,
  1208. uint8_t *rx_tlv_hdr,
  1209. struct dp_peer *peer,
  1210. uint8_t ring_id,
  1211. struct cdp_tid_rx_stats *tid_stats)
  1212. {
  1213. bool is_ampdu, is_not_amsdu;
  1214. uint16_t peer_id;
  1215. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1216. struct dp_vdev *vdev = peer->vdev;
  1217. qdf_ether_header_t *eh;
  1218. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1219. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  1220. hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr));
  1221. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1222. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1223. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1224. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1225. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1226. tid_stats->msdu_cnt++;
  1227. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1228. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1229. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1230. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  1231. tid_stats->mcast_msdu_cnt++;
  1232. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1233. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  1234. tid_stats->bcast_msdu_cnt++;
  1235. }
  1236. }
  1237. /*
  1238. * currently we can return from here as we have similar stats
  1239. * updated at per ppdu level instead of msdu level
  1240. */
  1241. if (!soc->process_rx_status)
  1242. return;
  1243. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  1244. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1245. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1246. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  1247. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  1248. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_tlv_hdr);
  1249. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  1250. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1251. rx_tlv_hdr);
  1252. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1253. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1254. DP_STATS_INC(peer, rx.bw[bw], 1);
  1255. /*
  1256. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1257. * then increase index [nss - 1] in array counter.
  1258. */
  1259. if (nss > 0 && (pkt_type == DOT11_N ||
  1260. pkt_type == DOT11_AC ||
  1261. pkt_type == DOT11_AX))
  1262. DP_STATS_INC(peer, rx.nss[nss - 1], 1);
  1263. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1264. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1265. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  1266. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1267. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1268. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1269. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1270. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1271. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1272. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1273. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1274. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1275. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1276. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1277. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1278. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1279. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1280. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1281. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1282. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1283. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1284. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1285. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1286. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1287. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1288. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1289. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1290. if ((soc->process_rx_status) &&
  1291. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1292. #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
  1293. if (!vdev->pdev)
  1294. return;
  1295. dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
  1296. &peer->stats, peer_id,
  1297. UPDATE_PEER_STATS,
  1298. vdev->pdev->pdev_id);
  1299. #endif
  1300. }
  1301. }
  1302. static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
  1303. void *rx_tlv_hdr,
  1304. qdf_nbuf_t nbuf)
  1305. {
  1306. if ((qdf_nbuf_is_sa_valid(nbuf) &&
  1307. (hal_rx_msdu_end_sa_idx_get(rx_tlv_hdr) >
  1308. wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
  1309. (qdf_nbuf_is_da_valid(nbuf) &&
  1310. (hal_rx_msdu_end_da_idx_get(soc->hal_soc,
  1311. rx_tlv_hdr) >
  1312. wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
  1313. return false;
  1314. return true;
  1315. }
  1316. #ifdef WDS_VENDOR_EXTENSION
  1317. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1318. struct dp_vdev *vdev,
  1319. struct dp_peer *peer)
  1320. {
  1321. struct dp_peer *bss_peer;
  1322. int fr_ds, to_ds, rx_3addr, rx_4addr;
  1323. int rx_policy_ucast, rx_policy_mcast;
  1324. int rx_mcast = hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr);
  1325. if (vdev->opmode == wlan_op_mode_ap) {
  1326. TAILQ_FOREACH(bss_peer, &vdev->peer_list, peer_list_elem) {
  1327. if (bss_peer->bss_peer) {
  1328. /* if wds policy check is not enabled on this vdev, accept all frames */
  1329. if (!bss_peer->wds_ecm.wds_rx_filter) {
  1330. return 1;
  1331. }
  1332. break;
  1333. }
  1334. }
  1335. rx_policy_ucast = bss_peer->wds_ecm.wds_rx_ucast_4addr;
  1336. rx_policy_mcast = bss_peer->wds_ecm.wds_rx_mcast_4addr;
  1337. } else { /* sta mode */
  1338. if (!peer->wds_ecm.wds_rx_filter) {
  1339. return 1;
  1340. }
  1341. rx_policy_ucast = peer->wds_ecm.wds_rx_ucast_4addr;
  1342. rx_policy_mcast = peer->wds_ecm.wds_rx_mcast_4addr;
  1343. }
  1344. /* ------------------------------------------------
  1345. * self
  1346. * peer- rx rx-
  1347. * wds ucast mcast dir policy accept note
  1348. * ------------------------------------------------
  1349. * 1 1 0 11 x1 1 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
  1350. * 1 1 0 01 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  1351. * 1 1 0 10 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  1352. * 1 1 0 00 x1 0 bad frame, won't see it
  1353. * 1 0 1 11 1x 1 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
  1354. * 1 0 1 01 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  1355. * 1 0 1 10 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  1356. * 1 0 1 00 1x 0 bad frame, won't see it
  1357. * 1 1 0 11 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  1358. * 1 1 0 01 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  1359. * 1 1 0 10 x0 1 AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
  1360. * 1 1 0 00 x0 0 bad frame, won't see it
  1361. * 1 0 1 11 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  1362. * 1 0 1 01 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  1363. * 1 0 1 10 0x 1 AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
  1364. * 1 0 1 00 0x 0 bad frame, won't see it
  1365. *
  1366. * 0 x x 11 xx 0 we only accept td-ds Rx frames from non-wds peers in mode.
  1367. * 0 x x 01 xx 1
  1368. * 0 x x 10 xx 0
  1369. * 0 x x 00 xx 0 bad frame, won't see it
  1370. * ------------------------------------------------
  1371. */
  1372. fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
  1373. to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
  1374. rx_3addr = fr_ds ^ to_ds;
  1375. rx_4addr = fr_ds & to_ds;
  1376. if (vdev->opmode == wlan_op_mode_ap) {
  1377. if ((!peer->wds_enabled && rx_3addr && to_ds) ||
  1378. (peer->wds_enabled && !rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  1379. (peer->wds_enabled && rx_mcast && (rx_4addr == rx_policy_mcast))) {
  1380. return 1;
  1381. }
  1382. } else { /* sta mode */
  1383. if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  1384. (rx_mcast && (rx_4addr == rx_policy_mcast))) {
  1385. return 1;
  1386. }
  1387. }
  1388. return 0;
  1389. }
  1390. #else
  1391. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1392. struct dp_vdev *vdev,
  1393. struct dp_peer *peer)
  1394. {
  1395. return 1;
  1396. }
  1397. #endif
  1398. #ifdef RX_DESC_DEBUG_CHECK
  1399. /**
  1400. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1401. * corruption
  1402. *
  1403. * @ring_desc: REO ring descriptor
  1404. * @rx_desc: Rx descriptor
  1405. *
  1406. * Return: NONE
  1407. */
  1408. static inline void dp_rx_desc_nbuf_sanity_check(void *ring_desc,
  1409. struct dp_rx_desc *rx_desc)
  1410. {
  1411. struct hal_buf_info hbi;
  1412. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1413. /* Sanity check for possible buffer paddr corruption */
  1414. qdf_assert_always((&hbi)->paddr ==
  1415. qdf_nbuf_get_frag_paddr(rx_desc->nbuf, 0));
  1416. }
  1417. #else
  1418. static inline void dp_rx_desc_nbuf_sanity_check(void *ring_desc,
  1419. struct dp_rx_desc *rx_desc)
  1420. {
  1421. }
  1422. #endif
  1423. #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
  1424. static inline
  1425. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1426. {
  1427. bool limit_hit = false;
  1428. struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
  1429. limit_hit =
  1430. (num_reaped >= cfg->rx_reap_loop_pkt_limit) ? true : false;
  1431. if (limit_hit)
  1432. DP_STATS_INC(soc, rx.reap_loop_pkt_limit_hit, 1)
  1433. return limit_hit;
  1434. }
  1435. static inline
  1436. bool dp_rx_hp_oos_update_limit_hit(struct dp_soc *soc, int hp_oos_updates)
  1437. {
  1438. bool limit_hit = false;
  1439. struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
  1440. limit_hit =
  1441. (hp_oos_updates >= cfg->rx_hp_oos_update_limit) ? true : false;
  1442. return limit_hit;
  1443. }
  1444. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1445. {
  1446. return soc->wlan_cfg_ctx->rx_enable_eol_data_check;
  1447. }
  1448. #else
  1449. static inline
  1450. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1451. {
  1452. return false;
  1453. }
  1454. static inline
  1455. bool dp_rx_hp_oos_update_limit_hit(struct dp_soc *soc, int hp_oos_updates)
  1456. {
  1457. return false;
  1458. }
  1459. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1460. {
  1461. return false;
  1462. }
  1463. #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
  1464. /**
  1465. * dp_rx_process() - Brain of the Rx processing functionality
  1466. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  1467. * @soc: core txrx main context
  1468. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  1469. * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
  1470. * @quota: No. of units (packets) that can be serviced in one shot.
  1471. *
  1472. * This function implements the core of Rx functionality. This is
  1473. * expected to handle only non-error frames.
  1474. *
  1475. * Return: uint32_t: No. of elements processed
  1476. */
  1477. uint32_t dp_rx_process(struct dp_intr *int_ctx, void *hal_ring,
  1478. uint8_t reo_ring_num, uint32_t quota)
  1479. {
  1480. void *hal_soc;
  1481. void *ring_desc;
  1482. struct dp_rx_desc *rx_desc = NULL;
  1483. qdf_nbuf_t nbuf, next;
  1484. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT];
  1485. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT];
  1486. uint32_t rx_bufs_used = 0, rx_buf_cookie;
  1487. uint32_t l2_hdr_offset = 0;
  1488. uint16_t msdu_len = 0;
  1489. uint16_t peer_id;
  1490. struct dp_peer *peer;
  1491. struct dp_vdev *vdev;
  1492. uint32_t pkt_len = 0;
  1493. struct hal_rx_mpdu_desc_info mpdu_desc_info;
  1494. struct hal_rx_msdu_desc_info msdu_desc_info;
  1495. enum hal_reo_error_status error;
  1496. uint32_t peer_mdata;
  1497. uint8_t *rx_tlv_hdr;
  1498. uint32_t rx_bufs_reaped[MAX_PDEV_CNT];
  1499. uint8_t mac_id = 0;
  1500. struct dp_pdev *pdev;
  1501. struct dp_pdev *rx_pdev;
  1502. struct dp_srng *dp_rxdma_srng;
  1503. struct rx_desc_pool *rx_desc_pool;
  1504. struct dp_soc *soc = int_ctx->soc;
  1505. uint8_t ring_id = 0;
  1506. uint8_t core_id = 0;
  1507. struct cdp_tid_rx_stats *tid_stats;
  1508. qdf_nbuf_t nbuf_head;
  1509. qdf_nbuf_t nbuf_tail;
  1510. qdf_nbuf_t deliver_list_head;
  1511. qdf_nbuf_t deliver_list_tail;
  1512. uint32_t num_rx_bufs_reaped = 0;
  1513. uint32_t intr_id;
  1514. struct hif_opaque_softc *scn;
  1515. uint32_t hp_oos_updates = 0;
  1516. int32_t tid = 0;
  1517. DP_HIST_INIT();
  1518. qdf_assert_always(soc && hal_ring);
  1519. hal_soc = soc->hal_soc;
  1520. qdf_assert_always(hal_soc);
  1521. hif_pm_runtime_mark_last_busy(soc->osdev->dev);
  1522. scn = soc->hif_handle;
  1523. intr_id = int_ctx->dp_intr_id;
  1524. more_data:
  1525. /* reset local variables here to be re-used in the function */
  1526. nbuf_head = NULL;
  1527. nbuf_tail = NULL;
  1528. deliver_list_head = NULL;
  1529. deliver_list_tail = NULL;
  1530. peer = NULL;
  1531. vdev = NULL;
  1532. num_rx_bufs_reaped = 0;
  1533. qdf_mem_zero(rx_bufs_reaped, sizeof(rx_bufs_reaped));
  1534. qdf_mem_zero(&mpdu_desc_info, sizeof(mpdu_desc_info));
  1535. qdf_mem_zero(&msdu_desc_info, sizeof(msdu_desc_info));
  1536. qdf_mem_zero(head, sizeof(head));
  1537. qdf_mem_zero(tail, sizeof(tail));
  1538. if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) {
  1539. /*
  1540. * Need API to convert from hal_ring pointer to
  1541. * Ring Type / Ring Id combo
  1542. */
  1543. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  1544. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1545. FL("HAL RING Access Failed -- %pK"), hal_ring);
  1546. hal_srng_access_end(hal_soc, hal_ring);
  1547. goto done;
  1548. }
  1549. /*
  1550. * start reaping the buffers from reo ring and queue
  1551. * them in per vdev queue.
  1552. * Process the received pkts in a different per vdev loop.
  1553. */
  1554. hp_oos_updates = 0;
  1555. while (qdf_likely(quota)) {
  1556. ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring);
  1557. /*
  1558. * in case HW has updated hp after we cached the hp
  1559. * ring_desc can be NULL even there are entries
  1560. * available in the ring. Update the cached_hp
  1561. * and reap the buffers available to read complete
  1562. * mpdu in one reap
  1563. *
  1564. * This is needed for RAW mode we have to read all
  1565. * msdus corresponding to amsdu in one reap to create
  1566. * SG list properly but due to mismatch in cached_hp
  1567. * and actual hp sometimes we are unable to read
  1568. * complete mpdu in one reap.
  1569. */
  1570. if (qdf_unlikely(!ring_desc)) {
  1571. if (dp_rx_hp_oos_update_limit_hit(soc,
  1572. hp_oos_updates)) {
  1573. break;
  1574. }
  1575. hp_oos_updates++;
  1576. if (hal_srng_dst_peek_sync(hal_soc, hal_ring)) {
  1577. DP_STATS_INC(soc, rx.hp_oos, 1);
  1578. hal_srng_access_end_unlocked(hal_soc,
  1579. hal_ring);
  1580. continue;
  1581. } else {
  1582. break;
  1583. }
  1584. }
  1585. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  1586. ring_id = hal_srng_ring_id_get(hal_ring);
  1587. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  1588. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1589. FL("HAL RING 0x%pK:error %d"), hal_ring, error);
  1590. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  1591. /* Don't know how to deal with this -- assert */
  1592. qdf_assert(0);
  1593. }
  1594. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  1595. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  1596. qdf_assert(rx_desc);
  1597. dp_rx_desc_nbuf_sanity_check(ring_desc, rx_desc);
  1598. /*
  1599. * this is a unlikely scenario where the host is reaping
  1600. * a descriptor which it already reaped just a while ago
  1601. * but is yet to replenish it back to HW.
  1602. * In this case host will dump the last 128 descriptors
  1603. * including the software descriptor rx_desc and assert.
  1604. */
  1605. if (qdf_unlikely(!rx_desc->in_use)) {
  1606. DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
  1607. dp_err("Reaping rx_desc not in use!");
  1608. dp_rx_dump_info_and_assert(soc, hal_ring,
  1609. ring_desc, rx_desc);
  1610. }
  1611. if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) {
  1612. dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie);
  1613. DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1);
  1614. dp_rx_dump_info_and_assert(soc, hal_ring,
  1615. ring_desc, rx_desc);
  1616. }
  1617. rx_bufs_reaped[rx_desc->pool_id]++;
  1618. /* TODO */
  1619. /*
  1620. * Need a separate API for unmapping based on
  1621. * phyiscal address
  1622. */
  1623. qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
  1624. QDF_DMA_BIDIRECTIONAL);
  1625. rx_desc->unmapped = 1;
  1626. core_id = smp_processor_id();
  1627. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  1628. /* Get MPDU DESC info */
  1629. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  1630. peer_mdata = mpdu_desc_info.peer_meta_data;
  1631. QDF_NBUF_CB_RX_PEER_ID(rx_desc->nbuf) =
  1632. DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  1633. /* Get MSDU DESC info */
  1634. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  1635. /*
  1636. * save msdu flags first, last and continuation msdu in
  1637. * nbuf->cb, also save mcbc, is_da_valid, is_sa_valid and
  1638. * length to nbuf->cb. This ensures the info required for
  1639. * per pkt processing is always in the same cache line.
  1640. * This helps in improving throughput for smaller pkt
  1641. * sizes.
  1642. */
  1643. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  1644. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  1645. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  1646. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  1647. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1648. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  1649. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_MCBC)
  1650. qdf_nbuf_set_da_mcbc(rx_desc->nbuf, 1);
  1651. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_VALID)
  1652. qdf_nbuf_set_da_valid(rx_desc->nbuf, 1);
  1653. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_SA_IS_VALID)
  1654. qdf_nbuf_set_sa_valid(rx_desc->nbuf, 1);
  1655. QDF_NBUF_CB_RX_PKT_LEN(rx_desc->nbuf) = msdu_desc_info.msdu_len;
  1656. QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
  1657. DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
  1658. /*
  1659. * if continuation bit is set then we have MSDU spread
  1660. * across multiple buffers, let us not decrement quota
  1661. * till we reap all buffers of that MSDU.
  1662. */
  1663. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  1664. quota -= 1;
  1665. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  1666. &tail[rx_desc->pool_id],
  1667. rx_desc);
  1668. num_rx_bufs_reaped++;
  1669. if (dp_rx_reap_loop_pkt_limit_hit(soc, num_rx_bufs_reaped))
  1670. break;
  1671. }
  1672. done:
  1673. hal_srng_access_end(hal_soc, hal_ring);
  1674. if (nbuf_tail)
  1675. QDF_NBUF_CB_RX_FLUSH_IND(nbuf_tail) = 1;
  1676. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  1677. /*
  1678. * continue with next mac_id if no pkts were reaped
  1679. * from that pool
  1680. */
  1681. if (!rx_bufs_reaped[mac_id])
  1682. continue;
  1683. pdev = soc->pdev_list[mac_id];
  1684. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1685. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  1686. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  1687. rx_desc_pool, rx_bufs_reaped[mac_id],
  1688. &head[mac_id], &tail[mac_id]);
  1689. }
  1690. dp_verbose_debug("replenished %u\n", rx_bufs_reaped[0]);
  1691. /* Peer can be NULL is case of LFR */
  1692. if (qdf_likely(peer))
  1693. vdev = NULL;
  1694. /*
  1695. * BIG loop where each nbuf is dequeued from global queue,
  1696. * processed and queued back on a per vdev basis. These nbufs
  1697. * are sent to stack as and when we run out of nbufs
  1698. * or a new nbuf dequeued from global queue has a different
  1699. * vdev when compared to previous nbuf.
  1700. */
  1701. nbuf = nbuf_head;
  1702. while (nbuf) {
  1703. next = nbuf->next;
  1704. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1705. /* Get TID from first msdu per MPDU, save to skb->priority */
  1706. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  1707. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc,
  1708. rx_tlv_hdr);
  1709. /*
  1710. * Check if DMA completed -- msdu_done is the last bit
  1711. * to be written
  1712. */
  1713. rx_pdev = soc->pdev_list[rx_desc->pool_id];
  1714. dp_rx_save_tid_ts(nbuf, tid, rx_pdev->delay_stats_flag);
  1715. tid_stats = &rx_pdev->stats.tid_stats.tid_rx_stats[tid];
  1716. if (qdf_unlikely(!hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  1717. dp_err("MSDU DONE failure");
  1718. DP_STATS_INC(soc, rx.err.msdu_done_fail, 1);
  1719. hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
  1720. QDF_TRACE_LEVEL_INFO);
  1721. tid_stats->fail_cnt[MSDU_DONE_FAILURE]++;
  1722. qdf_nbuf_free(nbuf);
  1723. qdf_assert(0);
  1724. nbuf = next;
  1725. continue;
  1726. }
  1727. peer_mdata = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1728. peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  1729. peer = dp_peer_find_by_id(soc, peer_id);
  1730. if (peer) {
  1731. QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
  1732. qdf_dp_trace_set_track(nbuf, QDF_RX);
  1733. QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
  1734. QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
  1735. QDF_NBUF_RX_PKT_DATA_TRACK;
  1736. }
  1737. rx_bufs_used++;
  1738. if (deliver_list_head && peer && (vdev != peer->vdev)) {
  1739. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1740. deliver_list_tail);
  1741. deliver_list_head = NULL;
  1742. deliver_list_tail = NULL;
  1743. }
  1744. if (qdf_likely(peer)) {
  1745. vdev = peer->vdev;
  1746. } else {
  1747. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1748. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1749. tid_stats->fail_cnt[INVALID_PEER_VDEV]++;
  1750. qdf_nbuf_free(nbuf);
  1751. nbuf = next;
  1752. continue;
  1753. }
  1754. if (qdf_unlikely(!vdev)) {
  1755. tid_stats->fail_cnt[INVALID_PEER_VDEV]++;
  1756. qdf_nbuf_free(nbuf);
  1757. nbuf = next;
  1758. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  1759. dp_peer_unref_del_find_by_id(peer);
  1760. continue;
  1761. }
  1762. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  1763. /*
  1764. * First IF condition:
  1765. * 802.11 Fragmented pkts are reinjected to REO
  1766. * HW block as SG pkts and for these pkts we only
  1767. * need to pull the RX TLVS header length.
  1768. * Second IF condition:
  1769. * The below condition happens when an MSDU is spread
  1770. * across multiple buffers. This can happen in two cases
  1771. * 1. The nbuf size is smaller then the received msdu.
  1772. * ex: we have set the nbuf size to 2048 during
  1773. * nbuf_alloc. but we received an msdu which is
  1774. * 2304 bytes in size then this msdu is spread
  1775. * across 2 nbufs.
  1776. *
  1777. * 2. AMSDUs when RAW mode is enabled.
  1778. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  1779. * across 1st nbuf and 2nd nbuf and last MSDU is
  1780. * spread across 2nd nbuf and 3rd nbuf.
  1781. *
  1782. * for these scenarios let us create a skb frag_list and
  1783. * append these buffers till the last MSDU of the AMSDU
  1784. * Third condition:
  1785. * This is the most likely case, we receive 802.3 pkts
  1786. * decapsulated by HW, here we need to set the pkt length.
  1787. */
  1788. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  1789. bool is_mcbc, is_sa_vld, is_da_vld;
  1790. is_mcbc = hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr);
  1791. is_sa_vld = hal_rx_msdu_end_sa_is_valid_get(rx_tlv_hdr);
  1792. is_da_vld = hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr);
  1793. qdf_nbuf_set_da_mcbc(nbuf, is_mcbc);
  1794. qdf_nbuf_set_da_valid(nbuf, is_da_vld);
  1795. qdf_nbuf_set_sa_valid(nbuf, is_sa_vld);
  1796. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1797. }
  1798. else if (qdf_unlikely(vdev->rx_decap_type ==
  1799. htt_cmn_pkt_type_raw)) {
  1800. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1801. nbuf = dp_rx_sg_create(nbuf, rx_tlv_hdr);
  1802. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  1803. DP_STATS_INC_PKT(peer, rx.raw, 1, msdu_len);
  1804. next = nbuf->next;
  1805. } else {
  1806. l2_hdr_offset =
  1807. hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
  1808. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1809. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1810. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1811. qdf_nbuf_pull_head(nbuf,
  1812. RX_PKT_TLVS_LEN +
  1813. l2_hdr_offset);
  1814. }
  1815. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer)) {
  1816. QDF_TRACE(QDF_MODULE_ID_DP,
  1817. QDF_TRACE_LEVEL_ERROR,
  1818. FL("Policy Check Drop pkt"));
  1819. tid_stats->fail_cnt[POLICY_CHECK_DROP]++;
  1820. /* Drop & free packet */
  1821. qdf_nbuf_free(nbuf);
  1822. /* Statistics */
  1823. nbuf = next;
  1824. dp_peer_unref_del_find_by_id(peer);
  1825. continue;
  1826. }
  1827. if (qdf_unlikely(peer && (peer->nawds_enabled) &&
  1828. (qdf_nbuf_is_da_mcbc(nbuf)) &&
  1829. (hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr) ==
  1830. false))) {
  1831. tid_stats->fail_cnt[NAWDS_MCAST_DROP]++;
  1832. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  1833. qdf_nbuf_free(nbuf);
  1834. nbuf = next;
  1835. dp_peer_unref_del_find_by_id(peer);
  1836. continue;
  1837. }
  1838. if (soc->process_rx_status)
  1839. dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
  1840. dp_set_rx_queue(nbuf, ring_id);
  1841. /* Update the protocol tag in SKB based on CCE metadata */
  1842. dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr,
  1843. reo_ring_num, false, true);
  1844. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer,
  1845. ring_id, tid_stats);
  1846. if (qdf_unlikely(vdev->mesh_vdev)) {
  1847. if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr)
  1848. == QDF_STATUS_SUCCESS) {
  1849. QDF_TRACE(QDF_MODULE_ID_DP,
  1850. QDF_TRACE_LEVEL_INFO_MED,
  1851. FL("mesh pkt filtered"));
  1852. tid_stats->fail_cnt[MESH_FILTER_DROP]++;
  1853. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  1854. 1);
  1855. qdf_nbuf_free(nbuf);
  1856. nbuf = next;
  1857. dp_peer_unref_del_find_by_id(peer);
  1858. continue;
  1859. }
  1860. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  1861. }
  1862. if (qdf_likely(vdev->rx_decap_type ==
  1863. htt_cmn_pkt_type_ethernet) &&
  1864. qdf_likely(!vdev->mesh_vdev)) {
  1865. /* WDS Destination Address Learning */
  1866. dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
  1867. /* Due to HW issue, sometimes we see that the sa_idx
  1868. * and da_idx are invalid with sa_valid and da_valid
  1869. * bits set
  1870. *
  1871. * in this case we also see that value of
  1872. * sa_sw_peer_id is set as 0
  1873. *
  1874. * Drop the packet if sa_idx and da_idx OOB or
  1875. * sa_sw_peerid is 0
  1876. */
  1877. if (!is_sa_da_idx_valid(soc, rx_tlv_hdr, nbuf)) {
  1878. qdf_nbuf_free(nbuf);
  1879. nbuf = next;
  1880. DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
  1881. continue;
  1882. }
  1883. /* WDS Source Port Learning */
  1884. if (qdf_likely(vdev->wds_enabled))
  1885. dp_rx_wds_srcport_learn(soc, rx_tlv_hdr,
  1886. peer, nbuf);
  1887. /* Intrabss-fwd */
  1888. if (dp_rx_check_ap_bridge(vdev))
  1889. if (dp_rx_intrabss_fwd(soc,
  1890. peer,
  1891. rx_tlv_hdr,
  1892. nbuf)) {
  1893. nbuf = next;
  1894. dp_peer_unref_del_find_by_id(peer);
  1895. tid_stats->intrabss_cnt++;
  1896. continue; /* Get next desc */
  1897. }
  1898. }
  1899. dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf);
  1900. qdf_nbuf_cb_update_peer_local_id(nbuf, peer->local_id);
  1901. DP_RX_LIST_APPEND(deliver_list_head,
  1902. deliver_list_tail,
  1903. nbuf);
  1904. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  1905. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1906. tid_stats->delivered_to_stack++;
  1907. nbuf = next;
  1908. dp_peer_unref_del_find_by_id(peer);
  1909. }
  1910. if (deliver_list_head)
  1911. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1912. deliver_list_tail);
  1913. if (dp_rx_enable_eol_data_check(soc)) {
  1914. if (quota &&
  1915. hal_srng_dst_peek_sync_locked(soc, hal_ring)) {
  1916. DP_STATS_INC(soc, rx.hp_oos2, 1);
  1917. if (!hif_exec_should_yield(scn, intr_id))
  1918. goto more_data;
  1919. }
  1920. }
  1921. /* Update histogram statistics by looping through pdev's */
  1922. DP_RX_HIST_STATS_PER_PDEV();
  1923. return rx_bufs_used; /* Assume no scale factor for now */
  1924. }
  1925. /**
  1926. * dp_rx_detach() - detach dp rx
  1927. * @pdev: core txrx pdev context
  1928. *
  1929. * This function will detach DP RX into main device context
  1930. * will free DP Rx resources.
  1931. *
  1932. * Return: void
  1933. */
  1934. void
  1935. dp_rx_pdev_detach(struct dp_pdev *pdev)
  1936. {
  1937. uint8_t pdev_id = pdev->pdev_id;
  1938. struct dp_soc *soc = pdev->soc;
  1939. struct rx_desc_pool *rx_desc_pool;
  1940. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1941. if (rx_desc_pool->pool_size != 0) {
  1942. if (!dp_is_soc_reinit(soc))
  1943. dp_rx_desc_pool_free(soc, pdev_id, rx_desc_pool);
  1944. else
  1945. dp_rx_desc_nbuf_pool_free(soc, rx_desc_pool);
  1946. }
  1947. return;
  1948. }
  1949. static QDF_STATUS
  1950. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  1951. struct dp_srng *dp_rxdma_srng,
  1952. struct rx_desc_pool *rx_desc_pool,
  1953. uint32_t num_req_buffers,
  1954. union dp_rx_desc_list_elem_t **desc_list,
  1955. union dp_rx_desc_list_elem_t **tail)
  1956. {
  1957. struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
  1958. void *rxdma_srng = dp_rxdma_srng->hal_srng;
  1959. union dp_rx_desc_list_elem_t *next;
  1960. void *rxdma_ring_entry;
  1961. qdf_dma_addr_t paddr;
  1962. void **rx_nbuf_arr;
  1963. uint32_t nr_descs;
  1964. uint32_t nr_nbuf;
  1965. qdf_nbuf_t nbuf;
  1966. QDF_STATUS ret;
  1967. int i;
  1968. if (qdf_unlikely(!rxdma_srng)) {
  1969. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  1970. return QDF_STATUS_E_FAILURE;
  1971. }
  1972. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1973. "requested %u RX buffers for driver attach", num_req_buffers);
  1974. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  1975. num_req_buffers, desc_list, tail);
  1976. if (!nr_descs) {
  1977. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1978. "no free rx_descs in freelist");
  1979. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  1980. return QDF_STATUS_E_NOMEM;
  1981. }
  1982. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1983. "got %u RX descs for driver attach", nr_descs);
  1984. rx_nbuf_arr = qdf_mem_malloc(nr_descs * sizeof(*rx_nbuf_arr));
  1985. if (!rx_nbuf_arr) {
  1986. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1987. "failed to allocate nbuf array");
  1988. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  1989. return QDF_STATUS_E_NOMEM;
  1990. }
  1991. for (nr_nbuf = 0; nr_nbuf < nr_descs; nr_nbuf++) {
  1992. nbuf = qdf_nbuf_alloc(dp_soc->osdev, RX_BUFFER_SIZE,
  1993. RX_BUFFER_RESERVATION,
  1994. RX_BUFFER_ALIGNMENT,
  1995. FALSE);
  1996. if (!nbuf) {
  1997. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1998. "nbuf alloc failed");
  1999. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  2000. break;
  2001. }
  2002. ret = qdf_nbuf_map_single(dp_soc->osdev, nbuf,
  2003. QDF_DMA_BIDIRECTIONAL);
  2004. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2005. qdf_nbuf_free(nbuf);
  2006. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  2007. "nbuf map failed");
  2008. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  2009. break;
  2010. }
  2011. paddr = qdf_nbuf_get_frag_paddr(nbuf, 0);
  2012. ret = check_x86_paddr(dp_soc, &nbuf, &paddr, dp_pdev);
  2013. if (ret == QDF_STATUS_E_FAILURE) {
  2014. qdf_nbuf_unmap_single(dp_soc->osdev, nbuf,
  2015. QDF_DMA_BIDIRECTIONAL);
  2016. qdf_nbuf_free(nbuf);
  2017. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  2018. "nbuf check x86 failed");
  2019. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  2020. break;
  2021. }
  2022. rx_nbuf_arr[nr_nbuf] = (void *)nbuf;
  2023. }
  2024. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  2025. "allocated %u nbuf for driver attach", nr_nbuf);
  2026. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2027. for (i = 0; i < nr_nbuf; i++) {
  2028. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  2029. rxdma_srng);
  2030. qdf_assert_always(rxdma_ring_entry);
  2031. next = (*desc_list)->next;
  2032. nbuf = rx_nbuf_arr[i];
  2033. paddr = qdf_nbuf_get_frag_paddr(nbuf, 0);
  2034. dp_rx_desc_prep(&((*desc_list)->rx_desc), nbuf);
  2035. (*desc_list)->rx_desc.in_use = 1;
  2036. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  2037. (*desc_list)->rx_desc.cookie,
  2038. rx_desc_pool->owner);
  2039. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, nbuf, true);
  2040. *desc_list = next;
  2041. }
  2042. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2043. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  2044. "filled %u RX buffers for driver attach", nr_nbuf);
  2045. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, RX_BUFFER_SIZE *
  2046. nr_nbuf);
  2047. qdf_mem_free(rx_nbuf_arr);
  2048. return QDF_STATUS_SUCCESS;
  2049. }
  2050. /**
  2051. * dp_rx_attach() - attach DP RX
  2052. * @pdev: core txrx pdev context
  2053. *
  2054. * This function will attach a DP RX instance into the main
  2055. * device (SOC) context. Will allocate dp rx resource and
  2056. * initialize resources.
  2057. *
  2058. * Return: QDF_STATUS_SUCCESS: success
  2059. * QDF_STATUS_E_RESOURCES: Error return
  2060. */
  2061. QDF_STATUS
  2062. dp_rx_pdev_attach(struct dp_pdev *pdev)
  2063. {
  2064. uint8_t pdev_id = pdev->pdev_id;
  2065. struct dp_soc *soc = pdev->soc;
  2066. uint32_t rxdma_entries;
  2067. union dp_rx_desc_list_elem_t *desc_list = NULL;
  2068. union dp_rx_desc_list_elem_t *tail = NULL;
  2069. struct dp_srng *dp_rxdma_srng;
  2070. struct rx_desc_pool *rx_desc_pool;
  2071. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2072. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  2073. "nss-wifi<4> skip Rx refil %d", pdev_id);
  2074. return QDF_STATUS_SUCCESS;
  2075. }
  2076. pdev = soc->pdev_list[pdev_id];
  2077. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  2078. rxdma_entries = dp_rxdma_srng->num_entries;
  2079. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2080. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  2081. dp_rx_desc_pool_alloc(soc, pdev_id,
  2082. DP_RX_DESC_ALLOC_MULTIPLIER * rxdma_entries,
  2083. rx_desc_pool);
  2084. rx_desc_pool->owner = DP_WBM2SW_RBM;
  2085. /* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
  2086. return dp_pdev_rx_buffers_attach(soc, pdev_id, dp_rxdma_srng,
  2087. rx_desc_pool, rxdma_entries - 1,
  2088. &desc_list, &tail);
  2089. }
  2090. /*
  2091. * dp_rx_nbuf_prepare() - prepare RX nbuf
  2092. * @soc: core txrx main context
  2093. * @pdev: core txrx pdev context
  2094. *
  2095. * This function alloc & map nbuf for RX dma usage, retry it if failed
  2096. * until retry times reaches max threshold or succeeded.
  2097. *
  2098. * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
  2099. */
  2100. qdf_nbuf_t
  2101. dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
  2102. {
  2103. uint8_t *buf;
  2104. int32_t nbuf_retry_count;
  2105. QDF_STATUS ret;
  2106. qdf_nbuf_t nbuf = NULL;
  2107. for (nbuf_retry_count = 0; nbuf_retry_count <
  2108. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
  2109. nbuf_retry_count++) {
  2110. /* Allocate a new skb */
  2111. nbuf = qdf_nbuf_alloc(soc->osdev,
  2112. RX_BUFFER_SIZE,
  2113. RX_BUFFER_RESERVATION,
  2114. RX_BUFFER_ALIGNMENT,
  2115. FALSE);
  2116. if (!nbuf) {
  2117. DP_STATS_INC(pdev,
  2118. replenish.nbuf_alloc_fail, 1);
  2119. continue;
  2120. }
  2121. buf = qdf_nbuf_data(nbuf);
  2122. memset(buf, 0, RX_BUFFER_SIZE);
  2123. ret = qdf_nbuf_map_single(soc->osdev, nbuf,
  2124. QDF_DMA_BIDIRECTIONAL);
  2125. /* nbuf map failed */
  2126. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2127. qdf_nbuf_free(nbuf);
  2128. DP_STATS_INC(pdev, replenish.map_err, 1);
  2129. continue;
  2130. }
  2131. /* qdf_nbuf alloc and map succeeded */
  2132. break;
  2133. }
  2134. /* qdf_nbuf still alloc or map failed */
  2135. if (qdf_unlikely(nbuf_retry_count >=
  2136. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
  2137. return NULL;
  2138. return nbuf;
  2139. }