/* * Copyright (c) 2016-2019 The Linux Foundation. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for * any purpose with or without fee is hereby granted, provided that the * above copyright notice and this permission notice appear in all * copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include "hal_hw_headers.h" #include "dp_types.h" #include "dp_rx.h" #include "dp_peer.h" #include "hal_rx.h" #include "hal_api.h" #include "qdf_nbuf.h" #ifdef MESH_MODE_SUPPORT #include "if_meta_hdr.h" #endif #include "dp_internal.h" #include "dp_rx_mon.h" #include "dp_ipa.h" #ifdef CONFIG_MCL static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev) { if (vdev->opmode != wlan_op_mode_sta) return true; else return false; } #else static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev) { return vdev->ap_bridge_enabled; } #endif #ifdef ATH_RX_PRI_SAVE static inline void dp_rx_save_tid_ts(qdf_nbuf_t nbuf, uint8_t tid, bool flag) { qdf_nbuf_set_priority(nbuf, tid); if (qdf_unlikely(flag)) qdf_nbuf_set_timestamp(nbuf); } #else static inline void dp_rx_save_tid_ts(qdf_nbuf_t nbuf, uint8_t tid, bool flag) { if (qdf_unlikely(flag)) { qdf_nbuf_set_priority(nbuf, tid); qdf_nbuf_set_timestamp(nbuf); } } #endif /* * dp_rx_dump_info_and_assert() - dump RX Ring info and Rx Desc info * * @soc: core txrx main context * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced * @ring_desc: opaque pointer to the RX ring descriptor * @rx_desc: host rs descriptor * * Return: void */ void dp_rx_dump_info_and_assert(struct dp_soc *soc, void *hal_ring, void *ring_desc, struct dp_rx_desc *rx_desc) { void *hal_soc = soc->hal_soc; dp_rx_desc_dump(rx_desc); hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc); hal_srng_dump_ring(hal_soc, hal_ring); qdf_assert_always(0); } /* * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs * called during dp rx initialization * and at the end of dp_rx_process. * * @soc: core txrx main context * @mac_id: mac_id which is one of 3 mac_ids * @dp_rxdma_srng: dp rxdma circular ring * @rx_desc_pool: Pointer to free Rx descriptor pool * @num_req_buffers: number of buffer to be replenished * @desc_list: list of descs if called from dp_rx_process * or NULL during dp rx initialization or out of buffer * interrupt. * @tail: tail of descs list * Return: return success or failure */ QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id, struct dp_srng *dp_rxdma_srng, struct rx_desc_pool *rx_desc_pool, uint32_t num_req_buffers, union dp_rx_desc_list_elem_t **desc_list, union dp_rx_desc_list_elem_t **tail) { uint32_t num_alloc_desc; uint16_t num_desc_to_free = 0; struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id); uint32_t num_entries_avail; uint32_t count; int sync_hw_ptr = 1; qdf_dma_addr_t paddr; qdf_nbuf_t rx_netbuf; void *rxdma_ring_entry; union dp_rx_desc_list_elem_t *next; QDF_STATUS ret; void *rxdma_srng; rxdma_srng = dp_rxdma_srng->hal_srng; if (!rxdma_srng) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "rxdma srng not initialized"); DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers); return QDF_STATUS_E_FAILURE; } QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "requested %d buffers for replenish", num_req_buffers); hal_srng_access_start(dp_soc->hal_soc, rxdma_srng); num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc, rxdma_srng, sync_hw_ptr); QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "no of available entries in rxdma ring: %d", num_entries_avail); if (!(*desc_list) && (num_entries_avail > ((dp_rxdma_srng->num_entries * 3) / 4))) { num_req_buffers = num_entries_avail; } else if (num_entries_avail < num_req_buffers) { num_desc_to_free = num_req_buffers - num_entries_avail; num_req_buffers = num_entries_avail; } if (qdf_unlikely(!num_req_buffers)) { num_desc_to_free = num_req_buffers; hal_srng_access_end(dp_soc->hal_soc, rxdma_srng); goto free_descs; } /* * if desc_list is NULL, allocate the descs from freelist */ if (!(*desc_list)) { num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool, num_req_buffers, desc_list, tail); if (!num_alloc_desc) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "no free rx_descs in freelist"); DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers); hal_srng_access_end(dp_soc->hal_soc, rxdma_srng); return QDF_STATUS_E_NOMEM; } QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "%d rx desc allocated", num_alloc_desc); num_req_buffers = num_alloc_desc; } count = 0; while (count < num_req_buffers) { rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev, RX_BUFFER_SIZE, RX_BUFFER_RESERVATION, RX_BUFFER_ALIGNMENT, FALSE); if (qdf_unlikely(!rx_netbuf)) { DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1); continue; } ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf, QDF_DMA_BIDIRECTIONAL); if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) { qdf_nbuf_free(rx_netbuf); DP_STATS_INC(dp_pdev, replenish.map_err, 1); continue; } paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0); /* * check if the physical address of nbuf->data is * less then 0x50000000 then free the nbuf and try * allocating new nbuf. We can try for 100 times. * this is a temp WAR till we fix it properly. */ ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev); if (ret == QDF_STATUS_E_FAILURE) { DP_STATS_INC(dp_pdev, replenish.x86_fail, 1); break; } count++; rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc, rxdma_srng); qdf_assert_always(rxdma_ring_entry); next = (*desc_list)->next; dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf); /* rx_desc.in_use should be zero at this time*/ qdf_assert_always((*desc_list)->rx_desc.in_use == 0); (*desc_list)->rx_desc.in_use = 1; dp_verbose_debug("rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d", rx_netbuf, qdf_nbuf_data(rx_netbuf), (unsigned long long)paddr, (*desc_list)->rx_desc.cookie); hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr, (*desc_list)->rx_desc.cookie, rx_desc_pool->owner); *desc_list = next; dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, rx_netbuf, true); } hal_srng_access_end(dp_soc->hal_soc, rxdma_srng); dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u", num_req_buffers, num_desc_to_free); DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers, (RX_BUFFER_SIZE * num_req_buffers)); free_descs: DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free); /* * add any available free desc back to the free list */ if (*desc_list) dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail, mac_id, rx_desc_pool); return QDF_STATUS_SUCCESS; } /* * dp_rx_deliver_raw() - process RAW mode pkts and hand over the * pkts to RAW mode simulation to * decapsulate the pkt. * * @vdev: vdev on which RAW mode is enabled * @nbuf_list: list of RAW pkts to process * @peer: peer object from which the pkt is rx * * Return: void */ void dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list, struct dp_peer *peer) { qdf_nbuf_t deliver_list_head = NULL; qdf_nbuf_t deliver_list_tail = NULL; qdf_nbuf_t nbuf; nbuf = nbuf_list; while (nbuf) { qdf_nbuf_t next = qdf_nbuf_next(nbuf); DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf); DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1); DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf)); /* * reset the chfrag_start and chfrag_end bits in nbuf cb * as this is a non-amsdu pkt and RAW mode simulation expects * these bit s to be 0 for non-amsdu pkt. */ if (qdf_nbuf_is_rx_chfrag_start(nbuf) && qdf_nbuf_is_rx_chfrag_end(nbuf)) { qdf_nbuf_set_rx_chfrag_start(nbuf, 0); qdf_nbuf_set_rx_chfrag_end(nbuf, 0); } nbuf = next; } vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head, &deliver_list_tail, (struct cdp_peer*) peer); vdev->osif_rx(vdev->osif_vdev, deliver_list_head); } #ifdef DP_LFR /* * In case of LFR, data of a new peer might be sent up * even before peer is added. */ static inline struct dp_vdev * dp_get_vdev_from_peer(struct dp_soc *soc, uint16_t peer_id, struct dp_peer *peer, struct hal_rx_mpdu_desc_info mpdu_desc_info) { struct dp_vdev *vdev; uint8_t vdev_id; if (unlikely(!peer)) { if (peer_id != HTT_INVALID_PEER) { vdev_id = DP_PEER_METADATA_ID_GET( mpdu_desc_info.peer_meta_data); QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, FL("PeerID %d not found use vdevID %d"), peer_id, vdev_id); vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id); } else { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, FL("Invalid PeerID %d"), peer_id); return NULL; } } else { vdev = peer->vdev; } return vdev; } #else static inline struct dp_vdev * dp_get_vdev_from_peer(struct dp_soc *soc, uint16_t peer_id, struct dp_peer *peer, struct hal_rx_mpdu_desc_info mpdu_desc_info) { if (unlikely(!peer)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, FL("Peer not found for peerID %d"), peer_id); return NULL; } else { return peer->vdev; } } #endif /** * dp_rx_da_learn() - Add AST entry based on DA lookup * This is a WAR for HK 1.0 and will * be removed in HK 2.0 * * @soc: core txrx main context * @rx_tlv_hdr : start address of rx tlvs * @ta_peer : Transmitter peer entry * @nbuf : nbuf to retrieve destination mac for which AST will be added * */ #ifdef FEATURE_WDS static void dp_rx_da_learn(struct dp_soc *soc, uint8_t *rx_tlv_hdr, struct dp_peer *ta_peer, qdf_nbuf_t nbuf) { /* For HKv2 DA port learing is not needed */ if (qdf_likely(soc->ast_override_support)) return; if (qdf_unlikely(!ta_peer)) return; if (qdf_unlikely(ta_peer->vdev->opmode != wlan_op_mode_ap)) return; if (!soc->da_war_enabled) return; if (qdf_unlikely(!qdf_nbuf_is_da_valid(nbuf) && !qdf_nbuf_is_da_mcbc(nbuf))) { dp_peer_add_ast(soc, ta_peer, qdf_nbuf_data(nbuf), CDP_TXRX_AST_TYPE_DA, IEEE80211_NODE_F_WDS_HM); } } #else static void dp_rx_da_learn(struct dp_soc *soc, uint8_t *rx_tlv_hdr, struct dp_peer *ta_peer, qdf_nbuf_t nbuf) { } #endif /** * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic * * @soc: core txrx main context * @ta_peer : source peer entry * @rx_tlv_hdr : start address of rx tlvs * @nbuf : nbuf that has to be intrabss forwarded * * Return: bool: true if it is forwarded else false */ static bool dp_rx_intrabss_fwd(struct dp_soc *soc, struct dp_peer *ta_peer, uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf) { uint16_t da_idx; uint16_t len; uint8_t is_frag; struct dp_peer *da_peer; struct dp_ast_entry *ast_entry; qdf_nbuf_t nbuf_copy; uint8_t tid = qdf_nbuf_get_priority(nbuf); struct cdp_tid_rx_stats *tid_stats = &ta_peer->vdev->pdev->stats.tid_stats.tid_rx_stats[tid]; /* check if the destination peer is available in peer table * and also check if the source peer and destination peer * belong to the same vap and destination peer is not bss peer. */ if ((qdf_nbuf_is_da_valid(nbuf) && !qdf_nbuf_is_da_mcbc(nbuf))) { da_idx = hal_rx_msdu_end_da_idx_get(soc->hal_soc, rx_tlv_hdr); ast_entry = soc->ast_table[da_idx]; if (!ast_entry) return false; if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) { ast_entry->is_active = TRUE; return false; } da_peer = ast_entry->peer; if (!da_peer) return false; /* TA peer cannot be same as peer(DA) on which AST is present * this indicates a change in topology and that AST entries * are yet to be updated. */ if (da_peer == ta_peer) return false; if (da_peer->vdev == ta_peer->vdev && !da_peer->bss_peer) { len = QDF_NBUF_CB_RX_PKT_LEN(nbuf); is_frag = qdf_nbuf_is_frag(nbuf); memset(nbuf->cb, 0x0, sizeof(nbuf->cb)); /* linearize the nbuf just before we send to * dp_tx_send() */ if (qdf_unlikely(is_frag)) { if (qdf_nbuf_linearize(nbuf) == -ENOMEM) return false; nbuf = qdf_nbuf_unshare(nbuf); if (!nbuf) { DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len); /* return true even though the pkt is * not forwarded. Basically skb_unshare * failed and we want to continue with * next nbuf. */ tid_stats->fail_cnt[INTRABSS_DROP]++; return true; } } if (!dp_tx_send(ta_peer->vdev, nbuf)) { DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len); return true; } else { DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len); tid_stats->fail_cnt[INTRABSS_DROP]++; return false; } } } /* if it is a broadcast pkt (eg: ARP) and it is not its own * source, then clone the pkt and send the cloned pkt for * intra BSS forwarding and original pkt up the network stack * Note: how do we handle multicast pkts. do we forward * all multicast pkts as is or let a higher layer module * like igmpsnoop decide whether to forward or not with * Mcast enhancement. */ else if (qdf_unlikely((qdf_nbuf_is_da_mcbc(nbuf) && !ta_peer->bss_peer))) { nbuf_copy = qdf_nbuf_copy(nbuf); if (!nbuf_copy) return false; len = QDF_NBUF_CB_RX_PKT_LEN(nbuf); memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb)); if (dp_tx_send(ta_peer->vdev, nbuf_copy)) { DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len); tid_stats->fail_cnt[INTRABSS_DROP]++; qdf_nbuf_free(nbuf_copy); } else { DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len); tid_stats->intrabss_cnt++; } } /* return false as we have to still send the original pkt * up the stack */ return false; } #ifdef MESH_MODE_SUPPORT /** * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats * * @vdev: DP Virtual device handle * @nbuf: Buffer pointer * @rx_tlv_hdr: start of rx tlv header * @peer: pointer to peer * * This function allocated memory for mesh receive stats and fill the * required stats. Stores the memory address in skb cb. * * Return: void */ void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr, struct dp_peer *peer) { struct mesh_recv_hdr_s *rx_info = NULL; uint32_t pkt_type; uint32_t nss; uint32_t rate_mcs; uint32_t bw; /* fill recv mesh stats */ rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s)); /* upper layers are resposible to free this memory */ if (!rx_info) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "Memory allocation failed for mesh rx stats"); DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1); return; } rx_info->rs_flags = MESH_RXHDR_VER1; if (qdf_nbuf_is_rx_chfrag_start(nbuf)) rx_info->rs_flags |= MESH_RX_FIRST_MSDU; if (qdf_nbuf_is_rx_chfrag_end(nbuf)) rx_info->rs_flags |= MESH_RX_LAST_MSDU; if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) { rx_info->rs_flags |= MESH_RX_DECRYPTED; rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr); if (vdev->osif_get_key) vdev->osif_get_key(vdev->osif_vdev, &rx_info->rs_decryptkey[0], &peer->mac_addr.raw[0], rx_info->rs_keyix); } rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr); rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr); pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr); rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr); bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr); nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr); rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) | (bw << 24); qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO); QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED, FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"), rx_info->rs_flags, rx_info->rs_rssi, rx_info->rs_channel, rx_info->rs_ratephy1, rx_info->rs_keyix); } /** * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets * * @vdev: DP Virtual device handle * @nbuf: Buffer pointer * @rx_tlv_hdr: start of rx tlv header * * This checks if the received packet is matching any filter out * catogery and and drop the packet if it matches. * * Return: status(0 indicates drop, 1 indicate to no drop) */ QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr) { union dp_align_mac_addr mac_addr; if (qdf_unlikely(vdev->mesh_rx_filter)) { if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS) if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)) return QDF_STATUS_SUCCESS; if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS) if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr)) return QDF_STATUS_SUCCESS; if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS) if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr) && !hal_rx_mpdu_get_to_ds(rx_tlv_hdr)) return QDF_STATUS_SUCCESS; if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) { if (hal_rx_mpdu_get_addr1(rx_tlv_hdr, &mac_addr.raw[0])) return QDF_STATUS_E_FAILURE; if (!qdf_mem_cmp(&mac_addr.raw[0], &vdev->mac_addr.raw[0], QDF_MAC_ADDR_SIZE)) return QDF_STATUS_SUCCESS; } if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) { if (hal_rx_mpdu_get_addr2(rx_tlv_hdr, &mac_addr.raw[0])) return QDF_STATUS_E_FAILURE; if (!qdf_mem_cmp(&mac_addr.raw[0], &vdev->mac_addr.raw[0], QDF_MAC_ADDR_SIZE)) return QDF_STATUS_SUCCESS; } } return QDF_STATUS_E_FAILURE; } #else void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr, struct dp_peer *peer) { } QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr) { return QDF_STATUS_E_FAILURE; } #endif #ifdef FEATURE_NAC_RSSI /** * dp_rx_nac_filter(): Function to perform filtering of non-associated * clients * @pdev: DP pdev handle * @rx_pkt_hdr: Rx packet Header * * return: dp_vdev* */ static struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev, uint8_t *rx_pkt_hdr) { struct ieee80211_frame *wh; struct dp_neighbour_peer *peer = NULL; wh = (struct ieee80211_frame *)rx_pkt_hdr; if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS) return NULL; qdf_spin_lock_bh(&pdev->neighbour_peer_mutex); TAILQ_FOREACH(peer, &pdev->neighbour_peers_list, neighbour_peer_list_elem) { if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0], wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) { QDF_TRACE( QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"), peer->neighbour_peers_macaddr.raw[0], peer->neighbour_peers_macaddr.raw[1], peer->neighbour_peers_macaddr.raw[2], peer->neighbour_peers_macaddr.raw[3], peer->neighbour_peers_macaddr.raw[4], peer->neighbour_peers_macaddr.raw[5]); qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex); return pdev->monitor_vdev; } } qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex); return NULL; } /** * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac * @soc: DP SOC handle * @mpdu: mpdu for which peer is invalid * * return: integer type */ uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu) { struct dp_invalid_peer_msg msg; struct dp_vdev *vdev = NULL; struct dp_pdev *pdev = NULL; struct ieee80211_frame *wh; uint8_t i; qdf_nbuf_t curr_nbuf, next_nbuf; uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu); uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr); if (!HAL_IS_DECAP_FORMAT_RAW(rx_tlv_hdr)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "Drop decapped frames"); goto free; } wh = (struct ieee80211_frame *)rx_pkt_hdr; if (!DP_FRAME_IS_DATA(wh)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "NAWDS valid only for data frames"); goto free; } if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "Invalid nbuf length"); goto free; } for (i = 0; i < MAX_PDEV_CNT; i++) { pdev = soc->pdev_list[i]; if (!pdev) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "PDEV not found"); continue; } if (pdev->filter_neighbour_peers) { /* Next Hop scenario not yet handle */ vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr); if (vdev) { dp_rx_mon_deliver(soc, i, pdev->invalid_peer_head_msdu, pdev->invalid_peer_tail_msdu); pdev->invalid_peer_head_msdu = NULL; pdev->invalid_peer_tail_msdu = NULL; return 0; } } TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) { if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw, QDF_MAC_ADDR_SIZE) == 0) { goto out; } } } if (!vdev) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "VDEV not found"); goto free; } out: msg.wh = wh; qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN); msg.nbuf = mpdu; msg.vdev_id = vdev->vdev_id; if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(pdev->ctrl_pdev, &msg); free: /* Drop and free packet */ curr_nbuf = mpdu; while (curr_nbuf) { next_nbuf = qdf_nbuf_next(curr_nbuf); qdf_nbuf_free(curr_nbuf); curr_nbuf = next_nbuf; } return 0; } /** * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler * @soc: DP SOC handle * @mpdu: mpdu for which peer is invalid * @mpdu_done: if an mpdu is completed * * return: integer type */ void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc, qdf_nbuf_t mpdu, bool mpdu_done) { /* Only trigger the process when mpdu is completed */ if (mpdu_done) dp_rx_process_invalid_peer(soc, mpdu); } #else uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu) { qdf_nbuf_t curr_nbuf, next_nbuf; struct dp_pdev *pdev; uint8_t i; struct dp_vdev *vdev = NULL; struct ieee80211_frame *wh; uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu); uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr); wh = (struct ieee80211_frame *)rx_pkt_hdr; if (!DP_FRAME_IS_DATA(wh)) { QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP, "only for data frames"); goto free; } if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "Invalid nbuf length"); goto free; } for (i = 0; i < MAX_PDEV_CNT; i++) { pdev = soc->pdev_list[i]; if (!pdev) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "PDEV not found"); continue; } qdf_spin_lock_bh(&pdev->vdev_list_lock); DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) { if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw, QDF_MAC_ADDR_SIZE) == 0) { qdf_spin_unlock_bh(&pdev->vdev_list_lock); goto out; } } qdf_spin_unlock_bh(&pdev->vdev_list_lock); } if (!vdev) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "VDEV not found"); goto free; } out: if (soc->cdp_soc.ol_ops->rx_invalid_peer) soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh); free: /* reset the head and tail pointers */ for (i = 0; i < MAX_PDEV_CNT; i++) { pdev = soc->pdev_list[i]; if (!pdev) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "PDEV not found"); continue; } pdev->invalid_peer_head_msdu = NULL; pdev->invalid_peer_tail_msdu = NULL; } /* Drop and free packet */ curr_nbuf = mpdu; while (curr_nbuf) { next_nbuf = qdf_nbuf_next(curr_nbuf); qdf_nbuf_free(curr_nbuf); curr_nbuf = next_nbuf; } return 0; } void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc, qdf_nbuf_t mpdu, bool mpdu_done) { /* Process the nbuf */ dp_rx_process_invalid_peer(soc, mpdu); } #endif #ifdef RECEIVE_OFFLOAD /** * dp_rx_print_offload_info() - Print offload info from RX TLV * @rx_tlv: RX TLV for which offload information is to be printed * * Return: None */ static void dp_rx_print_offload_info(uint8_t *rx_tlv) { dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------"); dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv)); dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv)); dp_verbose_debug("chksum 0x%x", HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv)); dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv)); dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv)); dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv)); dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv)); dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv)); dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv)); dp_verbose_debug("---------------------------------------------------------"); } /** * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb * @soc: DP SOC handle * @rx_tlv: RX TLV received for the msdu * @msdu: msdu for which GRO info needs to be filled * * Return: None */ static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv, qdf_nbuf_t msdu) { if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx)) return; /* Filling up RX offload info only for TCP packets */ if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv)) return; QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv); QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) = HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv); QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) = HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv); QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) = HAL_RX_TLV_GET_TCP_SEQ(rx_tlv); QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) = HAL_RX_TLV_GET_TCP_ACK(rx_tlv); QDF_NBUF_CB_RX_TCP_WIN(msdu) = HAL_RX_TLV_GET_TCP_WIN(rx_tlv); QDF_NBUF_CB_RX_TCP_PROTO(msdu) = HAL_RX_TLV_GET_TCP_PROTO(rx_tlv); QDF_NBUF_CB_RX_IPV6_PROTO(msdu) = HAL_RX_TLV_GET_IPV6(rx_tlv); QDF_NBUF_CB_RX_TCP_OFFSET(msdu) = HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv); QDF_NBUF_CB_RX_FLOW_ID(msdu) = HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv); dp_rx_print_offload_info(rx_tlv); } #else static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv, qdf_nbuf_t msdu) { } #endif /* RECEIVE_OFFLOAD */ /** * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf. * * @nbuf: pointer to msdu. * @mpdu_len: mpdu length * * Return: returns true if nbuf is last msdu of mpdu else retuns false. */ static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len) { bool last_nbuf; if (*mpdu_len > (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN)) { qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE); last_nbuf = false; } else { qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN)); last_nbuf = true; } *mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN); return last_nbuf; } /** * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across * multiple nbufs. * @nbuf: pointer to the first msdu of an amsdu. * @rx_tlv_hdr: pointer to the start of RX TLV headers. * * * This function implements the creation of RX frag_list for cases * where an MSDU is spread across multiple nbufs. * * Return: returns the head nbuf which contains complete frag_list. */ qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr) { qdf_nbuf_t parent, next, frag_list; uint16_t frag_list_len = 0; uint16_t mpdu_len; bool last_nbuf; mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr); /* * this is a case where the complete msdu fits in one single nbuf. * in this case HW sets both start and end bit and we only need to * reset these bits for RAW mode simulator to decap the pkt */ if (qdf_nbuf_is_rx_chfrag_start(nbuf) && qdf_nbuf_is_rx_chfrag_end(nbuf)) { qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN); qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN); return nbuf; } /* * This is a case where we have multiple msdus (A-MSDU) spread across * multiple nbufs. here we create a fraglist out of these nbufs. * * the moment we encounter a nbuf with continuation bit set we * know for sure we have an MSDU which is spread across multiple * nbufs. We loop through and reap nbufs till we reach last nbuf. */ parent = nbuf; frag_list = nbuf->next; nbuf = nbuf->next; /* * set the start bit in the first nbuf we encounter with continuation * bit set. This has the proper mpdu length set as it is the first * msdu of the mpdu. this becomes the parent nbuf and the subsequent * nbufs will form the frag_list of the parent nbuf. */ qdf_nbuf_set_rx_chfrag_start(parent, 1); last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len); /* * this is where we set the length of the fragments which are * associated to the parent nbuf. We iterate through the frag_list * till we hit the last_nbuf of the list. */ do { last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len); qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN); frag_list_len += qdf_nbuf_len(nbuf); if (last_nbuf) { next = nbuf->next; nbuf->next = NULL; break; } nbuf = nbuf->next; } while (!last_nbuf); qdf_nbuf_set_rx_chfrag_start(nbuf, 0); qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len); parent->next = next; qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN); return parent; } /** * dp_rx_compute_delay() - Compute and fill in all timestamps * to pass in correct fields * * @vdev: pdev handle * @tx_desc: tx descriptor * @tid: tid value * Return: none */ void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf) { int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get()); uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf); uint8_t tid = qdf_nbuf_get_priority(nbuf); uint32_t interframe_delay = (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp); dp_update_delay_stats(vdev->pdev, to_stack, tid, CDP_DELAY_STATS_REAP_STACK); /* * Update interframe delay stats calculated at deliver_data_ol point. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so * interframe delay will not be calculate correctly for 1st frame. * On the other side, this will help in avoiding extra per packet check * of vdev->prev_rx_deliver_tstamp. */ dp_update_delay_stats(vdev->pdev, interframe_delay, tid, CDP_DELAY_STATS_RX_INTERFRAME); vdev->prev_rx_deliver_tstamp = current_ts; } /** * dp_rx_drop_nbuf_list() - drop an nbuf list * @pdev: dp pdev reference * @buf_list: buffer list to be dropepd * * Return: int (number of bufs dropped) */ static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev, qdf_nbuf_t buf_list) { struct cdp_tid_rx_stats *stats = NULL; uint8_t tid = 0; int num_dropped = 0; qdf_nbuf_t buf, next_buf; buf = buf_list; while (buf) { next_buf = qdf_nbuf_queue_next(buf); tid = qdf_nbuf_get_priority(buf); stats = &pdev->stats.tid_stats.tid_rx_stats[tid]; stats->fail_cnt[INVALID_PEER_VDEV]++; stats->delivered_to_stack--; qdf_nbuf_free(buf); buf = next_buf; num_dropped++; } return num_dropped; } #ifdef PEER_CACHE_RX_PKTS /** * dp_rx_flush_rx_cached() - flush cached rx frames * @peer: peer * @drop: flag to drop frames or forward to net stack * * Return: None */ void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop) { struct dp_peer_cached_bufq *bufqi; struct dp_rx_cached_buf *cache_buf = NULL; ol_txrx_rx_fp data_rx = NULL; int num_buff_elem; QDF_STATUS status; if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) { qdf_atomic_dec(&peer->flush_in_progress); return; } qdf_spin_lock_bh(&peer->peer_info_lock); if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx) data_rx = peer->vdev->osif_rx; else drop = true; qdf_spin_unlock_bh(&peer->peer_info_lock); bufqi = &peer->bufq_info; qdf_spin_lock_bh(&bufqi->bufq_lock); if (qdf_list_empty(&bufqi->cached_bufq)) { qdf_spin_unlock_bh(&bufqi->bufq_lock); return; } qdf_list_remove_front(&bufqi->cached_bufq, (qdf_list_node_t **)&cache_buf); while (cache_buf) { num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST( cache_buf->buf); bufqi->entries -= num_buff_elem; qdf_spin_unlock_bh(&bufqi->bufq_lock); if (drop) { bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev, cache_buf->buf); } else { /* Flush the cached frames to OSIF DEV */ status = data_rx(peer->vdev->osif_vdev, cache_buf->buf); if (status != QDF_STATUS_SUCCESS) bufqi->dropped = dp_rx_drop_nbuf_list( peer->vdev->pdev, cache_buf->buf); } qdf_mem_free(cache_buf); cache_buf = NULL; qdf_spin_lock_bh(&bufqi->bufq_lock); qdf_list_remove_front(&bufqi->cached_bufq, (qdf_list_node_t **)&cache_buf); } qdf_spin_unlock_bh(&bufqi->bufq_lock); qdf_atomic_dec(&peer->flush_in_progress); } /** * dp_rx_enqueue_rx() - cache rx frames * @peer: peer * @rx_buf_list: cache buffer list * * Return: None */ static QDF_STATUS dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list) { struct dp_rx_cached_buf *cache_buf; struct dp_peer_cached_bufq *bufqi = &peer->bufq_info; int num_buff_elem; QDF_TRACE_DEBUG_RL(QDF_MODULE_ID_TXRX, "bufq->curr %d bufq->drops %d", bufqi->entries, bufqi->dropped); if (!peer->valid) { bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev, rx_buf_list); return QDF_STATUS_E_INVAL; } qdf_spin_lock_bh(&bufqi->bufq_lock); if (bufqi->entries >= bufqi->thresh) { bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev, rx_buf_list); qdf_spin_unlock_bh(&bufqi->bufq_lock); return QDF_STATUS_E_RESOURCES; } qdf_spin_unlock_bh(&bufqi->bufq_lock); num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list); cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf)); if (!cache_buf) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "Failed to allocate buf to cache rx frames"); bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev, rx_buf_list); return QDF_STATUS_E_NOMEM; } cache_buf->buf = rx_buf_list; qdf_spin_lock_bh(&bufqi->bufq_lock); qdf_list_insert_back(&bufqi->cached_bufq, &cache_buf->node); bufqi->entries += num_buff_elem; qdf_spin_unlock_bh(&bufqi->bufq_lock); return QDF_STATUS_SUCCESS; } static inline bool dp_rx_is_peer_cache_bufq_supported(void) { return true; } #else static inline bool dp_rx_is_peer_cache_bufq_supported(void) { return false; } static inline QDF_STATUS dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list) { return QDF_STATUS_SUCCESS; } #endif static inline void dp_rx_deliver_to_stack(struct dp_vdev *vdev, struct dp_peer *peer, qdf_nbuf_t nbuf_head, qdf_nbuf_t nbuf_tail) { /* * highly unlikely to have a vdev without a registered rx * callback function. if so let us free the nbuf_list. */ if (qdf_unlikely(!vdev->osif_rx)) { if (dp_rx_is_peer_cache_bufq_supported()) dp_rx_enqueue_rx(peer, nbuf_head); else dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head); return; } if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) || (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) { vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head, &nbuf_tail, (struct cdp_peer *) peer); } vdev->osif_rx(vdev->osif_vdev, nbuf_head); } /** * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware. * @nbuf: pointer to the first msdu of an amsdu. * @rx_tlv_hdr: pointer to the start of RX TLV headers. * * The ipsumed field of the skb is set based on whether HW validated the * IP/TCP/UDP checksum. * * Return: void */ static inline void dp_rx_cksum_offload(struct dp_pdev *pdev, qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr) { qdf_nbuf_rx_cksum_t cksum = {0}; bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr); bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr); if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) { cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY; qdf_nbuf_set_rx_cksum(nbuf, &cksum); } else { DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err); DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er); } } /** * dp_rx_msdu_stats_update() - update per msdu stats. * @soc: core txrx main context * @nbuf: pointer to the first msdu of an amsdu. * @rx_tlv_hdr: pointer to the start of RX TLV headers. * @peer: pointer to the peer object. * @ring_id: reo dest ring number on which pkt is reaped. * @tid_stats: per tid rx stats. * * update all the per msdu stats for that nbuf. * Return: void */ static void dp_rx_msdu_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr, struct dp_peer *peer, uint8_t ring_id, struct cdp_tid_rx_stats *tid_stats) { bool is_ampdu, is_not_amsdu; uint16_t peer_id; uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type; struct dp_vdev *vdev = peer->vdev; qdf_ether_header_t *eh; uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf); peer_id = DP_PEER_METADATA_PEER_ID_GET( hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr)); is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) & qdf_nbuf_is_rx_chfrag_end(nbuf); DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len); DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu); DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu); tid_stats->msdu_cnt++; if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) && (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) { eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf); DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len); tid_stats->mcast_msdu_cnt++; if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) { DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len); tid_stats->bcast_msdu_cnt++; } } /* * currently we can return from here as we have similar stats * updated at per ppdu level instead of msdu level */ if (!soc->process_rx_status) return; is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr); DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu); DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu)); sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr); mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr); tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_tlv_hdr); bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr); reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc, rx_tlv_hdr); nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr); pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr); DP_STATS_INC(peer, rx.bw[bw], 1); /* * only if nss > 0 and pkt_type is 11N/AC/AX, * then increase index [nss - 1] in array counter. */ if (nss > 0 && (pkt_type == DOT11_N || pkt_type == DOT11_AC || pkt_type == DOT11_AX)) DP_STATS_INC(peer, rx.nss[nss - 1], 1); DP_STATS_INC(peer, rx.sgi_count[sgi], 1); DP_STATS_INCC(peer, rx.err.mic_err, 1, hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr)); DP_STATS_INCC(peer, rx.err.decrypt_err, 1, hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr)); DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1); DP_STATS_INC(peer, rx.reception_type[reception_type], 1); DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1, ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A))); DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1, ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A))); DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1, ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B))); DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1, ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B))); DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1, ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N))); DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1, ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N))); DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1, ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC))); DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1, ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC))); DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1, ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX))); DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1, ((mcs < MAX_MCS) && (pkt_type == DOT11_AX))); if ((soc->process_rx_status) && hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) { #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE if (!vdev->pdev) return; dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc, &peer->stats, peer_id, UPDATE_PEER_STATS, vdev->pdev->pdev_id); #endif } } static inline bool is_sa_da_idx_valid(struct dp_soc *soc, void *rx_tlv_hdr, qdf_nbuf_t nbuf) { if ((qdf_nbuf_is_sa_valid(nbuf) && (hal_rx_msdu_end_sa_idx_get(rx_tlv_hdr) > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) || (qdf_nbuf_is_da_valid(nbuf) && (hal_rx_msdu_end_da_idx_get(soc->hal_soc, rx_tlv_hdr) > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx)))) return false; return true; } #ifdef WDS_VENDOR_EXTENSION int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr, struct dp_vdev *vdev, struct dp_peer *peer) { struct dp_peer *bss_peer; int fr_ds, to_ds, rx_3addr, rx_4addr; int rx_policy_ucast, rx_policy_mcast; int rx_mcast = hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr); if (vdev->opmode == wlan_op_mode_ap) { TAILQ_FOREACH(bss_peer, &vdev->peer_list, peer_list_elem) { if (bss_peer->bss_peer) { /* if wds policy check is not enabled on this vdev, accept all frames */ if (!bss_peer->wds_ecm.wds_rx_filter) { return 1; } break; } } rx_policy_ucast = bss_peer->wds_ecm.wds_rx_ucast_4addr; rx_policy_mcast = bss_peer->wds_ecm.wds_rx_mcast_4addr; } else { /* sta mode */ if (!peer->wds_ecm.wds_rx_filter) { return 1; } rx_policy_ucast = peer->wds_ecm.wds_rx_ucast_4addr; rx_policy_mcast = peer->wds_ecm.wds_rx_mcast_4addr; } /* ------------------------------------------------ * self * peer- rx rx- * wds ucast mcast dir policy accept note * ------------------------------------------------ * 1 1 0 11 x1 1 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept * 1 1 0 01 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop * 1 1 0 10 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop * 1 1 0 00 x1 0 bad frame, won't see it * 1 0 1 11 1x 1 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept * 1 0 1 01 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop * 1 0 1 10 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop * 1 0 1 00 1x 0 bad frame, won't see it * 1 1 0 11 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop * 1 1 0 01 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop * 1 1 0 10 x0 1 AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept * 1 1 0 00 x0 0 bad frame, won't see it * 1 0 1 11 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop * 1 0 1 01 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop * 1 0 1 10 0x 1 AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept * 1 0 1 00 0x 0 bad frame, won't see it * * 0 x x 11 xx 0 we only accept td-ds Rx frames from non-wds peers in mode. * 0 x x 01 xx 1 * 0 x x 10 xx 0 * 0 x x 00 xx 0 bad frame, won't see it * ------------------------------------------------ */ fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr); to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr); rx_3addr = fr_ds ^ to_ds; rx_4addr = fr_ds & to_ds; if (vdev->opmode == wlan_op_mode_ap) { if ((!peer->wds_enabled && rx_3addr && to_ds) || (peer->wds_enabled && !rx_mcast && (rx_4addr == rx_policy_ucast)) || (peer->wds_enabled && rx_mcast && (rx_4addr == rx_policy_mcast))) { return 1; } } else { /* sta mode */ if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) || (rx_mcast && (rx_4addr == rx_policy_mcast))) { return 1; } } return 0; } #else int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr, struct dp_vdev *vdev, struct dp_peer *peer) { return 1; } #endif #ifdef RX_DESC_DEBUG_CHECK /** * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr * corruption * * @ring_desc: REO ring descriptor * @rx_desc: Rx descriptor * * Return: NONE */ static inline void dp_rx_desc_nbuf_sanity_check(void *ring_desc, struct dp_rx_desc *rx_desc) { struct hal_buf_info hbi; hal_rx_reo_buf_paddr_get(ring_desc, &hbi); /* Sanity check for possible buffer paddr corruption */ qdf_assert_always((&hbi)->paddr == qdf_nbuf_get_frag_paddr(rx_desc->nbuf, 0)); } #else static inline void dp_rx_desc_nbuf_sanity_check(void *ring_desc, struct dp_rx_desc *rx_desc) { } #endif #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT static inline bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped) { bool limit_hit = false; struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx; limit_hit = (num_reaped >= cfg->rx_reap_loop_pkt_limit) ? true : false; if (limit_hit) DP_STATS_INC(soc, rx.reap_loop_pkt_limit_hit, 1) return limit_hit; } static inline bool dp_rx_hp_oos_update_limit_hit(struct dp_soc *soc, int hp_oos_updates) { bool limit_hit = false; struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx; limit_hit = (hp_oos_updates >= cfg->rx_hp_oos_update_limit) ? true : false; return limit_hit; } static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc) { return soc->wlan_cfg_ctx->rx_enable_eol_data_check; } #else static inline bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped) { return false; } static inline bool dp_rx_hp_oos_update_limit_hit(struct dp_soc *soc, int hp_oos_updates) { return false; } static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc) { return false; } #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */ /** * dp_rx_process() - Brain of the Rx processing functionality * Called from the bottom half (tasklet/NET_RX_SOFTIRQ) * @soc: core txrx main context * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring. * @quota: No. of units (packets) that can be serviced in one shot. * * This function implements the core of Rx functionality. This is * expected to handle only non-error frames. * * Return: uint32_t: No. of elements processed */ uint32_t dp_rx_process(struct dp_intr *int_ctx, void *hal_ring, uint8_t reo_ring_num, uint32_t quota) { void *hal_soc; void *ring_desc; struct dp_rx_desc *rx_desc = NULL; qdf_nbuf_t nbuf, next; union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT]; union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT]; uint32_t rx_bufs_used = 0, rx_buf_cookie; uint32_t l2_hdr_offset = 0; uint16_t msdu_len = 0; uint16_t peer_id; struct dp_peer *peer; struct dp_vdev *vdev; uint32_t pkt_len = 0; struct hal_rx_mpdu_desc_info mpdu_desc_info; struct hal_rx_msdu_desc_info msdu_desc_info; enum hal_reo_error_status error; uint32_t peer_mdata; uint8_t *rx_tlv_hdr; uint32_t rx_bufs_reaped[MAX_PDEV_CNT]; uint8_t mac_id = 0; struct dp_pdev *pdev; struct dp_pdev *rx_pdev; struct dp_srng *dp_rxdma_srng; struct rx_desc_pool *rx_desc_pool; struct dp_soc *soc = int_ctx->soc; uint8_t ring_id = 0; uint8_t core_id = 0; struct cdp_tid_rx_stats *tid_stats; qdf_nbuf_t nbuf_head; qdf_nbuf_t nbuf_tail; qdf_nbuf_t deliver_list_head; qdf_nbuf_t deliver_list_tail; uint32_t num_rx_bufs_reaped = 0; uint32_t intr_id; struct hif_opaque_softc *scn; uint32_t hp_oos_updates = 0; int32_t tid = 0; DP_HIST_INIT(); qdf_assert_always(soc && hal_ring); hal_soc = soc->hal_soc; qdf_assert_always(hal_soc); hif_pm_runtime_mark_last_busy(soc->osdev->dev); scn = soc->hif_handle; intr_id = int_ctx->dp_intr_id; more_data: /* reset local variables here to be re-used in the function */ nbuf_head = NULL; nbuf_tail = NULL; deliver_list_head = NULL; deliver_list_tail = NULL; peer = NULL; vdev = NULL; num_rx_bufs_reaped = 0; qdf_mem_zero(rx_bufs_reaped, sizeof(rx_bufs_reaped)); qdf_mem_zero(&mpdu_desc_info, sizeof(mpdu_desc_info)); qdf_mem_zero(&msdu_desc_info, sizeof(msdu_desc_info)); qdf_mem_zero(head, sizeof(head)); qdf_mem_zero(tail, sizeof(tail)); if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) { /* * Need API to convert from hal_ring pointer to * Ring Type / Ring Id combo */ DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1); QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, FL("HAL RING Access Failed -- %pK"), hal_ring); hal_srng_access_end(hal_soc, hal_ring); goto done; } /* * start reaping the buffers from reo ring and queue * them in per vdev queue. * Process the received pkts in a different per vdev loop. */ hp_oos_updates = 0; while (qdf_likely(quota)) { ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring); /* * in case HW has updated hp after we cached the hp * ring_desc can be NULL even there are entries * available in the ring. Update the cached_hp * and reap the buffers available to read complete * mpdu in one reap * * This is needed for RAW mode we have to read all * msdus corresponding to amsdu in one reap to create * SG list properly but due to mismatch in cached_hp * and actual hp sometimes we are unable to read * complete mpdu in one reap. */ if (qdf_unlikely(!ring_desc)) { if (dp_rx_hp_oos_update_limit_hit(soc, hp_oos_updates)) { break; } hp_oos_updates++; if (hal_srng_dst_peek_sync(hal_soc, hal_ring)) { DP_STATS_INC(soc, rx.hp_oos, 1); hal_srng_access_end_unlocked(hal_soc, hal_ring); continue; } else { break; } } error = HAL_RX_ERROR_STATUS_GET(ring_desc); ring_id = hal_srng_ring_id_get(hal_ring); if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("HAL RING 0x%pK:error %d"), hal_ring, error); DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1); /* Don't know how to deal with this -- assert */ qdf_assert(0); } rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc); rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie); qdf_assert(rx_desc); dp_rx_desc_nbuf_sanity_check(ring_desc, rx_desc); /* * this is a unlikely scenario where the host is reaping * a descriptor which it already reaped just a while ago * but is yet to replenish it back to HW. * In this case host will dump the last 128 descriptors * including the software descriptor rx_desc and assert. */ if (qdf_unlikely(!rx_desc->in_use)) { DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1); dp_err("Reaping rx_desc not in use!"); dp_rx_dump_info_and_assert(soc, hal_ring, ring_desc, rx_desc); } if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) { dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie); DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1); dp_rx_dump_info_and_assert(soc, hal_ring, ring_desc, rx_desc); } rx_bufs_reaped[rx_desc->pool_id]++; /* TODO */ /* * Need a separate API for unmapping based on * phyiscal address */ qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf, QDF_DMA_BIDIRECTIONAL); rx_desc->unmapped = 1; core_id = smp_processor_id(); DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1); /* Get MPDU DESC info */ hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info); peer_mdata = mpdu_desc_info.peer_meta_data; QDF_NBUF_CB_RX_PEER_ID(rx_desc->nbuf) = DP_PEER_METADATA_PEER_ID_GET(peer_mdata); /* Get MSDU DESC info */ hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info); /* * save msdu flags first, last and continuation msdu in * nbuf->cb, also save mcbc, is_da_valid, is_sa_valid and * length to nbuf->cb. This ensures the info required for * per pkt processing is always in the same cache line. * This helps in improving throughput for smaller pkt * sizes. */ if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU) qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1); if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION) qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1); if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU) qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1); if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_MCBC) qdf_nbuf_set_da_mcbc(rx_desc->nbuf, 1); if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_VALID) qdf_nbuf_set_da_valid(rx_desc->nbuf, 1); if (msdu_desc_info.msdu_flags & HAL_MSDU_F_SA_IS_VALID) qdf_nbuf_set_sa_valid(rx_desc->nbuf, 1); QDF_NBUF_CB_RX_PKT_LEN(rx_desc->nbuf) = msdu_desc_info.msdu_len; QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num; DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf); /* * if continuation bit is set then we have MSDU spread * across multiple buffers, let us not decrement quota * till we reap all buffers of that MSDU. */ if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf))) quota -= 1; dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id], &tail[rx_desc->pool_id], rx_desc); num_rx_bufs_reaped++; if (dp_rx_reap_loop_pkt_limit_hit(soc, num_rx_bufs_reaped)) break; } done: hal_srng_access_end(hal_soc, hal_ring); if (nbuf_tail) QDF_NBUF_CB_RX_FLUSH_IND(nbuf_tail) = 1; for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) { /* * continue with next mac_id if no pkts were reaped * from that pool */ if (!rx_bufs_reaped[mac_id]) continue; pdev = soc->pdev_list[mac_id]; dp_rxdma_srng = &pdev->rx_refill_buf_ring; rx_desc_pool = &soc->rx_desc_buf[mac_id]; dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng, rx_desc_pool, rx_bufs_reaped[mac_id], &head[mac_id], &tail[mac_id]); } dp_verbose_debug("replenished %u\n", rx_bufs_reaped[0]); /* Peer can be NULL is case of LFR */ if (qdf_likely(peer)) vdev = NULL; /* * BIG loop where each nbuf is dequeued from global queue, * processed and queued back on a per vdev basis. These nbufs * are sent to stack as and when we run out of nbufs * or a new nbuf dequeued from global queue has a different * vdev when compared to previous nbuf. */ nbuf = nbuf_head; while (nbuf) { next = nbuf->next; rx_tlv_hdr = qdf_nbuf_data(nbuf); /* Get TID from first msdu per MPDU, save to skb->priority */ if (qdf_nbuf_is_rx_chfrag_start(nbuf)) tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_tlv_hdr); /* * Check if DMA completed -- msdu_done is the last bit * to be written */ rx_pdev = soc->pdev_list[rx_desc->pool_id]; dp_rx_save_tid_ts(nbuf, tid, rx_pdev->delay_stats_flag); tid_stats = &rx_pdev->stats.tid_stats.tid_rx_stats[tid]; if (qdf_unlikely(!hal_rx_attn_msdu_done_get(rx_tlv_hdr))) { dp_err("MSDU DONE failure"); DP_STATS_INC(soc, rx.err.msdu_done_fail, 1); hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr, QDF_TRACE_LEVEL_INFO); tid_stats->fail_cnt[MSDU_DONE_FAILURE]++; qdf_nbuf_free(nbuf); qdf_assert(0); nbuf = next; continue; } peer_mdata = QDF_NBUF_CB_RX_PEER_ID(nbuf); peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata); peer = dp_peer_find_by_id(soc, peer_id); if (peer) { QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false; qdf_dp_trace_set_track(nbuf, QDF_RX); QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1; QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) = QDF_NBUF_RX_PKT_DATA_TRACK; } rx_bufs_used++; if (deliver_list_head && peer && (vdev != peer->vdev)) { dp_rx_deliver_to_stack(vdev, peer, deliver_list_head, deliver_list_tail); deliver_list_head = NULL; deliver_list_tail = NULL; } if (qdf_likely(peer)) { vdev = peer->vdev; } else { DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1, QDF_NBUF_CB_RX_PKT_LEN(nbuf)); tid_stats->fail_cnt[INVALID_PEER_VDEV]++; qdf_nbuf_free(nbuf); nbuf = next; continue; } if (qdf_unlikely(!vdev)) { tid_stats->fail_cnt[INVALID_PEER_VDEV]++; qdf_nbuf_free(nbuf); nbuf = next; DP_STATS_INC(soc, rx.err.invalid_vdev, 1); dp_peer_unref_del_find_by_id(peer); continue; } DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id); /* * First IF condition: * 802.11 Fragmented pkts are reinjected to REO * HW block as SG pkts and for these pkts we only * need to pull the RX TLVS header length. * Second IF condition: * The below condition happens when an MSDU is spread * across multiple buffers. This can happen in two cases * 1. The nbuf size is smaller then the received msdu. * ex: we have set the nbuf size to 2048 during * nbuf_alloc. but we received an msdu which is * 2304 bytes in size then this msdu is spread * across 2 nbufs. * * 2. AMSDUs when RAW mode is enabled. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread * across 1st nbuf and 2nd nbuf and last MSDU is * spread across 2nd nbuf and 3rd nbuf. * * for these scenarios let us create a skb frag_list and * append these buffers till the last MSDU of the AMSDU * Third condition: * This is the most likely case, we receive 802.3 pkts * decapsulated by HW, here we need to set the pkt length. */ if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) { bool is_mcbc, is_sa_vld, is_da_vld; is_mcbc = hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr); is_sa_vld = hal_rx_msdu_end_sa_is_valid_get(rx_tlv_hdr); is_da_vld = hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr); qdf_nbuf_set_da_mcbc(nbuf, is_mcbc); qdf_nbuf_set_da_valid(nbuf, is_da_vld); qdf_nbuf_set_sa_valid(nbuf, is_sa_vld); qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN); } else if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw)) { msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf); nbuf = dp_rx_sg_create(nbuf, rx_tlv_hdr); DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1); DP_STATS_INC_PKT(peer, rx.raw, 1, msdu_len); next = nbuf->next; } else { l2_hdr_offset = hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr); msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf); pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN; qdf_nbuf_set_pktlen(nbuf, pkt_len); qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN + l2_hdr_offset); } if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("Policy Check Drop pkt")); tid_stats->fail_cnt[POLICY_CHECK_DROP]++; /* Drop & free packet */ qdf_nbuf_free(nbuf); /* Statistics */ nbuf = next; dp_peer_unref_del_find_by_id(peer); continue; } if (qdf_unlikely(peer && (peer->nawds_enabled) && (qdf_nbuf_is_da_mcbc(nbuf)) && (hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr) == false))) { tid_stats->fail_cnt[NAWDS_MCAST_DROP]++; DP_STATS_INC(peer, rx.nawds_mcast_drop, 1); qdf_nbuf_free(nbuf); nbuf = next; dp_peer_unref_del_find_by_id(peer); continue; } if (soc->process_rx_status) dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr); dp_set_rx_queue(nbuf, ring_id); /* Update the protocol tag in SKB based on CCE metadata */ dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr, reo_ring_num, false, true); dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer, ring_id, tid_stats); if (qdf_unlikely(vdev->mesh_vdev)) { if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr) == QDF_STATUS_SUCCESS) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_MED, FL("mesh pkt filtered")); tid_stats->fail_cnt[MESH_FILTER_DROP]++; DP_STATS_INC(vdev->pdev, dropped.mesh_filter, 1); qdf_nbuf_free(nbuf); nbuf = next; dp_peer_unref_del_find_by_id(peer); continue; } dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer); } if (qdf_likely(vdev->rx_decap_type == htt_cmn_pkt_type_ethernet) && qdf_likely(!vdev->mesh_vdev)) { /* WDS Destination Address Learning */ dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf); /* Due to HW issue, sometimes we see that the sa_idx * and da_idx are invalid with sa_valid and da_valid * bits set * * in this case we also see that value of * sa_sw_peer_id is set as 0 * * Drop the packet if sa_idx and da_idx OOB or * sa_sw_peerid is 0 */ if (!is_sa_da_idx_valid(soc, rx_tlv_hdr, nbuf)) { qdf_nbuf_free(nbuf); nbuf = next; DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1); continue; } /* WDS Source Port Learning */ if (qdf_likely(vdev->wds_enabled)) dp_rx_wds_srcport_learn(soc, rx_tlv_hdr, peer, nbuf); /* Intrabss-fwd */ if (dp_rx_check_ap_bridge(vdev)) if (dp_rx_intrabss_fwd(soc, peer, rx_tlv_hdr, nbuf)) { nbuf = next; dp_peer_unref_del_find_by_id(peer); tid_stats->intrabss_cnt++; continue; /* Get next desc */ } } dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf); qdf_nbuf_cb_update_peer_local_id(nbuf, peer->local_id); DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf); DP_STATS_INC_PKT(peer, rx.to_stack, 1, QDF_NBUF_CB_RX_PKT_LEN(nbuf)); tid_stats->delivered_to_stack++; nbuf = next; dp_peer_unref_del_find_by_id(peer); } if (deliver_list_head) dp_rx_deliver_to_stack(vdev, peer, deliver_list_head, deliver_list_tail); if (dp_rx_enable_eol_data_check(soc)) { if (quota && hal_srng_dst_peek_sync_locked(soc, hal_ring)) { DP_STATS_INC(soc, rx.hp_oos2, 1); if (!hif_exec_should_yield(scn, intr_id)) goto more_data; } } /* Update histogram statistics by looping through pdev's */ DP_RX_HIST_STATS_PER_PDEV(); return rx_bufs_used; /* Assume no scale factor for now */ } /** * dp_rx_detach() - detach dp rx * @pdev: core txrx pdev context * * This function will detach DP RX into main device context * will free DP Rx resources. * * Return: void */ void dp_rx_pdev_detach(struct dp_pdev *pdev) { uint8_t pdev_id = pdev->pdev_id; struct dp_soc *soc = pdev->soc; struct rx_desc_pool *rx_desc_pool; rx_desc_pool = &soc->rx_desc_buf[pdev_id]; if (rx_desc_pool->pool_size != 0) { if (!dp_is_soc_reinit(soc)) dp_rx_desc_pool_free(soc, pdev_id, rx_desc_pool); else dp_rx_desc_nbuf_pool_free(soc, rx_desc_pool); } return; } static QDF_STATUS dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id, struct dp_srng *dp_rxdma_srng, struct rx_desc_pool *rx_desc_pool, uint32_t num_req_buffers, union dp_rx_desc_list_elem_t **desc_list, union dp_rx_desc_list_elem_t **tail) { struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id); void *rxdma_srng = dp_rxdma_srng->hal_srng; union dp_rx_desc_list_elem_t *next; void *rxdma_ring_entry; qdf_dma_addr_t paddr; void **rx_nbuf_arr; uint32_t nr_descs; uint32_t nr_nbuf; qdf_nbuf_t nbuf; QDF_STATUS ret; int i; if (qdf_unlikely(!rxdma_srng)) { DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers); return QDF_STATUS_E_FAILURE; } QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "requested %u RX buffers for driver attach", num_req_buffers); nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool, num_req_buffers, desc_list, tail); if (!nr_descs) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "no free rx_descs in freelist"); DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers); return QDF_STATUS_E_NOMEM; } QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "got %u RX descs for driver attach", nr_descs); rx_nbuf_arr = qdf_mem_malloc(nr_descs * sizeof(*rx_nbuf_arr)); if (!rx_nbuf_arr) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "failed to allocate nbuf array"); DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers); return QDF_STATUS_E_NOMEM; } for (nr_nbuf = 0; nr_nbuf < nr_descs; nr_nbuf++) { nbuf = qdf_nbuf_alloc(dp_soc->osdev, RX_BUFFER_SIZE, RX_BUFFER_RESERVATION, RX_BUFFER_ALIGNMENT, FALSE); if (!nbuf) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "nbuf alloc failed"); DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1); break; } ret = qdf_nbuf_map_single(dp_soc->osdev, nbuf, QDF_DMA_BIDIRECTIONAL); if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) { qdf_nbuf_free(nbuf); QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "nbuf map failed"); DP_STATS_INC(dp_pdev, replenish.map_err, 1); break; } paddr = qdf_nbuf_get_frag_paddr(nbuf, 0); ret = check_x86_paddr(dp_soc, &nbuf, &paddr, dp_pdev); if (ret == QDF_STATUS_E_FAILURE) { qdf_nbuf_unmap_single(dp_soc->osdev, nbuf, QDF_DMA_BIDIRECTIONAL); qdf_nbuf_free(nbuf); QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "nbuf check x86 failed"); DP_STATS_INC(dp_pdev, replenish.x86_fail, 1); break; } rx_nbuf_arr[nr_nbuf] = (void *)nbuf; } QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "allocated %u nbuf for driver attach", nr_nbuf); hal_srng_access_start(dp_soc->hal_soc, rxdma_srng); for (i = 0; i < nr_nbuf; i++) { rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc, rxdma_srng); qdf_assert_always(rxdma_ring_entry); next = (*desc_list)->next; nbuf = rx_nbuf_arr[i]; paddr = qdf_nbuf_get_frag_paddr(nbuf, 0); dp_rx_desc_prep(&((*desc_list)->rx_desc), nbuf); (*desc_list)->rx_desc.in_use = 1; hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr, (*desc_list)->rx_desc.cookie, rx_desc_pool->owner); dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, nbuf, true); *desc_list = next; } hal_srng_access_end(dp_soc->hal_soc, rxdma_srng); QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "filled %u RX buffers for driver attach", nr_nbuf); DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, RX_BUFFER_SIZE * nr_nbuf); qdf_mem_free(rx_nbuf_arr); return QDF_STATUS_SUCCESS; } /** * dp_rx_attach() - attach DP RX * @pdev: core txrx pdev context * * This function will attach a DP RX instance into the main * device (SOC) context. Will allocate dp rx resource and * initialize resources. * * Return: QDF_STATUS_SUCCESS: success * QDF_STATUS_E_RESOURCES: Error return */ QDF_STATUS dp_rx_pdev_attach(struct dp_pdev *pdev) { uint8_t pdev_id = pdev->pdev_id; struct dp_soc *soc = pdev->soc; uint32_t rxdma_entries; union dp_rx_desc_list_elem_t *desc_list = NULL; union dp_rx_desc_list_elem_t *tail = NULL; struct dp_srng *dp_rxdma_srng; struct rx_desc_pool *rx_desc_pool; if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO, "nss-wifi<4> skip Rx refil %d", pdev_id); return QDF_STATUS_SUCCESS; } pdev = soc->pdev_list[pdev_id]; dp_rxdma_srng = &pdev->rx_refill_buf_ring; rxdma_entries = dp_rxdma_srng->num_entries; soc->process_rx_status = CONFIG_PROCESS_RX_STATUS; rx_desc_pool = &soc->rx_desc_buf[pdev_id]; dp_rx_desc_pool_alloc(soc, pdev_id, DP_RX_DESC_ALLOC_MULTIPLIER * rxdma_entries, rx_desc_pool); rx_desc_pool->owner = DP_WBM2SW_RBM; /* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */ return dp_pdev_rx_buffers_attach(soc, pdev_id, dp_rxdma_srng, rx_desc_pool, rxdma_entries - 1, &desc_list, &tail); } /* * dp_rx_nbuf_prepare() - prepare RX nbuf * @soc: core txrx main context * @pdev: core txrx pdev context * * This function alloc & map nbuf for RX dma usage, retry it if failed * until retry times reaches max threshold or succeeded. * * Return: qdf_nbuf_t pointer if succeeded, NULL if failed. */ qdf_nbuf_t dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev) { uint8_t *buf; int32_t nbuf_retry_count; QDF_STATUS ret; qdf_nbuf_t nbuf = NULL; for (nbuf_retry_count = 0; nbuf_retry_count < QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD; nbuf_retry_count++) { /* Allocate a new skb */ nbuf = qdf_nbuf_alloc(soc->osdev, RX_BUFFER_SIZE, RX_BUFFER_RESERVATION, RX_BUFFER_ALIGNMENT, FALSE); if (!nbuf) { DP_STATS_INC(pdev, replenish.nbuf_alloc_fail, 1); continue; } buf = qdf_nbuf_data(nbuf); memset(buf, 0, RX_BUFFER_SIZE); ret = qdf_nbuf_map_single(soc->osdev, nbuf, QDF_DMA_BIDIRECTIONAL); /* nbuf map failed */ if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) { qdf_nbuf_free(nbuf); DP_STATS_INC(pdev, replenish.map_err, 1); continue; } /* qdf_nbuf alloc and map succeeded */ break; } /* qdf_nbuf still alloc or map failed */ if (qdf_unlikely(nbuf_retry_count >= QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD)) return NULL; return nbuf; }