moxart_ether.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590
  1. /* MOXA ART Ethernet (RTL8201CP) driver.
  2. *
  3. * Copyright (C) 2013 Jonas Jensen
  4. *
  5. * Jonas Jensen <[email protected]>
  6. *
  7. * Based on code from
  8. * Moxa Technology Co., Ltd. <www.moxa.com>
  9. *
  10. * This file is licensed under the terms of the GNU General Public
  11. * License version 2. This program is licensed "as is" without any
  12. * warranty of any kind, whether express or implied.
  13. */
  14. #include <linux/module.h>
  15. #include <linux/netdevice.h>
  16. #include <linux/etherdevice.h>
  17. #include <linux/skbuff.h>
  18. #include <linux/dma-mapping.h>
  19. #include <linux/ethtool.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/irq.h>
  23. #include <linux/of_address.h>
  24. #include <linux/of_irq.h>
  25. #include <linux/crc32.h>
  26. #include <linux/crc32c.h>
  27. #include <linux/circ_buf.h>
  28. #include "moxart_ether.h"
  29. static inline void moxart_desc_write(u32 data, u32 *desc)
  30. {
  31. *desc = cpu_to_le32(data);
  32. }
  33. static inline u32 moxart_desc_read(u32 *desc)
  34. {
  35. return le32_to_cpu(*desc);
  36. }
  37. static inline void moxart_emac_write(struct net_device *ndev,
  38. unsigned int reg, unsigned long value)
  39. {
  40. struct moxart_mac_priv_t *priv = netdev_priv(ndev);
  41. writel(value, priv->base + reg);
  42. }
  43. static void moxart_update_mac_address(struct net_device *ndev)
  44. {
  45. moxart_emac_write(ndev, REG_MAC_MS_ADDRESS,
  46. ((ndev->dev_addr[0] << 8) | (ndev->dev_addr[1])));
  47. moxart_emac_write(ndev, REG_MAC_MS_ADDRESS + 4,
  48. ((ndev->dev_addr[2] << 24) |
  49. (ndev->dev_addr[3] << 16) |
  50. (ndev->dev_addr[4] << 8) |
  51. (ndev->dev_addr[5])));
  52. }
  53. static int moxart_set_mac_address(struct net_device *ndev, void *addr)
  54. {
  55. struct sockaddr *address = addr;
  56. if (!is_valid_ether_addr(address->sa_data))
  57. return -EADDRNOTAVAIL;
  58. memcpy(ndev->dev_addr, address->sa_data, ndev->addr_len);
  59. moxart_update_mac_address(ndev);
  60. return 0;
  61. }
  62. static void moxart_mac_free_memory(struct net_device *ndev)
  63. {
  64. struct moxart_mac_priv_t *priv = netdev_priv(ndev);
  65. int i;
  66. for (i = 0; i < RX_DESC_NUM; i++)
  67. dma_unmap_single(&priv->pdev->dev, priv->rx_mapping[i],
  68. priv->rx_buf_size, DMA_FROM_DEVICE);
  69. if (priv->tx_desc_base)
  70. dma_free_coherent(&priv->pdev->dev,
  71. TX_REG_DESC_SIZE * TX_DESC_NUM,
  72. priv->tx_desc_base, priv->tx_base);
  73. if (priv->rx_desc_base)
  74. dma_free_coherent(&priv->pdev->dev,
  75. RX_REG_DESC_SIZE * RX_DESC_NUM,
  76. priv->rx_desc_base, priv->rx_base);
  77. kfree(priv->tx_buf_base);
  78. kfree(priv->rx_buf_base);
  79. }
  80. static void moxart_mac_reset(struct net_device *ndev)
  81. {
  82. struct moxart_mac_priv_t *priv = netdev_priv(ndev);
  83. writel(SW_RST, priv->base + REG_MAC_CTRL);
  84. while (readl(priv->base + REG_MAC_CTRL) & SW_RST)
  85. mdelay(10);
  86. writel(0, priv->base + REG_INTERRUPT_MASK);
  87. priv->reg_maccr = RX_BROADPKT | FULLDUP | CRC_APD | RX_FTL;
  88. }
  89. static void moxart_mac_enable(struct net_device *ndev)
  90. {
  91. struct moxart_mac_priv_t *priv = netdev_priv(ndev);
  92. writel(0x00001010, priv->base + REG_INT_TIMER_CTRL);
  93. writel(0x00000001, priv->base + REG_APOLL_TIMER_CTRL);
  94. writel(0x00000390, priv->base + REG_DMA_BLEN_CTRL);
  95. priv->reg_imr |= (RPKT_FINISH_M | XPKT_FINISH_M);
  96. writel(priv->reg_imr, priv->base + REG_INTERRUPT_MASK);
  97. priv->reg_maccr |= (RCV_EN | XMT_EN | RDMA_EN | XDMA_EN);
  98. writel(priv->reg_maccr, priv->base + REG_MAC_CTRL);
  99. }
  100. static void moxart_mac_setup_desc_ring(struct net_device *ndev)
  101. {
  102. struct moxart_mac_priv_t *priv = netdev_priv(ndev);
  103. void *desc;
  104. int i;
  105. for (i = 0; i < TX_DESC_NUM; i++) {
  106. desc = priv->tx_desc_base + i * TX_REG_DESC_SIZE;
  107. memset(desc, 0, TX_REG_DESC_SIZE);
  108. priv->tx_buf[i] = priv->tx_buf_base + priv->tx_buf_size * i;
  109. }
  110. moxart_desc_write(TX_DESC1_END, desc + TX_REG_OFFSET_DESC1);
  111. priv->tx_head = 0;
  112. priv->tx_tail = 0;
  113. for (i = 0; i < RX_DESC_NUM; i++) {
  114. desc = priv->rx_desc_base + i * RX_REG_DESC_SIZE;
  115. memset(desc, 0, RX_REG_DESC_SIZE);
  116. moxart_desc_write(RX_DESC0_DMA_OWN, desc + RX_REG_OFFSET_DESC0);
  117. moxart_desc_write(RX_BUF_SIZE & RX_DESC1_BUF_SIZE_MASK,
  118. desc + RX_REG_OFFSET_DESC1);
  119. priv->rx_buf[i] = priv->rx_buf_base + priv->rx_buf_size * i;
  120. priv->rx_mapping[i] = dma_map_single(&priv->pdev->dev,
  121. priv->rx_buf[i],
  122. priv->rx_buf_size,
  123. DMA_FROM_DEVICE);
  124. if (dma_mapping_error(&priv->pdev->dev, priv->rx_mapping[i]))
  125. netdev_err(ndev, "DMA mapping error\n");
  126. moxart_desc_write(priv->rx_mapping[i],
  127. desc + RX_REG_OFFSET_DESC2 + RX_DESC2_ADDRESS_PHYS);
  128. moxart_desc_write((uintptr_t)priv->rx_buf[i],
  129. desc + RX_REG_OFFSET_DESC2 + RX_DESC2_ADDRESS_VIRT);
  130. }
  131. moxart_desc_write(RX_DESC1_END, desc + RX_REG_OFFSET_DESC1);
  132. priv->rx_head = 0;
  133. /* reset the MAC controller TX/RX descriptor base address */
  134. writel(priv->tx_base, priv->base + REG_TXR_BASE_ADDRESS);
  135. writel(priv->rx_base, priv->base + REG_RXR_BASE_ADDRESS);
  136. }
  137. static int moxart_mac_open(struct net_device *ndev)
  138. {
  139. struct moxart_mac_priv_t *priv = netdev_priv(ndev);
  140. if (!is_valid_ether_addr(ndev->dev_addr))
  141. return -EADDRNOTAVAIL;
  142. napi_enable(&priv->napi);
  143. moxart_mac_reset(ndev);
  144. moxart_update_mac_address(ndev);
  145. moxart_mac_setup_desc_ring(ndev);
  146. moxart_mac_enable(ndev);
  147. netif_start_queue(ndev);
  148. netdev_dbg(ndev, "%s: IMR=0x%x, MACCR=0x%x\n",
  149. __func__, readl(priv->base + REG_INTERRUPT_MASK),
  150. readl(priv->base + REG_MAC_CTRL));
  151. return 0;
  152. }
  153. static int moxart_mac_stop(struct net_device *ndev)
  154. {
  155. struct moxart_mac_priv_t *priv = netdev_priv(ndev);
  156. napi_disable(&priv->napi);
  157. netif_stop_queue(ndev);
  158. /* disable all interrupts */
  159. writel(0, priv->base + REG_INTERRUPT_MASK);
  160. /* disable all functions */
  161. writel(0, priv->base + REG_MAC_CTRL);
  162. return 0;
  163. }
  164. static int moxart_rx_poll(struct napi_struct *napi, int budget)
  165. {
  166. struct moxart_mac_priv_t *priv = container_of(napi,
  167. struct moxart_mac_priv_t,
  168. napi);
  169. struct net_device *ndev = priv->ndev;
  170. struct sk_buff *skb;
  171. void *desc;
  172. unsigned int desc0, len;
  173. int rx_head = priv->rx_head;
  174. int rx = 0;
  175. while (rx < budget) {
  176. desc = priv->rx_desc_base + (RX_REG_DESC_SIZE * rx_head);
  177. desc0 = moxart_desc_read(desc + RX_REG_OFFSET_DESC0);
  178. rmb(); /* ensure desc0 is up to date */
  179. if (desc0 & RX_DESC0_DMA_OWN)
  180. break;
  181. if (desc0 & (RX_DESC0_ERR | RX_DESC0_CRC_ERR | RX_DESC0_FTL |
  182. RX_DESC0_RUNT | RX_DESC0_ODD_NB)) {
  183. net_dbg_ratelimited("packet error\n");
  184. ndev->stats.rx_dropped++;
  185. ndev->stats.rx_errors++;
  186. goto rx_next;
  187. }
  188. len = desc0 & RX_DESC0_FRAME_LEN_MASK;
  189. if (len > RX_BUF_SIZE)
  190. len = RX_BUF_SIZE;
  191. dma_sync_single_for_cpu(&priv->pdev->dev,
  192. priv->rx_mapping[rx_head],
  193. priv->rx_buf_size, DMA_FROM_DEVICE);
  194. skb = netdev_alloc_skb_ip_align(ndev, len);
  195. if (unlikely(!skb)) {
  196. net_dbg_ratelimited("netdev_alloc_skb_ip_align failed\n");
  197. ndev->stats.rx_dropped++;
  198. ndev->stats.rx_errors++;
  199. goto rx_next;
  200. }
  201. memcpy(skb->data, priv->rx_buf[rx_head], len);
  202. skb_put(skb, len);
  203. skb->protocol = eth_type_trans(skb, ndev);
  204. napi_gro_receive(&priv->napi, skb);
  205. rx++;
  206. ndev->stats.rx_packets++;
  207. ndev->stats.rx_bytes += len;
  208. if (desc0 & RX_DESC0_MULTICAST)
  209. ndev->stats.multicast++;
  210. rx_next:
  211. wmb(); /* prevent setting ownership back too early */
  212. moxart_desc_write(RX_DESC0_DMA_OWN, desc + RX_REG_OFFSET_DESC0);
  213. rx_head = RX_NEXT(rx_head);
  214. priv->rx_head = rx_head;
  215. }
  216. if (rx < budget)
  217. napi_complete_done(napi, rx);
  218. priv->reg_imr |= RPKT_FINISH_M;
  219. writel(priv->reg_imr, priv->base + REG_INTERRUPT_MASK);
  220. return rx;
  221. }
  222. static int moxart_tx_queue_space(struct net_device *ndev)
  223. {
  224. struct moxart_mac_priv_t *priv = netdev_priv(ndev);
  225. return CIRC_SPACE(priv->tx_head, priv->tx_tail, TX_DESC_NUM);
  226. }
  227. static void moxart_tx_finished(struct net_device *ndev)
  228. {
  229. struct moxart_mac_priv_t *priv = netdev_priv(ndev);
  230. unsigned int tx_head = priv->tx_head;
  231. unsigned int tx_tail = priv->tx_tail;
  232. while (tx_tail != tx_head) {
  233. dma_unmap_single(&priv->pdev->dev, priv->tx_mapping[tx_tail],
  234. priv->tx_len[tx_tail], DMA_TO_DEVICE);
  235. ndev->stats.tx_packets++;
  236. ndev->stats.tx_bytes += priv->tx_skb[tx_tail]->len;
  237. dev_consume_skb_irq(priv->tx_skb[tx_tail]);
  238. priv->tx_skb[tx_tail] = NULL;
  239. tx_tail = TX_NEXT(tx_tail);
  240. }
  241. priv->tx_tail = tx_tail;
  242. if (netif_queue_stopped(ndev) &&
  243. moxart_tx_queue_space(ndev) >= TX_WAKE_THRESHOLD)
  244. netif_wake_queue(ndev);
  245. }
  246. static irqreturn_t moxart_mac_interrupt(int irq, void *dev_id)
  247. {
  248. struct net_device *ndev = (struct net_device *)dev_id;
  249. struct moxart_mac_priv_t *priv = netdev_priv(ndev);
  250. unsigned int ists = readl(priv->base + REG_INTERRUPT_STATUS);
  251. if (ists & XPKT_OK_INT_STS)
  252. moxart_tx_finished(ndev);
  253. if (ists & RPKT_FINISH) {
  254. if (napi_schedule_prep(&priv->napi)) {
  255. priv->reg_imr &= ~RPKT_FINISH_M;
  256. writel(priv->reg_imr, priv->base + REG_INTERRUPT_MASK);
  257. __napi_schedule(&priv->napi);
  258. }
  259. }
  260. return IRQ_HANDLED;
  261. }
  262. static netdev_tx_t moxart_mac_start_xmit(struct sk_buff *skb,
  263. struct net_device *ndev)
  264. {
  265. struct moxart_mac_priv_t *priv = netdev_priv(ndev);
  266. void *desc;
  267. unsigned int len;
  268. unsigned int tx_head;
  269. u32 txdes1;
  270. netdev_tx_t ret = NETDEV_TX_BUSY;
  271. spin_lock_irq(&priv->txlock);
  272. tx_head = priv->tx_head;
  273. desc = priv->tx_desc_base + (TX_REG_DESC_SIZE * tx_head);
  274. if (moxart_tx_queue_space(ndev) == 1)
  275. netif_stop_queue(ndev);
  276. if (moxart_desc_read(desc + TX_REG_OFFSET_DESC0) & TX_DESC0_DMA_OWN) {
  277. net_dbg_ratelimited("no TX space for packet\n");
  278. ndev->stats.tx_dropped++;
  279. goto out_unlock;
  280. }
  281. rmb(); /* ensure data is only read that had TX_DESC0_DMA_OWN cleared */
  282. len = skb->len > TX_BUF_SIZE ? TX_BUF_SIZE : skb->len;
  283. priv->tx_mapping[tx_head] = dma_map_single(&priv->pdev->dev, skb->data,
  284. len, DMA_TO_DEVICE);
  285. if (dma_mapping_error(&priv->pdev->dev, priv->tx_mapping[tx_head])) {
  286. netdev_err(ndev, "DMA mapping error\n");
  287. goto out_unlock;
  288. }
  289. priv->tx_len[tx_head] = len;
  290. priv->tx_skb[tx_head] = skb;
  291. moxart_desc_write(priv->tx_mapping[tx_head],
  292. desc + TX_REG_OFFSET_DESC2 + TX_DESC2_ADDRESS_PHYS);
  293. moxart_desc_write((uintptr_t)skb->data,
  294. desc + TX_REG_OFFSET_DESC2 + TX_DESC2_ADDRESS_VIRT);
  295. if (skb->len < ETH_ZLEN) {
  296. memset(&skb->data[skb->len],
  297. 0, ETH_ZLEN - skb->len);
  298. len = ETH_ZLEN;
  299. }
  300. dma_sync_single_for_device(&priv->pdev->dev, priv->tx_mapping[tx_head],
  301. priv->tx_buf_size, DMA_TO_DEVICE);
  302. txdes1 = TX_DESC1_LTS | TX_DESC1_FTS | (len & TX_DESC1_BUF_SIZE_MASK);
  303. if (tx_head == TX_DESC_NUM_MASK)
  304. txdes1 |= TX_DESC1_END;
  305. moxart_desc_write(txdes1, desc + TX_REG_OFFSET_DESC1);
  306. wmb(); /* flush descriptor before transferring ownership */
  307. moxart_desc_write(TX_DESC0_DMA_OWN, desc + TX_REG_OFFSET_DESC0);
  308. /* start to send packet */
  309. writel(0xffffffff, priv->base + REG_TX_POLL_DEMAND);
  310. priv->tx_head = TX_NEXT(tx_head);
  311. netif_trans_update(ndev);
  312. ret = NETDEV_TX_OK;
  313. out_unlock:
  314. spin_unlock_irq(&priv->txlock);
  315. return ret;
  316. }
  317. static void moxart_mac_setmulticast(struct net_device *ndev)
  318. {
  319. struct moxart_mac_priv_t *priv = netdev_priv(ndev);
  320. struct netdev_hw_addr *ha;
  321. int crc_val;
  322. netdev_for_each_mc_addr(ha, ndev) {
  323. crc_val = crc32_le(~0, ha->addr, ETH_ALEN);
  324. crc_val = (crc_val >> 26) & 0x3f;
  325. if (crc_val >= 32) {
  326. writel(readl(priv->base + REG_MCAST_HASH_TABLE1) |
  327. (1UL << (crc_val - 32)),
  328. priv->base + REG_MCAST_HASH_TABLE1);
  329. } else {
  330. writel(readl(priv->base + REG_MCAST_HASH_TABLE0) |
  331. (1UL << crc_val),
  332. priv->base + REG_MCAST_HASH_TABLE0);
  333. }
  334. }
  335. }
  336. static void moxart_mac_set_rx_mode(struct net_device *ndev)
  337. {
  338. struct moxart_mac_priv_t *priv = netdev_priv(ndev);
  339. spin_lock_irq(&priv->txlock);
  340. (ndev->flags & IFF_PROMISC) ? (priv->reg_maccr |= RCV_ALL) :
  341. (priv->reg_maccr &= ~RCV_ALL);
  342. (ndev->flags & IFF_ALLMULTI) ? (priv->reg_maccr |= RX_MULTIPKT) :
  343. (priv->reg_maccr &= ~RX_MULTIPKT);
  344. if ((ndev->flags & IFF_MULTICAST) && netdev_mc_count(ndev)) {
  345. priv->reg_maccr |= HT_MULTI_EN;
  346. moxart_mac_setmulticast(ndev);
  347. } else {
  348. priv->reg_maccr &= ~HT_MULTI_EN;
  349. }
  350. writel(priv->reg_maccr, priv->base + REG_MAC_CTRL);
  351. spin_unlock_irq(&priv->txlock);
  352. }
  353. static const struct net_device_ops moxart_netdev_ops = {
  354. .ndo_open = moxart_mac_open,
  355. .ndo_stop = moxart_mac_stop,
  356. .ndo_start_xmit = moxart_mac_start_xmit,
  357. .ndo_set_rx_mode = moxart_mac_set_rx_mode,
  358. .ndo_set_mac_address = moxart_set_mac_address,
  359. .ndo_validate_addr = eth_validate_addr,
  360. };
  361. static int moxart_mac_probe(struct platform_device *pdev)
  362. {
  363. struct device *p_dev = &pdev->dev;
  364. struct device_node *node = p_dev->of_node;
  365. struct net_device *ndev;
  366. struct moxart_mac_priv_t *priv;
  367. struct resource *res;
  368. unsigned int irq;
  369. int ret;
  370. ndev = alloc_etherdev(sizeof(struct moxart_mac_priv_t));
  371. if (!ndev)
  372. return -ENOMEM;
  373. irq = irq_of_parse_and_map(node, 0);
  374. if (irq <= 0) {
  375. netdev_err(ndev, "irq_of_parse_and_map failed\n");
  376. ret = -EINVAL;
  377. goto irq_map_fail;
  378. }
  379. priv = netdev_priv(ndev);
  380. priv->ndev = ndev;
  381. priv->pdev = pdev;
  382. priv->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
  383. if (IS_ERR(priv->base)) {
  384. dev_err(p_dev, "devm_ioremap_resource failed\n");
  385. ret = PTR_ERR(priv->base);
  386. goto init_fail;
  387. }
  388. ndev->base_addr = res->start;
  389. spin_lock_init(&priv->txlock);
  390. priv->tx_buf_size = TX_BUF_SIZE;
  391. priv->rx_buf_size = RX_BUF_SIZE;
  392. priv->tx_desc_base = dma_alloc_coherent(p_dev, TX_REG_DESC_SIZE *
  393. TX_DESC_NUM, &priv->tx_base,
  394. GFP_DMA | GFP_KERNEL);
  395. if (!priv->tx_desc_base) {
  396. ret = -ENOMEM;
  397. goto init_fail;
  398. }
  399. priv->rx_desc_base = dma_alloc_coherent(p_dev, RX_REG_DESC_SIZE *
  400. RX_DESC_NUM, &priv->rx_base,
  401. GFP_DMA | GFP_KERNEL);
  402. if (!priv->rx_desc_base) {
  403. ret = -ENOMEM;
  404. goto init_fail;
  405. }
  406. priv->tx_buf_base = kmalloc_array(priv->tx_buf_size, TX_DESC_NUM,
  407. GFP_ATOMIC);
  408. if (!priv->tx_buf_base) {
  409. ret = -ENOMEM;
  410. goto init_fail;
  411. }
  412. priv->rx_buf_base = kmalloc_array(priv->rx_buf_size, RX_DESC_NUM,
  413. GFP_ATOMIC);
  414. if (!priv->rx_buf_base) {
  415. ret = -ENOMEM;
  416. goto init_fail;
  417. }
  418. platform_set_drvdata(pdev, ndev);
  419. ret = devm_request_irq(p_dev, irq, moxart_mac_interrupt, 0,
  420. pdev->name, ndev);
  421. if (ret) {
  422. netdev_err(ndev, "devm_request_irq failed\n");
  423. goto init_fail;
  424. }
  425. ndev->netdev_ops = &moxart_netdev_ops;
  426. netif_napi_add(ndev, &priv->napi, moxart_rx_poll, RX_DESC_NUM);
  427. ndev->priv_flags |= IFF_UNICAST_FLT;
  428. ndev->irq = irq;
  429. SET_NETDEV_DEV(ndev, &pdev->dev);
  430. ret = register_netdev(ndev);
  431. if (ret)
  432. goto init_fail;
  433. netdev_dbg(ndev, "%s: IRQ=%d address=%pM\n",
  434. __func__, ndev->irq, ndev->dev_addr);
  435. return 0;
  436. init_fail:
  437. netdev_err(ndev, "init failed\n");
  438. moxart_mac_free_memory(ndev);
  439. irq_map_fail:
  440. free_netdev(ndev);
  441. return ret;
  442. }
  443. static int moxart_remove(struct platform_device *pdev)
  444. {
  445. struct net_device *ndev = platform_get_drvdata(pdev);
  446. unregister_netdev(ndev);
  447. devm_free_irq(&pdev->dev, ndev->irq, ndev);
  448. moxart_mac_free_memory(ndev);
  449. free_netdev(ndev);
  450. return 0;
  451. }
  452. static const struct of_device_id moxart_mac_match[] = {
  453. { .compatible = "moxa,moxart-mac" },
  454. { }
  455. };
  456. MODULE_DEVICE_TABLE(of, moxart_mac_match);
  457. static struct platform_driver moxart_mac_driver = {
  458. .probe = moxart_mac_probe,
  459. .remove = moxart_remove,
  460. .driver = {
  461. .name = "moxart-ethernet",
  462. .of_match_table = moxart_mac_match,
  463. },
  464. };
  465. module_platform_driver(moxart_mac_driver);
  466. MODULE_DESCRIPTION("MOXART RTL8201CP Ethernet driver");
  467. MODULE_LICENSE("GPL v2");
  468. MODULE_AUTHOR("Jonas Jensen <[email protected]>");