Updates for 4.14.. I have some further patches from Jordan to add
multiple priority levels and pre-emption, but those will probably be
for 4.15 to give me time for the mesa parts.
* tag 'drm-msm-next-2017-08-22' of git://people.freedesktop.org/~robclark/linux:
drm/msm/mdp5: mark runtime_pm functions as __maybe_unused
drm/msm: remove unused variable
drm/msm/mdp5: make helper function static
drm/msm: make msm_framebuffer_init() static
drm/msm: add helper to allocate stolen fb
drm/msm: don't track fbdev's gem object separately
drm/msm: add modeset module param
drm/msm/mdp5: add tracking for clk enable-count
drm/msm: remove unused define
drm/msm: Add a helper function for in-kernel buffer allocations
drm/msm: Attach the GPU MMU when it is created
drm/msm: Add A5XX hardware fault detection
drm/msm: Remove uneeded platform dev members
drm/msm/mdp5: Set up runtime PM for MDSS
drm/msm/mdp5: Write to SMP registers even if allocations don't change
drm/msm/mdp5: Don't use mode_set helper funcs for encoders and CRTCs
drm/msm/dsi: Implement RPM suspend/resume callbacks
drm/msm/dsi: Set up runtime PM for DSI
drm/msm/hdmi: Set up runtime PM for HDMI
drm/msm/mdp5: Use runtime PM get/put API instead of toggling clocks
When CONFIG_PM is disabled, we get harmless warnings about unused
functions:
drivers/gpu/drm/msm/mdp/mdp5/mdp5_kms.c:1025:12: error: 'mdp5_runtime_resume' defined but not used [-Werror=unused-function]
static int mdp5_runtime_resume(struct device *dev)
^~~~~~~~~~~~~~~~~~~
drivers/gpu/drm/msm/mdp/mdp5/mdp5_kms.c:1015:12: error: 'mdp5_runtime_suspend' defined but not used [-Werror=unused-function]
static int mdp5_runtime_suspend(struct device *dev)
^~~~~~~~~~~~~~~~~~~~
This marks both functions as __maybe_unused so the compiler
can drop them silently.
Fixes: d68fe15b18 ("drm/msm/mdp5: Use runtime PM get/put API instead of toggling clocks")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Rob Clark <robdclark@gmail.com>
Accessing registers for an unclocked block is an insta-reboot on
snapdragon devices. So add a bit of logic to track the enable_count so
we can WARN_ON() unclocked register writes. This makes it much easier
to track down mistakes.
Signed-off-by: Rob Clark <robdclark@gmail.com>
MDSS represents the top level wrapper that contains MDP5, DSI, HDMI and
other sub-blocks. W.r.t device heirarchy, it's the parent of all these
devices. The power domain of this device is actually tied to the GDSC
hw. When any sub-device enables its PD, MDSS's PD is also enabled.
The suspend/resume ops enable the top level clocks that end at the MDSS
boundary. For now, we're letting them all be optional, since the child
devices anyway hold a ref to these clocks.
Until now, we'd called a runtime_get() during probe, which ensured that
the GDSC was always on. Now that we've set up runtime PM for the children
devices, we can get rid of this hack.
Note: that the MDSS device is the platform_device in msm_drv.c. The
msm_runtime_suspend/resume ops call the funcs that enable/disable
the top level MDSS clocks. This is different from MDP4, where the
platform device created in msm_drv.c represents MDP4 itself. It would
have been nicer to hide these differences by adding new kms funcs, but
runtime PM needs to be enabled before kms is set up (i.e, msm_kms_init
is called).
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
Requests for assigning/freeing SMP blocks by planes are collected during
the atomic check phase, and represented by mdp5_smp_state's 'assigned'
and 'released' members.
Once the atomic state is committed, these members are reset to 0,
indicating that the existing configuration satisfies all the planes.
Future atomic commits will copy the old mdp5_smp_state, and the 'assigned'
and 'released' members would be updated only if there was a change in
the plane configurations.
When we disable and re-enable display, we lose the values we wrote to the
SMP registers, but the code doesn't program the registers because there
isn't any change in mdp5_smp_state.
Fix this by writing to the registers irrespective of whether there was
a change in SMP state or not. We do this by keeping a cache of the
register values, and write them every time we commit a state.
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
We shouldn't use use mode_set/mode_set_nofb helpers when we use runtime
PM. The registers configured in these funcs lose their state when we
eventually enable the display pipeline.
Do not implement these vfuncs in the helpers, and call them in the
crtc_enable/encoder_enable paths instead.
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
mdp5_enable/disable calls are scattered all around in the MDP5 code.
Use the pm_runtime_get/put calls here instead, and populate the
runtime PM suspend/resume ops to manage the clocks.
About the overall design: MDP5 is a child of the top level MDSS
device. MDSS is also the parent to DSI, HDMI and other interfaces. When
we enable MDP5's power domain, we end up enabling MDSS's PD too. It is
only MDSS's PD that actually controlls the GDSC HW. Therefore, calling
runtime_get/put on the MDP5 device is like just requesting a vote to
enable/disable the GDSC.
Functionally, replacing the clock enable/disable calls with the RPM API
can result in the power domain (GDSC) state being toggled if no other
child isn't powered on. This can result in the register context being lost.
We make sure (in future commits) that code paths don't end up configuring
registers and then later lose state, resulting in a bad HW state.
For now, we've replaced each mdp5_enable/disable with runtime_get/put API.
We could optimize things later by removing runtime_get/put calls which
don't really need to be there. This could prevent unnecessary toggling of
the power domain and clocks.
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
We have upstream bindings (msm8916) that have the "_clk" suffix in the
clock names. The downstream bindings also require it.
We want to drop the "_clk" suffix and at the same time support existing
bindings. Update the MDP5 code with the the msm_clk_get() helper to
support both old and new clock names.
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
The mdp5_cmd_encoder_disable is accidentally called in the encoder enable
path. We've not seen any problems since we haven't tested with command
mode panels in a while. Fix the copy-paste error.
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
Following compilation warnings were observed for these files:
CC [M] drivers/gpu/drm/msm/mdp/mdp5/mdp5_mdss.o
drivers/gpu/drm/msm/mdp/mdp5/mdp5_crtc.c: In function 'blend_setup':
drivers/gpu/drm/msm/mdp/mdp5/mdp5_crtc.c:223:7: warning: missing braces around initializer [-Wmissing-braces]
enum mdp5_pipe stage[STAGE_MAX + 1][MAX_PIPE_STAGE] = { SSPP_NONE };
^
drivers/gpu/drm/msm/mdp/mdp5/mdp5_crtc.c:223:7: warning: (near initialization for 'stage[0]') [-Wmissing-braces]
drivers/gpu/drm/msm/mdp/mdp5/mdp5_crtc.c:224:7: warning: missing braces around initializer [-Wmissing-braces]
enum mdp5_pipe r_stage[STAGE_MAX + 1][MAX_PIPE_STAGE] = { SSPP_NONE };
^
drivers/gpu/drm/msm/mdp/mdp5/mdp5_crtc.c:224:7: warning: (near initialization for 'r_stage[0]') [-Wmissing-braces]
drivers/gpu/drm/msm/mdp/mdp5/mdp5_plane.c: In function 'mdp5_plane_mode_set':
drivers/gpu/drm/msm/mdp/mdp5/mdp5_plane.c:892:9: warning: missing braces around initializer [-Wmissing-braces]
struct phase_step step = { 0 };
^
drivers/gpu/drm/msm/mdp/mdp5/mdp5_plane.c:892:9: warning: (near initialization for 'step.x') [-Wmissing-braces]
drivers/gpu/drm/msm/mdp/mdp5/mdp5_plane.c:893:9: warning: missing braces around initializer [-Wmissing-braces]
struct pixel_ext pe = { 0 };
^
drivers/gpu/drm/msm/mdp/mdp5/mdp5_plane.c:893:9: warning: (near initialization for 'pe.left') [-Wmissing-braces]
This happens because in the first case we were initializing a two
dimensional array with {0} and in the second case we were initializing a
struct containing two arrays with {0}.
Fix them by adding another pair of {}.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
This is the plumbing for supporting fb modifiers on planes. Modifiers
have already been introduced to some extent, but this series will extend
this to allow querying modifiers per plane. Based on this, the client to
enable optimal modifications for framebuffers.
This patch simply allows the DRM drivers to initialize their list of
supported modifiers upon initializing the plane.
v2: A minor addition from Daniel
v3:
* Updated commit message
* s/INVALID/DRM_FORMAT_MOD_INVALID (Liviu)
* Remove some excess newlines (Liviu)
* Update comment for > 64 modifiers (Liviu)
v4: Minor comment adjustments (Liviu)
v5: Some new platforms added due to rebase
v6: Add some missed plane inits (or maybe they're new - who knows at
this point) (Daniel)
Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
Reviewed-by: Daniel Stone <daniels@collabora.com> (v2)
Reviewed-by: Liviu Dudau <Liviu.Dudau@arm.com>
Signed-off-by: Daniel Stone <daniels@collabora.com>
Now that the msm_gem supports an arbitrary number of vma's, we no longer
need to assign an id (index) to each address space. So rip out the
associated code.
Signed-off-by: Rob Clark <robdclark@gmail.com>
No functional change, that will come later. But this will make it
easier to deal with dynamically created address spaces (ie. per-
process pagetables for gpu).
Signed-off-by: Rob Clark <robdclark@gmail.com>
Before we can shift to passing the address-space object to _get_iova(),
we need to fix a few places (dsi+fbdev) that were hard-coding the adress
space id. That gets somewhat easier if we just move these to the kms
base class.
Prep work for next patch.
Signed-off-by: Rob Clark <robdclark@gmail.com>
It serves no purpose, things should be sufficiently synchronized already
by atomic framework. And it is somewhat awkward to be holding a spinlock
when msm_gem_iova() is going to start needing to grab a mutex.
Signed-off-by: Rob Clark <robdclark@gmail.com>
struct irq_domain_ops is not modified, so it can be made const.
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: Rob Clark <robdclark@gmail.com>
Add DRM_MODE_ROTATE_ and DRM_MODE_REFLECT_ defines to the UAPI
as a convenience.
Ideally the DRM_ROTATE_ and DRM_REFLECT_ property ids are looked up
through the atomic API, but realizing that userspace is likely to take
shortcuts and assume that the enum values are what is sent over the
wire.
As a result these defines are provided purely as a convenience to
userspace applications.
Changes since v3:
- Switched away from past tense in comments
- Add define name change to previously mis-spelled DRM_REFLECT_X comment
- Improved the comment for the DRM_MODE_REFLECT_<axis> comment
Changes since v2:
- Changed define prefix from DRM_MODE_PROP_ to DRM_MODE_
- Fix compilation errors
- Changed comment formatting
- Deduplicated comment lines
- Clarified DRM_MODE_PROP_REFLECT_ comment
Changes since v1:
- Moved defines from drm.h to drm_mode.h
- Changed define prefix from DRM_ to DRM_MODE_PROP_
- Updated uses of the defines to the new prefix
- Removed include from drm_rect.c
- Stopped using the BIT() macro
Signed-off-by: Robert Foss <robert.foss@collabora.com>
Reviewed-by: Emil Velikov <emil.velikov@collabora.com>
Reviewed-by: Sinclair Yeh <syeh@vmware.com>
Acked-by: Liviu Dudau <Liviu.Dudau@arm.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: http://patchwork.freedesktop.org/patch/msgid/20170519205017.23307-2-robert.foss@collabora.com
If we restrict this helper to only kms drivers (which is the case) we
can look up the correct mode easily ourselves. But it's a bit tricky:
- All legacy drivers look at crtc->hwmode. But that is updated already
at the beginning of the modeset helper, which means when we disable
a pipe. Hence the final timestamps might be a bit off. But since
this is an existing bug I'm not going to change it, but just try to
be bug-for-bug compatible with the current code. This only applies
to radeon&amdgpu.
- i915 tries to get it perfect by updating crtc->hwmode when the pipe
is off (i.e. vblank->enabled = false).
- All other atomic drivers look at crtc->state->adjusted_mode. Those
that look at state->requested_mode simply don't adjust their mode,
so it's the same. That has two problems: Accessing crtc->state from
interrupt handling code is unsafe, and it's updated before we shut
down the pipe. For nonblocking modesets it's even worse.
For atomic drivers try to implement what i915 does. To do that we add
a new hwmode field to the vblank structure, and update it from
drm_calc_timestamping_constants(). For atomic drivers that's called
from the right spot by the helper library already, so all fine. But
for safety let's enforce that.
For legacy driver this function is only called at the end (oh the
fun), which is broken, so again let's not bother and just stay
bug-for-bug compatible.
The benefit is that we can use drm_calc_vbltimestamp_from_scanoutpos
directly to implement ->get_vblank_timestamp in every driver, deleting
a lot of code.
v2: Completely new approach, trying to mimick the i915 solution.
v3: Fixup kerneldoc.
v4: Drop the WARN_ON to check that the vblank is off, atomic helpers
currently unconditionally call this. Recomputing the same stuff should
be harmless.
v5: Fix typos and move misplaced hunks to the right patches (Neil).
v6: Undo hunk movement (kbuild).
Cc: Mario Kleiner <mario.kleiner@tuebingen.mpg.de>
Cc: Eric Anholt <eric@anholt.net>
Cc: Rob Clark <robdclark@gmail.com>
Cc: linux-arm-msm@vger.kernel.org
Cc: freedreno@lists.freedesktop.org
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Reviewed-by: Neil Armstrong <narmstrong@baylibre.com>
Acked-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/20170509140329.24114-4-daniel.vetter@ffwll.ch
There are reasons for a memory object to outlive the file descriptor
that created it and so the address space that a buffer object is
attached to must also outlive the file descriptor. Reference count
the address space so that it can remain viable until all the objects
have released their addresses.
Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
3D mux is a small block placed after the DSPPs in MDP5. It can merge
2 LM/DSPP outputs and feed it to a single interface.
Enable 3D Mux if our mdp5_pipeline has 2 active LMs. This check
will need to be made more specific later when we add Dual DSI
support with source split enabled. In that use case, each LM feeds to a
separae INTF, so the 3D mux isn't needed.
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
Assigning LMs dynamically to CRTCs results in REG_MDP5_CTL_LAYER_REGs
and REG_MDP5_CTL_LAYER_EXT_REGs maintaining old values for a LM that
isn't used by our CTL instance anymore.
Clear the ctl's CTL_LAYER_REG and CTL_LAYER_EXT_REGs for all LM
instances. The ones that need to be configured are configured later
in this func.
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
Dynamically assign a right mixer to mdp5_crtc_state in the CRTC's
atomic_check path. Assigning the right mixer has some constraints,
i.e, only a few LMs can be paired together. Update mdp5_mixer_assign
to handle these constraints.
Firstly, we need to identify whether we need a right mixer or not.
At the moment, there are 2 scenarios where a right mixer might be
needed:
- If any of the planes connected to this CRTC is too wide (i.e, is
comprised of 2 hwpipes).
- If the CRTC's mode itself is too wide (i.e, a 4K mode on HDMI).
We implement both these checks in the mdp5_crtc_atomic_check(), and
pass 'need_right_mixer' to mdp5_setup_pipeline.
If a CRTC is already assigned a single mixer, and a new atomic commit
brings in a drm_plane that needs 2 hwpipes, we can successfully commit
this mode without requiring a full modeset, provided that we still use
the previously assigned mixer as the left mixer. If such an assignment
isn't possible, we'd need to do a full modeset. This scenario has been
ignored for now.
The mixer assignment code is a bit messy, considering we have at most
4 LM instances in hardware. This can probably be re-visited later with
simplified logic.
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
If a CRTC comprises of 2 LMs, it is mandatory to enable border out
and assign it to the base stage.
We had to enable border out also when the base plane wasn't fullscreen.
Club these checks and put them in a separate function called
get_start_stage() that returns the starting stage for assigning planes.
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
Now that our mdp5_planes can consist of 2 hwpipes, update the
blend_setup() code to stage the right hwpipe to the left and
right LMs
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
In order to enable Source Split in HW, we need to add/modify
a few LM register configurations:
- Configure the LM width to be half the mode width, so that
each LM manages one half of the scanout.
- Tell the 'right' LM that it is configured to be the 'right'
LM in source split mode.
- Since we now have 2 places where REG_MDP5_LM_BLEND_COLOR_OUT is
configured, do a read-update-store for the register instead of
directly writing a value to it.
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
Now that we have a right hwpipe in mdp5_plane_state, configure it
mdp5_plane_mode_set(). The only parameters that vary between the
left and right hwpipes are the src_w, src_img_w, src_x and crtc_x
as we just even chop the fb into left and right halves.
Add a mdp5_plane_right_pipe() which will be used by the crtc code
to set up LM stages.
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
If the drm_plane has a source width that's greater than the max width
supported by a SSPP (2560 pixels on 8x96), then we assign a 'r_hwpipe'
to it in mdp5_plane_atomic_check().
TODO: There are a few scenarios where the hwpipe assignments aren't
recommended by HW. For example, an assignment which results in a
drm_plane to of two different types of hwpipes (say RGB0 on left
and DMA1 on right) is not recommended.
Also, hwpipes have a priority mapping, where the higher priority pipe
needs to be staged on left LM, and the lower priority needs to be
staged on the right LM. For example, the priority order for VIG pipes
in decreasing order of priority is VIG0, VIG1, VIG2, and VIG3. So, VIG0
on left and VIG1 on right is a correct configuration, but VIG1 on left
and VIG0 on right isn't. These scenarios are ignored for now for the
sake of simplicity.
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
Refactor mdp5_plane_mode_set to call mdp5_hwpipe_mode_set. The latter
func takes in only the hwpipe and the parameters that need to be
programmed into the hwpipe registers. All the code that calculates these
parameters is left as is in mdp5_plane_mode_set.
In the future, when we let drm_plane be comprised of 2 hwpipes, this func
allow us to configure each pipe without adding redundant code.
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
Add another mdp5_hw_mixer pointer (r_mixer) in mdp5_crtc_state.
This mixer will be used to generate the right half of the scanout.
With Source Split, a SSPP can now be connected to 2 Layer Mixers, but
has to be at the same blend level (stage #) on both Layer Mixers.
A drm_plane that has a lesser width than the max width supported, will
comprise of a single SSPP/hwpipe, staged on both the Layer Mixers at
the same blend level. A plane that is greater than max width will comprise
of 2 SSPPs, with the 'left' SSPP staged on the left LM, and the 'right'
SSPP staged on the right LM at the same blend level.
For now, the drm_plane consists of only one SSPP, therefore, it
needs to be staged on both the LMs in blend_setup() and mdp5_ctl_blend().
We'll extend this logic to support 2 hwpipes per plane later.
The crtc cursor ops (using the LM cursors, not SSPP cursors) simply
return an error if they're called when the right mixer is assigned to
the CRTC state. With source split is enabled, we're expected to only
SSPP cursors.
This commit adds code that configures the right mixer, but the r_mixer
itself isn't assigned at the moment.
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
Some of the newer MDP5 versions support Source Split of SSPPs. It is a
feature that allows us to route the output of a hwpipe to 2 Layer
Mixers. This is required to achieve the following use cases:
- Dual DSI: For high res DSI panels (such as 2560x1600 etc), a single
DSI interface doesn't have the bandwidth to drive the required pixel
clock. We use 2 DSI interfaces to drive the left and right halves
of the panel (i.e, 1280x1600 each). The MDP5 pipeline here would look
like:
LM0 -- DSPP0 -- INTF1 -- DSI1
/
hwpipe--
\
LM1 -- DSPP1 -- INTF2 -- DSI2
A single hwpipe is used to scan out the left and right halves to DSI1
and DSI2 respectively. In order to do this, we need to configure the
2 Layer Mixers in Source Split mode.
- HDMI 4K: In order to support resolutions with width higher than the
max width supported by a hwpipe, we club 2 hwpipes together:
hwpipe1 --- LM0 -- DSPP0
- - \
- -- 3D Mux -- INTF0 -- HDMI
- - /
hwpipe2 --- LM1 -- DSPP1
hwpipe1 is staged on the 'left' Layer Mixer, and hwpipe2 is staged on
the 'right' Layer Mixer. An additional block called the '3D Mux' is
used to merge the output of the 2 DSPPs to a single interface.
In this use case, it is possible that a 4K surface is downscaled and
placed completely within one of the halves. In order to support such
scenarios (and keep the programming simple), Layer Mixers with Source
Split can be assigned 2 hw pipes per stage. While scanning out, the HW
takes care of fetching the pixels fom the correct pipe.
Add a MDP cap to tell whether the HW supports source split or not.
Add a MDP LM cap that tells whether a LM instance can operate in
source split mode (and generate the 'left' part of the display
output).
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
These are a part of CRTC state, it doesn't feel nice to leave them
hanging in mdp5_ctl struct. Pass mdp5_pipeline pointer instead
wherever it is needed.
We still have some params in mdp5_ctl like start_mask etc which
are derivative of atomic state, and should be rolled back if
a commit fails, but it doesn't seem to cause much trouble.
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
In the last few commits, we've been adding params to mdp5_crtc_state, and
assigning them in the atomic_check() funcs. Now it's time to actually
start using them.
Remove the duplicated params from the mdp5_crtc struct, and start using
them in the mdp5_crtc code. The majority of the references to these params
is in code that executes after the atomic swap has occurred, so it's okay
to use crtc->state in them. There are a couple of legacy LM cursor ops that
may not use the updated state, but (I think) it's okay to live with that.
Now that we dynamically allocate a mixer to the CRTC, we can also remove
the static assignment to it in mdp5_crtc_init, and also drop the code that
skipped init-ing WB bound mixers (those will now be rejected by
mdp5_mixer_assign()).
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
Things like vblank/err irq masks, mode of operation (command mode or not)
are derivative of the interface and mixer state. Therefore, they need to
be a part of the CRTC state too.
Add them to mdp5_crtc_state, and assign them in the CRTC's atomic_check()
func, so that it can be rolled back to a clean state.
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
The INTF and CTL used in a display pipeline are going to be maintained as
a part of the CRTC state (i.e, in mdp5_crtc_state).
These entities, however, are currently statically assigned to drm_encoders
(i.e. mdp5_encoder). Since these aren't directly visible to the CRTC, we
assign them to the CRTC state in the encoder's atomic_check() op.
With this approach, we assign portions of CRTC state in two different
places: the layer mixer in CRTC's atomic_check(), and the INTF and CTL
pieces in the encoder's atomic_check() op.
We'd have more options here if the drm core maintained encoder state too,
but the current approach of clubbing everything in CRTC's state works just
fine.
Unlike hwpipes and mixers, we don't need to keep a track of INTF/CTL
assignments in the global atomic state. This is because they're currently
not sharable resources. For example, INTF0 and CTL0 will always be assigned
to one drm_encoder. This can change later when we implement writeback and
want a CRTC to use a CTL for a while, and then release it for others to use
it. Or, when a drm_encoder can switch between using a single INTF vs
2 INTFs.
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
Add the stuff needed to allow dynamically assigning a mixer to a CRTC.
Since mixers are a resource that can be shared across multiple CRTCs, we
need to maintain a 'hwmixer_to_crtc' map in the global atomic state,
acquire the mdp5_kms.state_lock modeset lock and so on.
The mixer is assigned in the CRTC's atomic_check() func, a failure will
result in the new state being cleanly rolled back.
The mixer assignment itself is straightforward, and almost identical to
what we do for hwpipes. We don't need to grab the old hwmixer_to_crtc
state like we do in hwpipes since we don't need to compare anything
with the old state at the moment.
The only LM capability we care about at the moment is whether the mixer
instance can be used to display stuff (i.e, connect to an INTF
downstream).
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
Subclass drm_crtc_state so that we can maintain additional state for
our CRTCs.
Add mdp5_pipeline and mdp5_ctl pointers in the subclassed state.
mdp5_pipeline is a grouping of the HW entities that forms the downstream
pipeline for a particular CRTC. It currently contains pointers to
mdp5_interface and mdp5_hw_mixer tied to this CRTC. Later, we will
have 2 hwmixers in this struct. (We could also have 2 intfs if we want
to support dual DSI with Source Split enabled. Implementing that feature
isn't planned at the moment).
The mdp5_pipeline state isn't used at the moment. For now, we just
introduce mdp5_crtc_state and the crtc funcs needed to manage the
subclassed state.
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>