e32a291736fc792b96c579e450872158d901b764
75457 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
cfb8173a23 |
regulator: rt5033: Fix n_voltages settings for BUCK and LDO
[ Upstream commit 6549c46af8551b346bcc0b9043f93848319acd5c ] For linear regulators, the n_voltages should be (max - min) / step + 1. Buck voltage from 1v to 3V, per step 100mV, and vout mask is 0x1f. If value is from 20 to 31, the voltage will all be fixed to 3V. And LDO also, just vout range is different from 1.2v to 3v, step is the same. If value is from 18 to 31, the voltage will also be fixed to 3v. Signed-off-by: Axel Lin <axel.lin@ingics.com> Reviewed-by: ChiYuan Huang <cy_huang@richtek.com> Link: https://lore.kernel.org/r/20210627080418.1718127-1-axel.lin@ingics.com Signed-off-by: Mark Brown <broonie@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
![]() |
be561c0154 |
bpf: Fix pointer arithmetic mask tightening under state pruning
commit e042aa532c84d18ff13291d00620502ce7a38dda upstream. In 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask") we narrowed the offset mask for unprivileged pointer arithmetic in order to mitigate a corner case where in the speculative domain it is possible to advance, for example, the map value pointer by up to value_size-1 out-of- bounds in order to leak kernel memory via side-channel to user space. The verifier's state pruning for scalars leaves one corner case open where in the first verification path R_x holds an unknown scalar with an aux->alu_limit of e.g. 7, and in a second verification path that same register R_x, here denoted as R_x', holds an unknown scalar which has tighter bounds and would thus satisfy range_within(R_x, R_x') as well as tnum_in(R_x, R_x') for state pruning, yielding an aux->alu_limit of 3: Given the second path fits the register constraints for pruning, the final generated mask from aux->alu_limit will remain at 7. While technically not wrong for the non-speculative domain, it would however be possible to craft similar cases where the mask would be too wide as in 7fedb63a8307. One way to fix it is to detect the presence of unknown scalar map pointer arithmetic and force a deeper search on unknown scalars to ensure that we do not run into a masking mismatch. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
![]() |
ffb9d5c48b |
bpf: verifier: Allocate idmap scratch in verifier env
commit c9e73e3d2b1eb1ea7ff068e05007eec3bd8ef1c9 upstream. func_states_equal makes a very short lived allocation for idmap, probably because it's too large to fit on the stack. However the function is called quite often, leading to a lot of alloc / free churn. Replace the temporary allocation with dedicated scratch space in struct bpf_verifier_env. Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Edward Cree <ecree.xilinx@gmail.com> Link: https://lore.kernel.org/bpf/20210429134656.122225-4-lmb@cloudflare.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
![]() |
0e9280654a |
bpf: Fix leakage due to insufficient speculative store bypass mitigation
[ Upstream commit 2039f26f3aca5b0e419b98f65dd36481337b86ee ] Spectre v4 gadgets make use of memory disambiguation, which is a set of techniques that execute memory access instructions, that is, loads and stores, out of program order; Intel's optimization manual, section 2.4.4.5: A load instruction micro-op may depend on a preceding store. Many microarchitectures block loads until all preceding store addresses are known. The memory disambiguator predicts which loads will not depend on any previous stores. When the disambiguator predicts that a load does not have such a dependency, the load takes its data from the L1 data cache. Eventually, the prediction is verified. If an actual conflict is detected, the load and all succeeding instructions are re-executed. |
||
![]() |
bea9e2fd18 |
bpf: Introduce BPF nospec instruction for mitigating Spectre v4
[ Upstream commit f5e81d1117501546b7be050c5fbafa6efd2c722c ] In case of JITs, each of the JIT backends compiles the BPF nospec instruction /either/ to a machine instruction which emits a speculation barrier /or/ to /no/ machine instruction in case the underlying architecture is not affected by Speculative Store Bypass or has different mitigations in place already. This covers both x86 and (implicitly) arm64: In case of x86, we use 'lfence' instruction for mitigation. In case of arm64, we rely on the firmware mitigation as controlled via the ssbd kernel parameter. Whenever the mitigation is enabled, it works for all of the kernel code with no need to provide any additional instructions here (hence only comment in arm64 JIT). Other archs can follow as needed. The BPF nospec instruction is specifically targeting Spectre v4 since i) we don't use a serialization barrier for the Spectre v1 case, and ii) mitigation instructions for v1 and v4 might be different on some archs. The BPF nospec is required for a future commit, where the BPF verifier does annotate intermediate BPF programs with speculation barriers. Co-developed-by: Piotr Krysiuk <piotras@gmail.com> Co-developed-by: Benedict Schlueter <benedict.schlueter@rub.de> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Piotr Krysiuk <piotras@gmail.com> Signed-off-by: Benedict Schlueter <benedict.schlueter@rub.de> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
![]() |
1b148bd72e |
skmsg: Make sk_psock_destroy() static
[ Upstream commit 8063e184e49011f6f3f34f6c358dc8a83890bb5b ] sk_psock_destroy() is a RCU callback, I can't see any reason why it could be used outside. Signed-off-by: Cong Wang <cong.wang@bytedance.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: John Fastabend <john.fastabend@gmail.com> Cc: Jakub Sitnicki <jakub@cloudflare.com> Cc: Lorenz Bauer <lmb@cloudflare.com> Link: https://lore.kernel.org/bpf/20210127221501.46866-1-xiyou.wangcong@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
![]() |
076bc6ebce |
bpf: Fix OOB read when printing XDP link fdinfo
[ Upstream commit d6371c76e20d7d3f61b05fd67b596af4d14a8886 ]
We got the following UBSAN report on one of our testing machines:
================================================================================
UBSAN: array-index-out-of-bounds in kernel/bpf/syscall.c:2389:24
index 6 is out of range for type 'char *[6]'
CPU: 43 PID: 930921 Comm: systemd-coredum Tainted: G O 5.10.48-cloudflare-kasan-2021.7.0 #1
Hardware name: <snip>
Call Trace:
dump_stack+0x7d/0xa3
ubsan_epilogue+0x5/0x40
__ubsan_handle_out_of_bounds.cold+0x43/0x48
? seq_printf+0x17d/0x250
bpf_link_show_fdinfo+0x329/0x380
? bpf_map_value_size+0xe0/0xe0
? put_files_struct+0x20/0x2d0
? __kasan_kmalloc.constprop.0+0xc2/0xd0
seq_show+0x3f7/0x540
seq_read_iter+0x3f8/0x1040
seq_read+0x329/0x500
? seq_read_iter+0x1040/0x1040
? __fsnotify_parent+0x80/0x820
? __fsnotify_update_child_dentry_flags+0x380/0x380
vfs_read+0x123/0x460
ksys_read+0xed/0x1c0
? __x64_sys_pwrite64+0x1f0/0x1f0
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
<snip>
================================================================================
================================================================================
UBSAN: object-size-mismatch in kernel/bpf/syscall.c:2384:2
From the report, we can infer that some array access in bpf_link_show_fdinfo at index 6
is out of bounds. The obvious candidate is bpf_link_type_strs[BPF_LINK_TYPE_XDP] with
BPF_LINK_TYPE_XDP == 6. It turns out that BPF_LINK_TYPE_XDP is missing from bpf_types.h
and therefore doesn't have an entry in bpf_link_type_strs:
pos: 0
flags: 02000000
mnt_id: 13
link_type: (null)
link_id: 4
prog_tag: bcf7977d3b93787c
prog_id: 4
ifindex: 1
Fixes:
|
||
![]() |
df34f88862 |
cgroup1: fix leaked context root causing sporadic NULL deref in LTP
commit 1e7107c5ef44431bc1ebbd4c353f1d7c22e5f2ec upstream. Richard reported sporadic (roughly one in 10 or so) null dereferences and other strange behaviour for a set of automated LTP tests. Things like: BUG: kernel NULL pointer dereference, address: 0000000000000008 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 1516 Comm: umount Not tainted 5.10.0-yocto-standard #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-48-gd9c812dda519-prebuilt.qemu.org 04/01/2014 RIP: 0010:kernfs_sop_show_path+0x1b/0x60 ...or these others: RIP: 0010:do_mkdirat+0x6a/0xf0 RIP: 0010:d_alloc_parallel+0x98/0x510 RIP: 0010:do_readlinkat+0x86/0x120 There were other less common instances of some kind of a general scribble but the common theme was mount and cgroup and a dubious dentry triggering the NULL dereference. I was only able to reproduce it under qemu by replicating Richard's setup as closely as possible - I never did get it to happen on bare metal, even while keeping everything else the same. In commit |
||
![]() |
1a25c5738d |
memblock: make for_each_mem_range() traverse MEMBLOCK_HOTPLUG regions
commit 79e482e9c3ae86e849c701c846592e72baddda5a upstream. Commit |
||
![]() |
4a31baf55f |
net: add kcov handle to skb extensions
[ Upstream commit 6370cc3bbd8a0f9bf975b013781243ab147876c6 ] Remote KCOV coverage collection enables coverage-guided fuzzing of the code that is not reachable during normal system call execution. It is especially helpful for fuzzing networking subsystems, where it is common to perform packet handling in separate work queues even for the packets that originated directly from the user space. Enable coverage-guided frame injection by adding kcov remote handle to skb extensions. Default initialization in __alloc_skb and __build_skb_around ensures that no socket buffer that was generated during a system call will be missed. Code that is of interest and that performs packet processing should be annotated with kcov_remote_start()/kcov_remote_stop(). An alternative approach is to determine kcov_handle solely on the basis of the device/interface that received the specific socket buffer. However, in this case it would be impossible to distinguish between packets that originated during normal background network processes or were intentionally injected from the user space. Signed-off-by: Aleksandr Nogikh <nogikh@google.com> Acked-by: Willem de Bruijn <willemb@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
![]() |
a9f36bf361 |
bpf: Track subprog poke descriptors correctly and fix use-after-free
commit f263a81451c12da5a342d90572e317e611846f2c upstream. Subprograms are calling map_poke_track(), but on program release there is no hook to call map_poke_untrack(). However, on program release, the aux memory (and poke descriptor table) is freed even though we still have a reference to it in the element list of the map aux data. When we run map_poke_run(), we then end up accessing free'd memory, triggering KASAN in prog_array_map_poke_run(): [...] [ 402.824689] BUG: KASAN: use-after-free in prog_array_map_poke_run+0xc2/0x34e [ 402.824698] Read of size 4 at addr ffff8881905a7940 by task hubble-fgs/4337 [ 402.824705] CPU: 1 PID: 4337 Comm: hubble-fgs Tainted: G I 5.12.0+ #399 [ 402.824715] Call Trace: [ 402.824719] dump_stack+0x93/0xc2 [ 402.824727] print_address_description.constprop.0+0x1a/0x140 [ 402.824736] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824740] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824744] kasan_report.cold+0x7c/0xd8 [ 402.824752] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824757] prog_array_map_poke_run+0xc2/0x34e [ 402.824765] bpf_fd_array_map_update_elem+0x124/0x1a0 [...] The elements concerned are walked as follows: for (i = 0; i < elem->aux->size_poke_tab; i++) { poke = &elem->aux->poke_tab[i]; [...] The access to size_poke_tab is a 4 byte read, verified by checking offsets in the KASAN dump: [ 402.825004] The buggy address belongs to the object at ffff8881905a7800 which belongs to the cache kmalloc-1k of size 1024 [ 402.825008] The buggy address is located 320 bytes inside of 1024-byte region [ffff8881905a7800, ffff8881905a7c00) The pahole output of bpf_prog_aux: struct bpf_prog_aux { [...] /* --- cacheline 5 boundary (320 bytes) --- */ u32 size_poke_tab; /* 320 4 */ [...] In general, subprograms do not necessarily manage their own data structures. For example, BTF func_info and linfo are just pointers to the main program structure. This allows reference counting and cleanup to be done on the latter which simplifies their management a bit. The aux->poke_tab struct, however, did not follow this logic. The initial proposed fix for this use-after-free bug further embedded poke data tracking into the subprogram with proper reference counting. However, Daniel and Alexei questioned why we were treating these objects special; I agree, its unnecessary. The fix here removes the per subprogram poke table allocation and map tracking and instead simply points the aux->poke_tab pointer at the main programs poke table. This way, map tracking is simplified to the main program and we do not need to manage them per subprogram. This also means, bpf_prog_free_deferred(), which unwinds the program reference counting and kfrees objects, needs to ensure that we don't try to double free the poke_tab when free'ing the subprog structures. This is easily solved by NULL'ing the poke_tab pointer. The second detail is to ensure that per subprogram JIT logic only does fixups on poke_tab[] entries it owns. To do this, we add a pointer in the poke structure to point at the subprogram value so JITs can easily check while walking the poke_tab structure if the current entry belongs to the current program. The aux pointer is stable and therefore suitable for such comparison. On the jit_subprogs() error path, we omit cleaning up the poke->aux field because these are only ever referenced from the JIT side, but on error we will never make it to the JIT, so its fine to leave them dangling. Removing these pointers would complicate the error path for no reason. However, we do need to untrack all poke descriptors from the main program as otherwise they could race with the freeing of JIT memory from the subprograms. Lastly, |
||
![]() |
9e1cf2d1ed |
mm/userfaultfd: fix uffd-wp special cases for fork()
commit 8f34f1eac3820fc2722e5159acceb22545b30b0d upstream. We tried to do something similar in |
||
![]() |
277b311ae1 |
Revert "swap: fix do_swap_page() race with swapoff"
This reverts commit
|
||
![]() |
74569cb9ed |
x86/signal: Detect and prevent an alternate signal stack overflow
[ Upstream commit 2beb4a53fc3f1081cedc1c1a198c7f56cc4fc60c ]
The kernel pushes context on to the userspace stack to prepare for the
user's signal handler. When the user has supplied an alternate signal
stack, via sigaltstack(2), it is easy for the kernel to verify that the
stack size is sufficient for the current hardware context.
Check if writing the hardware context to the alternate stack will exceed
it's size. If yes, then instead of corrupting user-data and proceeding with
the original signal handler, an immediate SIGSEGV signal is delivered.
Refactor the stack pointer check code from on_sig_stack() and use the new
helper.
While the kernel allows new source code to discover and use a sufficient
alternate signal stack size, this check is still necessary to protect
binaries with insufficient alternate signal stack size from data
corruption.
Fixes:
|
||
![]() |
89786fbc4d |
NFS: nfs_find_open_context() may only select open files
[ Upstream commit e97bc66377bca097e1f3349ca18ca17f202ff659 ] If a file has already been closed, then it should not be selected to support further I/O. Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com> [Trond: Fix an invalid pointer deref reported by Colin Ian King] Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
![]() |
6ed9f9899b |
kcov: add __no_sanitize_coverage to fix noinstr for all architectures
[ Upstream commit 540540d06e9d9b3769b46d88def90f7e7c002322 ]
Until now no compiler supported an attribute to disable coverage
instrumentation as used by KCOV.
To work around this limitation on x86, noinstr functions have their
coverage instrumentation turned into nops by objtool. However, this
solution doesn't scale automatically to other architectures, such as
arm64, which are migrating to use the generic entry code.
Clang [1] and GCC [2] have added support for the attribute recently.
[1]
|
||
![]() |
35a35909ec |
rcu: Reject RCU_LOCKDEP_WARN() false positives
[ Upstream commit 3066820034b5dd4e89bd74a7739c51c2d6f5e554 ] If another lockdep report runs concurrently with an RCU lockdep report from RCU_LOCKDEP_WARN(), the following sequence of events can occur: 1. debug_lockdep_rcu_enabled() sees that lockdep is enabled when called from (say) synchronize_rcu(). 2. Lockdep is disabled by a concurrent lockdep report. 3. debug_lockdep_rcu_enabled() evaluates its lockdep-expression argument, for example, lock_is_held(&rcu_bh_lock_map). 4. Because lockdep is now disabled, lock_is_held() plays it safe and returns the constant 1. 5. But in this case, the constant 1 is not safe, because invoking synchronize_rcu() under rcu_read_lock_bh() is disallowed. 6. debug_lockdep_rcu_enabled() wrongly invokes lockdep_rcu_suspicious(), resulting in a false-positive splat. This commit therefore changes RCU_LOCKDEP_WARN() to check debug_lockdep_rcu_enabled() after checking the lockdep expression, so that any "safe" returns from lock_is_held() are rejected by debug_lockdep_rcu_enabled(). This requires memory ordering, which is supplied by READ_ONCE(debug_locks). The resulting volatile accesses prevent the compiler from reordering and the fact that only one variable is being accessed prevents the underlying hardware from reordering. The combination works for IA64, which can reorder reads to the same location, but this is defeated by the volatile accesses, which compile to load instructions that provide ordering. Reported-by: syzbot+dde0cc33951735441301@syzkaller.appspotmail.com Reported-by: Matthew Wilcox <willy@infradead.org> Reported-by: syzbot+88e4f02896967fe1ab0d@syzkaller.appspotmail.com Reported-by: Thomas Gleixner <tglx@linutronix.de> Suggested-by: Boqun Feng <boqun.feng@gmail.com> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
![]() |
8cc58a6e2c |
rq-qos: fix missed wake-ups in rq_qos_throttle try two
commit 11c7aa0ddea8611007768d3e6b58d45dc60a19e1 upstream. Commit |
||
![]() |
a8a2e506ea |
power: supply: ab8500: Fix an old bug
commit f1c74a6c07e76fcb31a4bcc1f437c4361a2674ce upstream.
Trying to get the AB8500 charging driver working I ran into a bit
of bitrot: we haven't used the driver for a while so errors in
refactorings won't be noticed.
This one is pretty self evident: use argument to the macro or we
end up with a random pointer to something else.
Cc: stable@vger.kernel.org
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Marcus Cooper <codekipper@gmail.com>
Fixes:
|
||
![]() |
5cc0cf735f |
net: fix mistake path for netdev_features_strings
[ Upstream commit 2d8ea148e553e1dd4e80a87741abdfb229e2b323 ] Th_strings arrays netdev_features_strings, tunable_strings, and phy_tunable_strings has been moved to file net/ethtool/common.c. So fixes the comment. Signed-off-by: Jian Shen <shenjian15@huawei.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
![]() |
6ceb0182b0 |
net: mdio: provide shim implementation of devm_of_mdiobus_register
[ Upstream commit 86544c3de6a2185409c5a3d02f674ea223a14217 ] Similar to the way in which of_mdiobus_register() has a fallback to the non-DT based mdiobus_register() when CONFIG_OF is not set, we can create a shim for the device-managed devm_of_mdiobus_register() which calls devm_mdiobus_register() and discards the struct device_node *. In particular, this solves a build issue with the qca8k DSA driver which uses devm_of_mdiobus_register and can be compiled without CONFIG_OF. Reported-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Acked-by: Randy Dunlap <rdunlap@infradead.org> # build-tested Reviewed-by: Andrew Lunn <andrew@lunn.ch> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
![]() |
c98d9318dc |
block: return the correct bvec when checking for gaps
commit c9c9762d4d44dcb1b2ba90cfb4122dc11ceebf31 upstream. After commit |
||
![]() |
555dffa484 |
include/linux/huge_mm.h: remove extern keyword
[ Upstream commit ebfe1b8f6ea5d83d8c1aa18ddd8ede432a7414e7 ] The external function definitions don't need the "extern" keyword. Remove them so future changes don't copy the function definition style. Link: https://lkml.kernel.org/r/20201106235135.32109-1-rcampbell@nvidia.com Signed-off-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
![]() |
b65597377b |
mm/huge_memory.c: add missing read-only THP checking in transparent_hugepage_enabled()
[ Upstream commit e6be37b2e7bddfe0c76585ee7c7eee5acc8efeab ] Since commit |
||
![]() |
aa41f7a2a6 |
mm/huge_memory.c: remove dedicated macro HPAGE_CACHE_INDEX_MASK
[ Upstream commit b2bd53f18bb7f7cfc91b3bb527d7809376700a8e ] Patch series "Cleanup and fixup for huge_memory:, v3. This series contains cleanups to remove dedicated macro and remove unnecessary tlb_remove_page_size() for huge zero pmd. Also this adds missing read-only THP checking for transparent_hugepage_enabled() and avoids discarding hugepage if other processes are mapping it. More details can be found in the respective changelogs. Thi patch (of 5): Rewrite the pgoff checking logic to remove macro HPAGE_CACHE_INDEX_MASK which is only used here to simplify the code. Link: https://lkml.kernel.org/r/20210511134857.1581273-1-linmiaohe@huawei.com Link: https://lkml.kernel.org/r/20210511134857.1581273-2-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Zi Yan <ziy@nvidia.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Song Liu <songliubraving@fb.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@surriel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
![]() |
9b0b9edea1 |
mm/pmem: avoid inserting hugepage PTE entry with fsdax if hugepage support is disabled
[ Upstream commit bae84953815793f68ddd8edeadd3f4e32676a2c8 ] Differentiate between hardware not supporting hugepages and user disabling THP via 'echo never > /sys/kernel/mm/transparent_hugepage/enabled' For the devdax namespace, the kernel handles the above via the supported_alignment attribute and failing to initialize the namespace if the namespace align value is not supported on the platform. For the fsdax namespace, the kernel will continue to initialize the namespace. This can result in the kernel creating a huge pte entry even though the hardware don't support the same. We do want hugepage support with pmem even if the end-user disabled THP via sysfs file (/sys/kernel/mm/transparent_hugepage/enabled). Hence differentiate between hardware/firmware lacking support vs user-controlled disable of THP and prevent a huge fault if the hardware lacks hugepage support. Link: https://lkml.kernel.org/r/20210205023956.417587-1-aneesh.kumar@linux.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Jan Kara <jack@suse.cz> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
![]() |
71dbba0b95 |
iio: cros_ec_sensors: Fix alignment of buffer in iio_push_to_buffers_with_timestamp()
[ Upstream commit 8dea228b174ac9637b567e5ef54f4c40db4b3c41 ] The samples buffer is passed to iio_push_to_buffers_with_timestamp() which requires a buffer aligned to 8 bytes as it is assumed that the timestamp will be naturally aligned if present. Fixes tag is inaccurate but prior to that likely manual backporting needed (for anything before 4.18) Earlier than that the include file to fix is drivers/iio/common/cros_ec_sensors/cros_ec_sensors_core.h: commit |
||
![]() |
a5dcdfe4cb |
swap: fix do_swap_page() race with swapoff
[ Upstream commit 2799e77529c2a25492a4395db93996e3dacd762d ]
When I was investigating the swap code, I found the below possible race
window:
CPU 1 CPU 2
----- -----
do_swap_page
if (data_race(si->flags & SWP_SYNCHRONOUS_IO)
swap_readpage
if (data_race(sis->flags & SWP_FS_OPS)) {
swapoff
..
p->swap_file = NULL;
..
struct file *swap_file = sis->swap_file;
struct address_space *mapping = swap_file->f_mapping;[oops!]
Note that for the pages that are swapped in through swap cache, this isn't
an issue. Because the page is locked, and the swap entry will be marked
with SWAP_HAS_CACHE, so swapoff() can not proceed until the page has been
unlocked.
Fix this race by using get/put_swap_device() to guard against concurrent
swapoff.
Link: https://lkml.kernel.org/r/20210426123316.806267-3-linmiaohe@huawei.com
Fixes:
|
||
![]() |
d9b40ebd44 |
clocksource: Check per-CPU clock synchronization when marked unstable
[ Upstream commit 7560c02bdffb7c52d1457fa551b9e745d4b9e754 ] Some sorts of per-CPU clock sources have a history of going out of synchronization with each other. However, this problem has purportedy been solved in the past ten years. Except that it is all too possible that the problem has instead simply been made less likely, which might mean that some of the occasional "Marking clocksource 'tsc' as unstable" messages might be due to desynchronization. How would anyone know? Therefore apply CPU-to-CPU synchronization checking to newly unstable clocksource that are marked with the new CLOCK_SOURCE_VERIFY_PERCPU flag. Lists of desynchronized CPUs are printed, with the caveat that if it is the reporting CPU that is itself desynchronized, it will appear that all the other clocks are wrong. Just like in real life. Reported-by: Chris Mason <clm@fb.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-2-paulmck@kernel.org Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
![]() |
d838dddf3f |
random32: Fix implicit truncation warning in prandom_seed_state()
[ Upstream commit d327ea15a305024ef0085252fa3657bbb1ce25f5 ] sparse generates the following warning: include/linux/prandom.h:114:45: sparse: sparse: cast truncates bits from constant value This is because the 64-bit seed value is manipulated and then placed in a u32, causing an implicit cast and truncation. A forced cast to u32 doesn't prevent this warning, which is reasonable because a typecast doesn't prove that truncation was expected. Logical-AND the value with 0xffffffff to make explicit that truncation to 32-bit is intended. Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Richard Fitzgerald <rf@opensource.cirrus.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Signed-off-by: Petr Mladek <pmladek@suse.com> Link: https://lore.kernel.org/r/20210525122012.6336-3-rf@opensource.cirrus.com Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
![]() |
b2c4d9a33c |
Add a reference to ucounts for each cred
[ Upstream commit 905ae01c4ae2ae3df05bb141801b1db4b7d83c61 ] For RLIMIT_NPROC and some other rlimits the user_struct that holds the global limit is kept alive for the lifetime of a process by keeping it in struct cred. Adding a pointer to ucounts in the struct cred will allow to track RLIMIT_NPROC not only for user in the system, but for user in the user_namespace. Updating ucounts may require memory allocation which may fail. So, we cannot change cred.ucounts in the commit_creds() because this function cannot fail and it should always return 0. For this reason, we modify cred.ucounts before calling the commit_creds(). Changelog v6: * Fix null-ptr-deref in is_ucounts_overlimit() detected by trinity. This error was caused by the fact that cred_alloc_blank() left the ucounts pointer empty. Reported-by: kernel test robot <oliver.sang@intel.com> Signed-off-by: Alexey Gladkov <legion@kernel.org> Link: https://lkml.kernel.org/r/b37aaef28d8b9b0d757e07ba6dd27281bbe39259.1619094428.git.legion@kernel.org Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
![]() |
0531e84bc8 |
tracepoint: Add tracepoint_probe_register_may_exist() for BPF tracing
commit 9913d5745bd720c4266805c8d29952a3702e4eca upstream.
All internal use cases for tracepoint_probe_register() is set to not ever
be called with the same function and data. If it is, it is considered a
bug, as that means the accounting of handling tracepoints is corrupted.
If the function and data for a tracepoint is already registered when
tracepoint_probe_register() is called, it will call WARN_ON_ONCE() and
return with EEXISTS.
The BPF system call can end up calling tracepoint_probe_register() with
the same data, which now means that this can trigger the warning because
of a user space process. As WARN_ON_ONCE() should not be called because
user space called a system call with bad data, there needs to be a way to
register a tracepoint without triggering a warning.
Enter tracepoint_probe_register_may_exist(), which can be called, but will
not cause a WARN_ON() if the probe already exists. It will still error out
with EEXIST, which will then be sent to the user space that performed the
BPF system call.
This keeps the previous testing for issues with other users of the
tracepoint code, while letting BPF call it with duplicated data and not
warn about it.
Link: https://lore.kernel.org/lkml/20210626135845.4080-1-penguin-kernel@I-love.SAKURA.ne.jp/
Link: https://syzkaller.appspot.com/bug?id=41f4318cf01762389f4d1c1c459da4f542fe5153
Cc: stable@vger.kernel.org
Fixes:
|
||
![]() |
377a796e7a |
mm, futex: fix shared futex pgoff on shmem huge page
commit fe19bd3dae3d15d2fbfdb3de8839a6ea0fe94264 upstream. If more than one futex is placed on a shmem huge page, it can happen that waking the second wakes the first instead, and leaves the second waiting: the key's shared.pgoff is wrong. When 3.11 commit |
||
![]() |
0010275ca2 |
mm/thp: unmap_mapping_page() to fix THP truncate_cleanup_page()
[ Upstream commit 22061a1ffabdb9c3385de159c5db7aac3a4df1cc ]
There is a race between THP unmapping and truncation, when truncate sees
pmd_none() and skips the entry, after munmap's zap_huge_pmd() cleared
it, but before its page_remove_rmap() gets to decrement
compound_mapcount: generating false "BUG: Bad page cache" reports that
the page is still mapped when deleted. This commit fixes that, but not
in the way I hoped.
The first attempt used try_to_unmap(page, TTU_SYNC|TTU_IGNORE_MLOCK)
instead of unmap_mapping_range() in truncate_cleanup_page(): it has
often been an annoyance that we usually call unmap_mapping_range() with
no pages locked, but there apply it to a single locked page.
try_to_unmap() looks more suitable for a single locked page.
However, try_to_unmap_one() contains a VM_BUG_ON_PAGE(!pvmw.pte,page):
it is used to insert THP migration entries, but not used to unmap THPs.
Copy zap_huge_pmd() and add THP handling now? Perhaps, but their TLB
needs are different, I'm too ignorant of the DAX cases, and couldn't
decide how far to go for anon+swap. Set that aside.
The second attempt took a different tack: make no change in truncate.c,
but modify zap_huge_pmd() to insert an invalidated huge pmd instead of
clearing it initially, then pmd_clear() between page_remove_rmap() and
unlocking at the end. Nice. But powerpc blows that approach out of the
water, with its serialize_against_pte_lookup(), and interesting pgtable
usage. It would need serious help to get working on powerpc (with a
minor optimization issue on s390 too). Set that aside.
Just add an "if (page_mapped(page)) synchronize_rcu();" or other such
delay, after unmapping in truncate_cleanup_page()? Perhaps, but though
that's likely to reduce or eliminate the number of incidents, it would
give less assurance of whether we had identified the problem correctly.
This successful iteration introduces "unmap_mapping_page(page)" instead
of try_to_unmap(), and goes the usual unmap_mapping_range_tree() route,
with an addition to details. Then zap_pmd_range() watches for this
case, and does spin_unlock(pmd_lock) if so - just like
page_vma_mapped_walk() now does in the PVMW_SYNC case. Not pretty, but
safe.
Note that unmap_mapping_page() is doing a VM_BUG_ON(!PageLocked) to
assert its interface; but currently that's only used to make sure that
page->mapping is stable, and zap_pmd_range() doesn't care if the page is
locked or not. Along these lines, in invalidate_inode_pages2_range()
move the initial unmap_mapping_range() out from under page lock, before
then calling unmap_mapping_page() under page lock if still mapped.
Link: https://lkml.kernel.org/r/a2a4a148-cdd8-942c-4ef8-51b77f643dbe@google.com
Fixes:
|
||
![]() |
66be14a926 |
mm/thp: try_to_unmap() use TTU_SYNC for safe splitting
commit 732ed55823fc3ad998d43b86bf771887bcc5ec67 upstream.
Stressing huge tmpfs often crashed on unmap_page()'s VM_BUG_ON_PAGE
(!unmap_success): with dump_page() showing mapcount:1, but then its raw
struct page output showing _mapcount ffffffff i.e. mapcount 0.
And even if that particular VM_BUG_ON_PAGE(!unmap_success) is removed,
it is immediately followed by a VM_BUG_ON_PAGE(compound_mapcount(head)),
and further down an IS_ENABLED(CONFIG_DEBUG_VM) total_mapcount BUG():
all indicative of some mapcount difficulty in development here perhaps.
But the !CONFIG_DEBUG_VM path handles the failures correctly and
silently.
I believe the problem is that once a racing unmap has cleared pte or
pmd, try_to_unmap_one() may skip taking the page table lock, and emerge
from try_to_unmap() before the racing task has reached decrementing
mapcount.
Instead of abandoning the unsafe VM_BUG_ON_PAGE(), and the ones that
follow, use PVMW_SYNC in try_to_unmap_one() in this case: adding
TTU_SYNC to the options, and passing that from unmap_page().
When CONFIG_DEBUG_VM, or for non-debug too? Consensus is to do the same
for both: the slight overhead added should rarely matter, except perhaps
if splitting sparsely-populated multiply-mapped shmem. Once confident
that bugs are fixed, TTU_SYNC here can be removed, and the race
tolerated.
Link: https://lkml.kernel.org/r/c1e95853-8bcd-d8fd-55fa-e7f2488e78f@google.com
Fixes:
|
||
![]() |
6527d8ef68 |
mm/thp: make is_huge_zero_pmd() safe and quicker
commit 3b77e8c8cde581dadab9a0f1543a347e24315f11 upstream.
Most callers of is_huge_zero_pmd() supply a pmd already verified
present; but a few (notably zap_huge_pmd()) do not - it might be a pmd
migration entry, in which the pfn is encoded differently from a present
pmd: which might pass the is_huge_zero_pmd() test (though not on x86,
since L1TF forced us to protect against that); or perhaps even crash in
pmd_page() applied to a swap-like entry.
Make it safe by adding pmd_present() check into is_huge_zero_pmd()
itself; and make it quicker by saving huge_zero_pfn, so that
is_huge_zero_pmd() will not need to do that pmd_page() lookup each time.
__split_huge_pmd_locked() checked pmd_trans_huge() before: that worked,
but is unnecessary now that is_huge_zero_pmd() checks present.
Link: https://lkml.kernel.org/r/21ea9ca-a1f5-8b90-5e88-95fb1c49bbfa@google.com
Fixes:
|
||
![]() |
a0ad7ea018 |
mm: add VM_WARN_ON_ONCE_PAGE() macro
[ Upstream commit a4055888629bc0467d12d912cd7c90acdf3d9b12 part ] Add VM_WARN_ON_ONCE_PAGE() macro. Link: https://lkml.kernel.org/r/1604283436-18880-3-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Note on stable backport: original commit was titled mm/memcg: warning on !memcg after readahead page charged which included uses of this macro in mm/memcontrol.c: here omitted. Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
![]() |
ca2acbd548 |
locking/lockdep: Improve noinstr vs errors
[ Upstream commit 49faa77759b211fff344898edc23bb780707fff5 ]
Better handle the failure paths.
vmlinux.o: warning: objtool: debug_locks_off()+0x23: call to console_verbose() leaves .noinstr.text section
vmlinux.o: warning: objtool: debug_locks_off()+0x19: call to __kasan_check_write() leaves .noinstr.text section
debug_locks_off+0x19/0x40:
instrument_atomic_write at include/linux/instrumented.h:86
(inlined by) __debug_locks_off at include/linux/debug_locks.h:17
(inlined by) debug_locks_off at lib/debug_locks.c:41
Fixes:
|
||
![]() |
12eb3c2c1a |
mm/swap: fix pte_same_as_swp() not removing uffd-wp bit when compare
commit 099dd6878b9b12d6bbfa6bf29ce0c8ddd38f6901 upstream.
I found it by pure code review, that pte_same_as_swp() of unuse_vma()
didn't take uffd-wp bit into account when comparing ptes.
pte_same_as_swp() returning false negative could cause failure to
swapoff swap ptes that was wr-protected by userfaultfd.
Link: https://lkml.kernel.org/r/20210603180546.9083-1-peterx@redhat.com
Fixes:
|
||
![]() |
103c4a08ba |
mm: relocate 'write_protect_seq' in struct mm_struct
[ Upstream commit 2e3025434a6ba090c85871a1d4080ff784109e1f ] 0day robot reported a 9.2% regression for will-it-scale mmap1 test case[1], caused by commit 57efa1fe5957 ("mm/gup: prevent gup_fast from racing with COW during fork"). Further debug shows the regression is due to that commit changes the offset of hot fields 'mmap_lock' inside structure 'mm_struct', thus some cache alignment changes. From the perf data, the contention for 'mmap_lock' is very severe and takes around 95% cpu cycles, and it is a rw_semaphore struct rw_semaphore { atomic_long_t count; /* 8 bytes */ atomic_long_t owner; /* 8 bytes */ struct optimistic_spin_queue osq; /* spinner MCS lock */ ... Before commit 57efa1fe5957 adds the 'write_protect_seq', it happens to have a very optimal cache alignment layout, as Linus explained: "and before the addition of the 'write_protect_seq' field, the mmap_sem was at offset 120 in 'struct mm_struct'. Which meant that count and owner were in two different cachelines, and then when you have contention and spend time in rwsem_down_write_slowpath(), this is probably *exactly* the kind of layout you want. Because first the rwsem_write_trylock() will do a cmpxchg on the first cacheline (for the optimistic fast-path), and then in the case of contention, rwsem_down_write_slowpath() will just access the second cacheline. Which is probably just optimal for a load that spends a lot of time contended - new waiters touch that first cacheline, and then they queue themselves up on the second cacheline." After the commit, the rw_semaphore is at offset 128, which means the 'count' and 'owner' fields are now in the same cacheline, and causes more cache bouncing. Currently there are 3 "#ifdef CONFIG_XXX" before 'mmap_lock' which will affect its offset: CONFIG_MMU CONFIG_MEMBARRIER CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES The layout above is on 64 bits system with 0day's default kernel config (similar to RHEL-8.3's config), in which all these 3 options are 'y'. And the layout can vary with different kernel configs. Relayouting a structure is usually a double-edged sword, as sometimes it can helps one case, but hurt other cases. For this case, one solution is, as the newly added 'write_protect_seq' is a 4 bytes long seqcount_t (when CONFIG_DEBUG_LOCK_ALLOC=n), placing it into an existing 4 bytes hole in 'mm_struct' will not change other fields' alignment, while restoring the regression. Link: https://lore.kernel.org/lkml/20210525031636.GB7744@xsang-OptiPlex-9020/ [1] Reported-by: kernel test robot <oliver.sang@intel.com> Signed-off-by: Feng Tang <feng.tang@intel.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
![]() |
0609c36696 |
regulator: bd70528: Fix off-by-one for buck123 .n_voltages setting
[ Upstream commit 0514582a1a5b4ac1a3fd64792826d392d7ae9ddc ] The valid selectors for bd70528 bucks are 0 ~ 0xf, so the .n_voltages should be 16 (0x10). Use 0x10 to make it consistent with BD70528_LDO_VOLTS. Also remove redundant defines for BD70528_BUCK_VOLTS. Signed-off-by: Axel Lin <axel.lin@ingics.com> Acked-by: Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com> Link: https://lore.kernel.org/r/20210523071045.2168904-1-axel.lin@ingics.com Signed-off-by: Mark Brown <broonie@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
![]() |
9a47949562 |
ptp: improve max_adj check against unreasonable values
[ Upstream commit 475b92f932168a78da8109acd10bfb7578b8f2bb ] Scaled PPM conversion to PPB may (on 64bit systems) result in a value larger than s32 can hold (freq/scaled_ppm is a long). This means the kernel will not correctly reject unreasonably high ->freq values (e.g. > 4294967295ppb, 281474976645 scaled PPM). The conversion is equivalent to a division by ~66 (65.536), so the value of ppb is always smaller than ppm, but not small enough to assume narrowing the type from long -> s32 is okay. Note that reasonable user space (e.g. ptp4l) will not use such high values, anyway, 4289046510ppb ~= 4.3x, so the fix is somewhat pedantic. Fixes: |
||
![]() |
4abfd597fe |
net: make get_net_ns return error if NET_NS is disabled
[ Upstream commit ea6932d70e223e02fea3ae20a4feff05d7c1ea9a ]
There is a panic in socket ioctl cmd SIOCGSKNS when NET_NS is not enabled.
The reason is that nsfs tries to access ns->ops but the proc_ns_operations
is not implemented in this case.
[7.670023] Unable to handle kernel NULL pointer dereference at virtual address 00000010
[7.670268] pgd = 32b54000
[7.670544] [00000010] *pgd=00000000
[7.671861] Internal error: Oops: 5 [#1] SMP ARM
[7.672315] Modules linked in:
[7.672918] CPU: 0 PID: 1 Comm: systemd Not tainted 5.13.0-rc3-00375-g6799d4f2da49 #16
[7.673309] Hardware name: Generic DT based system
[7.673642] PC is at nsfs_evict+0x24/0x30
[7.674486] LR is at clear_inode+0x20/0x9c
The same to tun SIOCGSKNS command.
To fix this problem, we make get_net_ns() return -EINVAL when NET_NS is
disabled. Meanwhile move it to right place net/core/net_namespace.c.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Fixes:
|
||
![]() |
be7f3f401d |
net/mlx5e: Fix page reclaim for dead peer hairpin
[ Upstream commit a3e5fd9314dfc4314a9567cde96e1aef83a7458a ]
When adding a hairpin flow, a firmware-side send queue is created for
the peer net device, which claims some host memory pages for its
internal ring buffer. If the peer net device is removed/unbound before
the hairpin flow is deleted, then the send queue is not destroyed which
leads to a stack trace on pci device remove:
[ 748.005230] mlx5_core 0000:08:00.2: wait_func:1094:(pid 12985): MANAGE_PAGES(0x108) timeout. Will cause a leak of a command resource
[ 748.005231] mlx5_core 0000:08:00.2: reclaim_pages:514:(pid 12985): failed reclaiming pages: err -110
[ 748.001835] mlx5_core 0000:08:00.2: mlx5_reclaim_root_pages:653:(pid 12985): failed reclaiming pages (-110) for func id 0x0
[ 748.002171] ------------[ cut here ]------------
[ 748.001177] FW pages counter is 4 after reclaiming all pages
[ 748.001186] WARNING: CPU: 1 PID: 12985 at drivers/net/ethernet/mellanox/mlx5/core/pagealloc.c:685 mlx5_reclaim_startup_pages+0x34b/0x460 [mlx5_core] [ +0.002771] Modules linked in: cls_flower mlx5_ib mlx5_core ptp pps_core act_mirred sch_ingress openvswitch nsh xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 br_netfilter rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi rdma_cm ib_umad ib_ipoib iw_cm ib_cm ib_uverbs ib_core overlay fuse [last unloaded: pps_core]
[ 748.007225] CPU: 1 PID: 12985 Comm: tee Not tainted 5.12.0+ #1
[ 748.001376] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[ 748.002315] RIP: 0010:mlx5_reclaim_startup_pages+0x34b/0x460 [mlx5_core]
[ 748.001679] Code: 28 00 00 00 0f 85 22 01 00 00 48 81 c4 b0 00 00 00 31 c0 5b 5d 41 5c 41 5d 41 5e 41 5f c3 48 c7 c7 40 cc 19 a1 e8 9f 71 0e e2 <0f> 0b e9 30 ff ff ff 48 c7 c7 a0 cc 19 a1 e8 8c 71 0e e2 0f 0b e9
[ 748.003781] RSP: 0018:ffff88815220faf8 EFLAGS: 00010286
[ 748.001149] RAX: 0000000000000000 RBX: ffff8881b4900280 RCX: 0000000000000000
[ 748.001445] RDX: 0000000000000027 RSI: 0000000000000004 RDI: ffffed102a441f51
[ 748.001614] RBP: 00000000000032b9 R08: 0000000000000001 R09: ffffed1054a15ee8
[ 748.001446] R10: ffff8882a50af73b R11: ffffed1054a15ee7 R12: fffffbfff07c1e30
[ 748.001447] R13: dffffc0000000000 R14: ffff8881b492cba8 R15: 0000000000000000
[ 748.001429] FS: 00007f58bd08b580(0000) GS:ffff8882a5080000(0000) knlGS:0000000000000000
[ 748.001695] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 748.001309] CR2: 000055a026351740 CR3: 00000001d3b48006 CR4: 0000000000370ea0
[ 748.001506] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 748.001483] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 748.001654] Call Trace:
[ 748.000576] ? mlx5_satisfy_startup_pages+0x290/0x290 [mlx5_core]
[ 748.001416] ? mlx5_cmd_teardown_hca+0xa2/0xd0 [mlx5_core]
[ 748.001354] ? mlx5_cmd_init_hca+0x280/0x280 [mlx5_core]
[ 748.001203] mlx5_function_teardown+0x30/0x60 [mlx5_core]
[ 748.001275] mlx5_uninit_one+0xa7/0xc0 [mlx5_core]
[ 748.001200] remove_one+0x5f/0xc0 [mlx5_core]
[ 748.001075] pci_device_remove+0x9f/0x1d0
[ 748.000833] device_release_driver_internal+0x1e0/0x490
[ 748.001207] unbind_store+0x19f/0x200
[ 748.000942] ? sysfs_file_ops+0x170/0x170
[ 748.001000] kernfs_fop_write_iter+0x2bc/0x450
[ 748.000970] new_sync_write+0x373/0x610
[ 748.001124] ? new_sync_read+0x600/0x600
[ 748.001057] ? lock_acquire+0x4d6/0x700
[ 748.000908] ? lockdep_hardirqs_on_prepare+0x400/0x400
[ 748.001126] ? fd_install+0x1c9/0x4d0
[ 748.000951] vfs_write+0x4d0/0x800
[ 748.000804] ksys_write+0xf9/0x1d0
[ 748.000868] ? __x64_sys_read+0xb0/0xb0
[ 748.000811] ? filp_open+0x50/0x50
[ 748.000919] ? syscall_enter_from_user_mode+0x1d/0x50
[ 748.001223] do_syscall_64+0x3f/0x80
[ 748.000892] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 748.001026] RIP: 0033:0x7f58bcfb22f7
[ 748.000944] Code: 0d 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 51 c3 48 83 ec 28 48 89 54 24 18 48 89 74 24
[ 748.003925] RSP: 002b:00007fffd7f2aaa8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
[ 748.001732] RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007f58bcfb22f7
[ 748.001426] RDX: 000000000000000d RSI: 00007fffd7f2abc0 RDI: 0000000000000003
[ 748.001746] RBP: 00007fffd7f2abc0 R08: 0000000000000000 R09: 0000000000000001
[ 748.001631] R10: 00000000000001b6 R11: 0000000000000246 R12: 000000000000000d
[ 748.001537] R13: 00005597ac2c24a0 R14: 000000000000000d R15: 00007f58bd084700
[ 748.001564] irq event stamp: 0
[ 748.000787] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[ 748.001399] hardirqs last disabled at (0): [<ffffffff813132cf>] copy_process+0x146f/0x5eb0
[ 748.001854] softirqs last enabled at (0): [<ffffffff8131330e>] copy_process+0x14ae/0x5eb0
[ 748.013431] softirqs last disabled at (0): [<0000000000000000>] 0x0
[ 748.001492] ---[ end trace a6fabd773d1c51ae ]---
Fix by destroying the send queue of a hairpin peer net device that is
being removed/unbound, which returns the allocated ring buffer pages to
the host.
Fixes:
|
||
![]() |
9c1d492baa |
gpu: host1x: Split up client initalization and registration
[ Upstream commit 0cfe5a6e758fb20be8ad3e8f10cb087cc8033eeb ] In some cases we may need to initialize the host1x client first before registering it. This commit adds a new helper that will do nothing but the initialization of the data structure. At the same time, the initialization is removed from the registration function. Note, however, that for simplicity we explicitly initialize the client when the host1x_client_register() function is called, as opposed to the low-level __host1x_client_register() function. This allows existing callers to remain unchanged. Signed-off-by: Thierry Reding <treding@nvidia.com> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
![]() |
b1e3596416 |
HID: usbhid: fix info leak in hid_submit_ctrl
[ Upstream commit 6be388f4a35d2ce5ef7dbf635a8964a5da7f799f ] In hid_submit_ctrl(), the way of calculating the report length doesn't take into account that report->size can be zero. When running the syzkaller reproducer, a report of size 0 causes hid_submit_ctrl) to calculate transfer_buffer_length as 16384. When this urb is passed to the usb core layer, KMSAN reports an info leak of 16384 bytes. To fix this, first modify hid_report_len() to account for the zero report size case by using DIV_ROUND_UP for the division. Then, call it from hid_submit_ctrl(). Reported-by: syzbot+7c2bb71996f95a82524c@syzkaller.appspotmail.com Signed-off-by: Anirudh Rayabharam <mail@anirudhrb.com> Acked-by: Benjamin Tissoires <benjamin.tissoires@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
![]() |
9064c9d544 |
kvm: fix previous commit for 32-bit builds
commit 4422829e8053068e0225e4d0ef42dc41ea7c9ef5 upstream. array_index_nospec does not work for uint64_t on 32-bit builds. However, the size of a memory slot must be less than 20 bits wide on those system, since the memory slot must fit in the user address space. So just store it in an unsigned long. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
![]() |
190a7f9089 |
sched/fair: Fix util_est UTIL_AVG_UNCHANGED handling
commit 68d7a190682aa4eb02db477328088ebad15acc83 upstream.
The util_est internal UTIL_AVG_UNCHANGED flag which is used to prevent
unnecessary util_est updates uses the LSB of util_est.enqueued. It is
exposed via _task_util_est() (and task_util_est()).
Commit
|
||
![]() |
cb1aa1da04 |
RDMA/mlx4: Do not map the core_clock page to user space unless enabled
commit 404e5a12691fe797486475fe28cc0b80cb8bef2c upstream.
Currently when mlx4 maps the hca_core_clock page to the user space there
are read-modifiable registers, one of which is semaphore, on this page as
well as the clock counter. If user reads the wrong offset, it can modify
the semaphore and hang the device.
Do not map the hca_core_clock page to the user space unless the device has
been put in a backwards compatibility mode to support this feature.
After this patch, mlx4 core_clock won't be mapped to user space on the
majority of existing devices and the uverbs device time feature in
ibv_query_rt_values_ex() will be disabled.
Fixes:
|
||
![]() |
4579f65176 |
regulator: bd71828: Fix .n_voltages settings
commit 4c668630bf8ea90a041fc69c9984486e0f56682d upstream.
Current .n_voltages settings do not cover the latest 2 valid selectors,
so it fails to set voltage for the hightest voltage support.
The latest linear range has step_uV = 0, so it does not matter if we
count the .n_voltages to maximum selector + 1 or the first selector of
latest linear range + 1.
To simplify calculating the n_voltages, let's just set the
.n_voltages to maximum selector + 1.
Fixes:
|