When a vSMP Foundation box is detected, the function apic_cluster_num() counts
the number of APIC clusters found. If more than one found, a multi board
configuration is assumed, and TSC marked as unstable. This behavior is
incorrect as vSMP Foundation may use processors from single node only, attached
to memory of other nodes - and such node may have more than one APIC cluster
(typically any recent intel box has more than single APIC_CLUSTERID(x)).
To fix this, we simply remove the code which detects a vSMP Foundation box and
affects apic_is_clusted_box() return value. This can be done because later the
kernel checks by itself if the TSC is stable using the
check_tsc_sync_[source|target]() functions and marks TSC as unstable if needed.
Acked-by: Shai Fultheim <shai@scalemp.com>
Signed-off-by: Oren Twaig <oren@scalemp.com>
Link: http://lkml.kernel.org/r/1404036068-11674-1-git-send-email-oren@scalemp.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Sometimes it is preferred not to use the trigger_all_cpu_backtrace()
routine when one wants to avoid capturing a back trace for current. For
instance if one was previously captured recently.
This patch provides a new routine namely
trigger_allbutself_cpu_backtrace() which offers the flexibility to issue
an NMI to every cpu but current and capture a back trace accordingly.
Patch x86 and sparc to support new routine.
[dzickus@redhat.com: add stub in #else clause]
[dzickus@redhat.com: don't print message in single processor case, wrap with get/put_cpu based on Oleg's suggestion]
[sfr@canb.auug.org.au: undo C99ism]
Signed-off-by: Aaron Tomlin <atomlin@redhat.com>
Signed-off-by: Don Zickus <dzickus@redhat.com>
Acked-by: David S. Miller <davem@davemloft.net>
Cc: Mateusz Guzik <mguzik@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently there are multiple entries to program IOAPIC pins, such as
io_apic_setup_irq_pin_once(), io_apic_set_pci_routing() and
setup_IO_APIC_irq_extra() etc.
This patch introduces two functions to help consolidate the code to
program IOAPIC pins. Function mp_set_pin_attr() is used to optionally
set trigger, polarity and NUMA node property for an IOAPIC pin.
If mp_set_pin_attr() is not invoked for a pin, the default configuration
from BIOS will be used.
Function mp_irqdomain_map() is an common implementation of irqdomain map()
operation. It figures out attribures for pin and then actually programs
the IOAPIC pin. We hope this will be the only entrance for programming
IOAPIC pin.
And the flow will:
1) caller such as xxx_pci_irq_enable figures out pin attributes.
2) Invoke mp_set_pin_attr() to set attributes for a pin. If the pin has
already bin programmed, mp_set_pin_attr() will aslo detects attribute
confictions.
3) Invoke mp_map_pin_to_irq()
3.1) If IRQ has already been assigned, return irq_find_mapping()
3.2) Else irq_create_mapping()
->irq_domain_associate()
->mp_irqdomain_map()
->io_apic_setup_irq_pin()
So every pin will only programmed once by mp_irqdomain_map(), so we
could kill io_apic_setup_irq_pin_once(), io_apic_set_pci_routing() and
setup_IO_APIC_irq_extra() etc.
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1402302011-23642-30-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently x86 support identity mapping between GSI(IOAPIC pin) and IRQ
number, so continous IRQs at low end are statically allocated to IOAPICs
at boot time. This design causes trouble to support IOAPIC hotplug.
This patch implements basic mechanism to dynamically allocate IRQ on
demand for IOAPIC pins by using irqdomain framework.
It first adds several fields into struct ioapic to support irqdomain.
Then it implements an algorithm to dynamically allocate IRQ number
for IOAPIC pins on demand.
Currently it supports three types of irqdomain:
1) LEGACY: used to support IOAPIC hosting legacy IRQs and building
identity mapping for legacy IRQs. A speical case, we dynamically
allocate IRQ number for IOAPIC pin which has GSI number below
nr_legacy_irqs() but isn't legacy IRQ. This is for backward
compatibility and avoid regression.
2) STRICT: build identity mapping between GSI and IRQ nubmer.
3) DYNAMIC: dynamically allocate IRQ number for IOAPIC pin on demand.
Legacy(ISA) IRQs is not managed by irqdomain because there may be
multiple pins sharing the same IRQ number and current irqdomain only
supports 1:1 mapping between pins and IRQ.
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Pavel Machek <pavel@ucw.cz>
Link: http://lkml.kernel.org/r/1402302011-23642-24-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull x86 irq fixes from Ingo Molnar:
"Two changes: a cpu-hotplug/irq race fix, plus a HyperV related fix"
* 'x86-irq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/irq: Fix fixup_irqs() error handling
x86, irq, pic: Probe for legacy PIC and set legacy_pic appropriately
Pull more perf updates from Ingo Molnar:
"A second round of perf updates:
- wide reaching kprobes sanitization and robustization, with the hope
of fixing all 'probe this function crashes the kernel' bugs, by
Masami Hiramatsu.
- uprobes updates from Oleg Nesterov: tmpfs support, corner case
fixes and robustization work.
- perf tooling updates and fixes from Jiri Olsa, Namhyung Ki, Arnaldo
et al:
* Add support to accumulate hist periods (Namhyung Kim)
* various fixes, refactorings and enhancements"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (101 commits)
perf: Differentiate exec() and non-exec() comm events
perf: Fix perf_event_comm() vs. exec() assumption
uprobes/x86: Rename arch_uprobe->def to ->defparam, minor comment updates
perf/documentation: Add description for conditional branch filter
perf/x86: Add conditional branch filtering support
perf/tool: Add conditional branch filter 'cond' to perf record
perf: Add new conditional branch filter 'PERF_SAMPLE_BRANCH_COND'
uprobes: Teach copy_insn() to support tmpfs
uprobes: Shift ->readpage check from __copy_insn() to uprobe_register()
perf/x86: Use common PMU interrupt disabled code
perf/ARM: Use common PMU interrupt disabled code
perf: Disable sampled events if no PMU interrupt
perf: Fix use after free in perf_remove_from_context()
perf tools: Fix 'make help' message error
perf record: Fix poll return value propagation
perf tools: Move elide bool into perf_hpp_fmt struct
perf tools: Remove elide setup for SORT_MODE__MEMORY mode
perf tools: Fix "==" into "=" in ui_browser__warning assignment
perf tools: Allow overriding sysfs and proc finding with env var
perf tools: Consider header files outside perf directory in tags target
...
Pull core irq updates from Thomas Gleixner:
"The irq department delivers:
- Another tree wide update to get rid of the horrible create_irq
interface along with its even more horrible variants. That also
gets rid of the last leftovers of the initial sparse irq hackery.
arch/driver specific changes have been either acked or ignored.
- A fix for the spurious interrupt detection logic with threaded
interrupts.
- A new ARM SoC interrupt controller
- The usual pile of fixes and improvements all over the place"
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits)
Documentation: brcmstb-l2: Add Broadcom STB Level-2 interrupt controller binding
irqchip: brcmstb-l2: Add Broadcom Set Top Box Level-2 interrupt controller
genirq: Improve documentation to match current implementation
ARM: iop13xx: fix msi support with sparse IRQ
genirq: Provide !SMP stub for irq_set_affinity_notifier()
irqchip: armada-370-xp: Move the devicetree binding documentation
irqchip: gic: Use mask field in GICC_IAR
genirq: Remove dynamic_irq mess
ia64: Use irq_init_desc
genirq: Replace dynamic_irq_init/cleanup
genirq: Remove irq_reserve_irq[s]
genirq: Replace reserve_irqs in core code
s390: Avoid call to irq_reserve_irqs()
s390: Remove pointless arch_show_interrupts()
s390: pci: Check return value of alloc_irq_desc() proper
sh: intc: Remove pointless irq_reserve_irqs() invocation
x86, irq: Remove pointless irq_reserve_irqs() call
genirq: Make create/destroy_irq() ia64 private
tile: Use SPARSE_IRQ
tile: pci: Use irq_alloc/free_hwirq()
...
Pull x86/UV changes from Ingo Molnar:
"Continued updates for SGI UV 3 hardware support"
* 'x86-uv-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/UV: Fix conditional in gru_exit()
x86/UV: Set n_lshift based on GAM_GR_CONFIG MMR for UV3
This is just a cleanup to get rid of the create/destroy_irq variants
which were designed in hell.
The long term solution for x86 is to switch over to irq domains and
cleanup the whole vector allocation mess.
The generic irq_alloc_hwirqs() interface deliberately prevents
multi-MSI vector allocation to further enforce the irq domain
conversion (aside of the desire to support ioapic hotplug).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Grant Likely <grant.likely@linaro.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/20140507154334.482904047@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
On x86 the allocation of irq descriptors may allocate interrupts which
are in the range of the GSI interrupts. That's wrong as those
interrupts are hardwired and we don't have the irq domain translation
like PPC. So one of these interrupts can be hooked up later to one of
the devices which are hard wired to it and the io_apic init code for
that particular interrupt line happily reuses that descriptor with a
completely different configuration so hell breaks lose.
Inside x86 we allocate dynamic interrupts from above nr_gsi_irqs,
except for a few usage sites which have not yet blown up in our face
for whatever reason. But for drivers which need an irq range, like the
GPIO drivers, we have no limit in place and we don't want to expose
such a detail to a driver.
To cure this introduce a function which an architecture can implement
to impose a lower bound on the dynamic interrupt allocations.
Implement it for x86 and set the lower bound to nr_gsi_irqs, which is
the end of the hardwired interrupt space, so all dynamic allocations
happen above.
That not only allows the GPIO driver to work sanely, it also protects
the bogus callsites of create_irq_nr() in hpet, uv, irq_remapping and
htirq code. They need to be cleaned up as well, but that's a separate
issue.
Reported-by: Jin Yao <yao.jin@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Cc: Mathias Nyman <mathias.nyman@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Krogerus Heikki <heikki.krogerus@intel.com>
Cc: Linus Walleij <linus.walleij@linaro.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1404241617360.28206@ionos.tec.linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Several patches to fix cpu hotplug and the down'd cpu's irq
relocations have been submitted in the past month or so. The
patches should resolve the problems with cpu hotplug and irq
relocation, however, there is always a possibility that a bug
still exists. The big problem with debugging these irq
reassignments is that the cpu down completes and then we get
random stack traces from drivers for which irqs have not been
properly assigned to a new cpu. The stack traces are a mix of
storage, network, and other kernel subsystem (I once saw the
serial port stop working ...) warnings and failures.
The problem with these failures is that they are difficult to
diagnose. There is no warning in the cpu hotplug down path to
indicate that an IRQ has failed to be assigned to a new cpu, and
all we are left with is a stack trace from a driver, or a
non-functional device. If we had some information on the
console debugging these situations would be much easier; after
all we can map an IRQ to a device by simply using lspci or
/proc/interrupts.
The current code, fixup_irqs(), which migrates IRQs from the
down'd cpu and is called close to the end of the cpu down path,
calls chip->set_irq_affinity which eventually calls
__assign_irq_vector(). Errors are not propogated back from this
function call and this results in silent irq relocation
failures.
This patch fixes this issue by returning the error codes up the
call stack and prints out a warning if there is a relocation
failure.
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Rui Wang <rui.y.wang@intel.com>
Cc: Liu Ping Fan <kernelfans@gmail.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Yoshihiro YUNOMAE <yoshihiro.yunomae.ez@hitachi.com>
Cc: Lv Zheng <lv.zheng@intel.com>
Cc: Seiji Aguchi <seiji.aguchi@hds.com>
Cc: Yang Zhang <yang.z.zhang@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Steven Rostedt (Red Hat) <rostedt@goodmis.org>
Cc: Li Fei <fei.li@intel.com>
Cc: gong.chen@linux.intel.com
Link: http://lkml.kernel.org/r/1396440673-18286-1-git-send-email-prarit@redhat.com
[ Made small cleanliness tweaks. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Peter Anvin:
"This is a collection of minor fixes for x86, plus the IRET information
leak fix (forbid the use of 16-bit segments in 64-bit mode)"
NOTE! We may have to relax the "forbid the use of 16-bit segments in
64-bit mode" part, since there may be people who still run and depend on
16-bit Windows binaries under Wine.
But I'm taking this in the current unconditional form for now to see who
(if anybody) screams bloody murder. Maybe nobody cares. And maybe
we'll have to update it with some kind of runtime enablement (like our
vm.mmap_min_addr tunable that people who run dosemu/qemu/wine already
need to tweak).
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86-64, modify_ldt: Ban 16-bit segments on 64-bit kernels
efi: Pass correct file handle to efi_file_{read,close}
x86/efi: Correct EFI boot stub use of code32_start
x86/efi: Fix boot failure with EFI stub
x86/platform/hyperv: Handle VMBUS driver being a module
x86/apic: Reinstate error IRQ Pentium erratum 3AP workaround
x86, CMCI: Add proper detection of end of CMCI storms
Pull x86 old platform removal from Peter Anvin:
"This patchset removes support for several completely obsolete
platforms, where the maintainers either have completely vanished or
acked the removal. For some of them it is questionable if there even
exists functional specimens of the hardware"
Geert Uytterhoeven apparently thought this was a April Fool's pull request ;)
* 'x86-nuke-platforms-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, platforms: Remove NUMAQ
x86, platforms: Remove SGI Visual Workstation
x86, apic: Remove support for IBM Summit/EXA chipset
x86, apic: Remove support for ia32-based Unisys ES7000
A change introduced with commit 60283df7ac
("x86/apic: Read Error Status Register correctly") removed a read from the
APIC ESR register made before writing to same required to retrieve the
correct error status on Pentium systems affected by the 3AP erratum[1]:
"3AP. Writes to Error Register Clears Register
PROBLEM: The APIC Error register is intended to only be read.
If there is a write to this register the data in the APIC Error
register will be cleared and lost.
IMPLICATION: There is a possibility of clearing the Error
register status since the write to the register is not
specifically blocked.
WORKAROUND: Writes should not occur to the Pentium processor
APIC Error register.
STATUS: For the steppings affected see the Summary Table of
Changes at the beginning of this section."
The steppings affected are actually: B1, B3 and B5.
To avoid this information loss this change avoids the write to
ESR on all Pentium systems where it is actually never needed;
in Pentium processor documentation ESR was noted read-only and
the write only required for future architectural
compatibility[2].
The approach taken is the same as in lapic_setup_esr().
References:
[1] "Pentium Processor Family Developer's Manual", Intel Corporation,
1997, order number 241428-005, Appendix A "Errata and S-Specs for the
Pentium Processor Family", p. A-92,
[2] "Pentium Processor Family Developer's Manual, Volume 3: Architecture
and Programming Manual", Intel Corporation, 1995, order number
241430-004, Section 19.3.3. "Error Handling In APIC", p. 19-33.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Cc: Richard Weinberger <richard@nod.at>
Link: http://lkml.kernel.org/r/alpine.LFD.2.11.1404011300010.27402@eddie.linux-mips.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The value of n_lshift for UV is currently set based on the
socket m_val.
For UV3, set the n_lshift value based on the GAM_GR_CONFIG MMR.
This will allow bios to control the n_lshift value independent
of the socket m_val. Then n_lshift can be assigned a fixed value
across a multi-partition system, allowing for a fixed common
global physical address format that is independent of socket
m_val.
Cleanup unneeded macros.
Signed-off-by: Dimitri Sivanich <sivanich@sgi.com>
Link: http://lkml.kernel.org/r/20140331143700.GB29916@sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
apic_icr_write() and its users in smpboot.c were apparently
written under the assumption that this code would only run
during early boot. But nowadays we also execute it when onlining
a CPU later on while the system is fully running. That will make
wakeup_cpu_via_init_nmi and, thus, also native_apic_icr_write
run in plain process context. If we migrate the caller to a
different CPU at the wrong time or interrupt it and write to
ICR/ICR2 to send unrelated IPIs, we can end up sending INIT,
SIPI or NMIs to wrong CPUs.
Fix this by disabling interrupts during the write to the ICR
halves and disable preemption around waiting for ICR
availability and using it.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Tested-By: Igor Mammedov <imammedo@redhat.com>
Link: http://lkml.kernel.org/r/52E6AFFE.3030004@siemens.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>