Commit Graph

34080 Commits

Author SHA1 Message Date
Konstantin Khlebnikov
b4fb015eef sched/rt: Optimize checking group RT scheduler constraints
Group RT scheduler contains protection against setting zero runtime for
cgroup with RT tasks. Right now function tg_set_rt_bandwidth() iterates
over all CPU cgroups and calls tg_has_rt_tasks() for any cgroup which
runtime is zero (not only for changed one). Default RT runtime is zero,
thus tg_has_rt_tasks() will is called for almost at CPU cgroups.

This protection already is slightly racy: runtime limit could be changed
between cpu_cgroup_can_attach() and cpu_cgroup_attach() because changing
cgroup attribute does not lock cgroup_mutex while attach does not lock
rt_constraints_mutex. Changing task scheduler class also races with
changing rt runtime: check in __sched_setscheduler() isn't protected.

Function tg_has_rt_tasks() iterates over all threads in the system.
This gives NR_CGROUPS * NR_TASKS operations under single tasklist_lock
locked for read tg_set_rt_bandwidth(). Any concurrent attempt of locking
tasklist_lock for write (for example fork) will stuck with disabled irqs.

This patch makes two optimizations:
1) Remove locking tasklist_lock and iterate only tasks in cgroup
2) Call tg_has_rt_tasks() iff rt runtime changes from non-zero to zero

All changed code is under CONFIG_RT_GROUP_SCHED.

Testcase:

 # mkdir /sys/fs/cgroup/cpu/test{1..10000}
 # echo 0 | tee /sys/fs/cgroup/cpu/test*/cpu.rt_runtime_us

At the same time without patch fork time will be >100ms:

 # perf trace -e clone --duration 100 stress-ng --fork 1

Also remote ping will show timings >100ms caused by irq latency.

Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/157996383820.4651.11292439232549211693.stgit@buzz
2020-01-28 21:37:09 +01:00
Srikar Dronamraju
bec2860a2b sched/fair: Optimize select_idle_core()
Currently we loop through all threads of a core to evaluate if the core is
idle or not. This is unnecessary. If a thread of a core is not idle, skip
evaluating other threads of a core. Also while clearing the cpumask, bits
of all CPUs of a core can be cleared in one-shot.

Collecting ticks on a Power 9 SMT 8 system around select_idle_core
while running schbench shows us

(units are in ticks, hence lesser is better)
Without patch
    N        Min     Max     Median         Avg      Stddev
x 130        151    1083        284   322.72308   144.41494

With patch
    N        Min     Max     Median         Avg      Stddev   Improvement
x 164         88     610        201   225.79268   106.78943        30.03%

Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Link: https://lkml.kernel.org/r/20191206172422.6578-1-srikar@linux.vnet.ibm.com
2020-01-28 21:37:08 +01:00
Giovanni Gherdovich
1567c3e346 x86, sched: Add support for frequency invariance
Implement arch_scale_freq_capacity() for 'modern' x86. This function
is used by the scheduler to correctly account usage in the face of
DVFS.

The present patch addresses Intel processors specifically and has positive
performance and performance-per-watt implications for the schedutil cpufreq
governor, bringing it closer to, if not on-par with, the powersave governor
from the intel_pstate driver/framework.

Large performance gains are obtained when the machine is lightly loaded and
no regression are observed at saturation. The benchmarks with the largest
gains are kernel compilation, tbench (the networking version of dbench) and
shell-intensive workloads.

1. FREQUENCY INVARIANCE: MOTIVATION
   * Without it, a task looks larger if the CPU runs slower

2. PECULIARITIES OF X86
   * freq invariance accounting requires knowing the ratio freq_curr/freq_max
   2.1 CURRENT FREQUENCY
       * Use delta_APERF / delta_MPERF * freq_base (a.k.a "BusyMHz")
   2.2 MAX FREQUENCY
       * It varies with time (turbo). As an approximation, we set it to a
         constant, i.e. 4-cores turbo frequency.

3. EFFECTS ON THE SCHEDUTIL FREQUENCY GOVERNOR
   * The invariant schedutil's formula has no feedback loop and reacts faster
     to utilization changes

4. KNOWN LIMITATIONS
   * In some cases tasks can't reach max util despite how hard they try

5. PERFORMANCE TESTING
   5.1 MACHINES
       * Skylake, Broadwell, Haswell
   5.2 SETUP
       * baseline Linux v5.2 w/ non-invariant schedutil. Tested freq_max = 1-2-3-4-8-12
         active cores turbo w/ invariant schedutil, and intel_pstate/powersave
   5.3 BENCHMARK RESULTS
       5.3.1 NEUTRAL BENCHMARKS
             * NAS Parallel Benchmark (HPC), hackbench
       5.3.2 NON-NEUTRAL BENCHMARKS
             * tbench (10-30% better), kernbench (10-15% better),
               shell-intensive-scripts (30-50% better)
             * no regressions
       5.3.3 SELECTION OF DETAILED RESULTS
       5.3.4 POWER CONSUMPTION, PERFORMANCE-PER-WATT
             * dbench (5% worse on one machine), kernbench (3% worse),
               tbench (5-10% better), shell-intensive-scripts (10-40% better)

6. MICROARCH'ES ADDRESSED HERE
   * Xeon Core before Scalable Performance processors line (Xeon Gold/Platinum
     etc have different MSRs semantic for querying turbo levels)

7. REFERENCES
   * MMTests performance testing framework, github.com/gormanm/mmtests

 +-------------------------------------------------------------------------+
 | 1. FREQUENCY INVARIANCE: MOTIVATION
 +-------------------------------------------------------------------------+

For example; suppose a CPU has two frequencies: 500 and 1000 Mhz. When
running a task that would consume 1/3rd of a CPU at 1000 MHz, it would
appear to consume 2/3rd (or 66.6%) when running at 500 MHz, giving the
false impression this CPU is almost at capacity, even though it can go
faster [*]. In a nutshell, without frequency scale-invariance tasks look
larger just because the CPU is running slower.

[*] (footnote: this assumes a linear frequency/performance relation; which
everybody knows to be false, but given realities its the best approximation
we can make.)

 +-------------------------------------------------------------------------+
 | 2. PECULIARITIES OF X86
 +-------------------------------------------------------------------------+

Accounting for frequency changes in PELT signals requires the computation of
the ratio freq_curr / freq_max. On x86 neither of those terms is readily
available.

2.1 CURRENT FREQUENCY
====================

Since modern x86 has hardware control over the actual frequency we run
at (because amongst other things, Turbo-Mode), we cannot simply use
the frequency as requested through cpufreq.

Instead we use the APERF/MPERF MSRs to compute the effective frequency
over the recent past. Also, because reading MSRs is expensive, don't
do so every time we need the value, but amortize the cost by doing it
every tick.

2.2 MAX FREQUENCY
=================

Obtaining freq_max is also non-trivial because at any time the hardware can
provide a frequency boost to a selected subset of cores if the package has
enough power to spare (eg: Turbo Boost). This means that the maximum frequency
available to a given core changes with time.

The approach taken in this change is to arbitrarily set freq_max to a constant
value at boot. The value chosen is the "4-cores (4C) turbo frequency" on most
microarchitectures, after evaluating the following candidates:

    * 1-core (1C) turbo frequency (the fastest turbo state available)
    * around base frequency (a.k.a. max P-state)
    * something in between, such as 4C turbo

To interpret these options, consider that this is the denominator in
freq_curr/freq_max, and that ratio will be used to scale PELT signals such as
util_avg and load_avg. A large denominator will undershoot (util_avg looks a
bit smaller than it really is), viceversa with a smaller denominator PELT
signals will tend to overshoot. Given that PELT drives frequency selection
in the schedutil governor, we will have:

    freq_max set to     | effect on DVFS
    --------------------+------------------
    1C turbo            | power efficiency (lower freq choices)
    base freq           | performance (higher util_avg, higher freq requests)
    4C turbo            | a bit of both

4C turbo proves to be a good compromise in a number of benchmarks (see below).

 +-------------------------------------------------------------------------+
 | 3. EFFECTS ON THE SCHEDUTIL FREQUENCY GOVERNOR
 +-------------------------------------------------------------------------+

Once an architecture implements a frequency scale-invariant utilization (the
PELT signal util_avg), schedutil switches its frequency selection formula from

    freq_next = 1.25 * freq_curr * util            [non-invariant util signal]

to

    freq_next = 1.25 * freq_max * util             [invariant util signal]

where, in the second formula, freq_max is set to the 1C turbo frequency (max
turbo). The advantage of the second formula, whose usage we unlock with this
patch, is that freq_next doesn't depend on the current frequency in an
iterative fashion, but can jump to any frequency in a single update. This
absence of feedback in the formula makes it quicker to react to utilization
changes and more robust against pathological instabilities.

Compare it to the update formula of intel_pstate/powersave:

    freq_next = 1.25 * freq_max * Busy%

where again freq_max is 1C turbo and Busy% is the percentage of time not spent
idling (calculated with delta_MPERF / delta_TSC); essentially the same as
invariant schedutil, and largely responsible for intel_pstate/powersave good
reputation. The non-invariant schedutil formula is derived from the invariant
one by approximating util_inv with util_raw * freq_curr / freq_max, but this
has limitations.

Testing shows improved performances due to better frequency selections when
the machine is lightly loaded, and essentially no change in behaviour at
saturation / overutilization.

 +-------------------------------------------------------------------------+
 | 4. KNOWN LIMITATIONS
 +-------------------------------------------------------------------------+

It's been shown that it is possible to create pathological scenarios where a
CPU-bound task cannot reach max utilization, if the normalizing factor
freq_max is fixed to a constant value (see [Lelli-2018]).

If freq_max is set to 4C turbo as we do here, one needs to peg at least 5
cores in a package doing some busywork, and observe that none of those task
will ever reach max util (1024) because they're all running at less than the
4C turbo frequency.

While this concern still applies, we believe the performance benefit of
frequency scale-invariant PELT signals outweights the cost of this limitation.

 [Lelli-2018]
 https://lore.kernel.org/lkml/20180517150418.GF22493@localhost.localdomain/

 +-------------------------------------------------------------------------+
 | 5. PERFORMANCE TESTING
 +-------------------------------------------------------------------------+

5.1 MACHINES
============

We tested the patch on three machines, with Skylake, Broadwell and Haswell
CPUs. The details are below, together with the available turbo ratios as
reported by the appropriate MSRs.

* 8x-SKYLAKE-UMA:
  Single socket E3-1240 v5, Skylake 4 cores/8 threads
  Max EFFiciency, BASE frequency and available turbo levels (MHz):

    EFFIC    800 |********
    BASE    3500 |***********************************
    4C      3700 |*************************************
    3C      3800 |**************************************
    2C      3900 |***************************************
    1C      3900 |***************************************

* 80x-BROADWELL-NUMA:
  Two sockets E5-2698 v4, 2x Broadwell 20 cores/40 threads
  Max EFFiciency, BASE frequency and available turbo levels (MHz):

    EFFIC   1200 |************
    BASE    2200 |**********************
    8C      2900 |*****************************
    7C      3000 |******************************
    6C      3100 |*******************************
    5C      3200 |********************************
    4C      3300 |*********************************
    3C      3400 |**********************************
    2C      3600 |************************************
    1C      3600 |************************************

* 48x-HASWELL-NUMA
  Two sockets E5-2670 v3, 2x Haswell 12 cores/24 threads
  Max EFFiciency, BASE frequency and available turbo levels (MHz):

    EFFIC   1200 |************
    BASE    2300 |***********************
    12C     2600 |**************************
    11C     2600 |**************************
    10C     2600 |**************************
    9C      2600 |**************************
    8C      2600 |**************************
    7C      2600 |**************************
    6C      2600 |**************************
    5C      2700 |***************************
    4C      2800 |****************************
    3C      2900 |*****************************
    2C      3100 |*******************************
    1C      3100 |*******************************

5.2 SETUP
=========

* The baseline is Linux v5.2 with schedutil (non-invariant) and the intel_pstate
  driver in passive mode.
* The rationale for choosing the various freq_max values to test have been to
  try all the 1-2-3-4C turbo levels (note that 1C and 2C turbo are identical
  on all machines), plus one more value closer to base_freq but still in the
  turbo range (8C turbo for both 80x-BROADWELL-NUMA and 48x-HASWELL-NUMA).
* In addition we've run all tests with intel_pstate/powersave for comparison.
* The filesystem is always XFS, the userspace is openSUSE Leap 15.1.
* 8x-SKYLAKE-UMA is capable of HWP (Hardware-Managed P-States), so the runs
  with active intel_pstate on this machine use that.

This gives, in terms of combinations tested on each machine:

* 8x-SKYLAKE-UMA
  * Baseline: Linux v5.2, non-invariant schedutil, intel_pstate passive
  * intel_pstate active + powersave + HWP
  * invariant schedutil, freq_max = 1C turbo
  * invariant schedutil, freq_max = 3C turbo
  * invariant schedutil, freq_max = 4C turbo

* both 80x-BROADWELL-NUMA and 48x-HASWELL-NUMA
  * [same as 8x-SKYLAKE-UMA, but no HWP capable]
  * invariant schedutil, freq_max = 8C turbo
    (which on 48x-HASWELL-NUMA is the same as 12C turbo, or "all cores turbo")

5.3 BENCHMARK RESULTS
=====================

5.3.1 NEUTRAL BENCHMARKS
------------------------

Tests that didn't show any measurable difference in performance on any of the
test machines between non-invariant schedutil and our patch are:

* NAS Parallel Benchmarks (NPB) using either MPI or openMP for IPC, any
  computational kernel
* flexible I/O (FIO)
* hackbench (using threads or processes, and using pipes or sockets)

5.3.2 NON-NEUTRAL BENCHMARKS
----------------------------

What follow are summary tables where each benchmark result is given a score.

* A tilde (~) means a neutral result, i.e. no difference from baseline.
* Scores are computed with the ratio result_new / result_baseline, so a tilde
  means a score of 1.00.
* The results in the score ratio are the geometric means of results running
  the benchmark with different parameters (eg: for kernbench: using 1, 2, 4,
  ... number of processes; for pgbench: varying the number of clients, and so
  on).
* The first three tables show higher-is-better kind of tests (i.e. measured in
  operations/second), the subsequent three show lower-is-better kind of tests
  (i.e. the workload is fixed and we measure elapsed time, think kernbench).
* "gitsource" is a name we made up for the test consisting in running the
  entire unit tests suite of the Git SCM and measuring how long it takes. We
  take it as a typical example of shell-intensive serialized workload.
* In the "I_PSTATE" column we have the results for intel_pstate/powersave. Other
  columns show invariant schedutil for different values of freq_max. 4C turbo
  is circled as it's the value we've chosen for the final implementation.

80x-BROADWELL-NUMA (comparison ratio; higher is better)
                                         +------+
                 I_PSTATE   1C     3C    | 4C   |  8C
pgbench-ro           1.14   ~      ~     | 1.11 |  1.14
pgbench-rw           ~      ~      ~     | ~    |  ~
netperf-udp          1.06   ~      1.06  | 1.05 |  1.07
netperf-tcp          ~      1.03   ~     | 1.01 |  1.02
tbench4              1.57   1.18   1.22  | 1.30 |  1.56
                                         +------+

8x-SKYLAKE-UMA (comparison ratio; higher is better)
                                         +------+
             I_PSTATE/HWP   1C     3C    | 4C   |
pgbench-ro           ~      ~      ~     | ~    |
pgbench-rw           ~      ~      ~     | ~    |
netperf-udp          ~      ~      ~     | ~    |
netperf-tcp          ~      ~      ~     | ~    |
tbench4              1.30   1.14   1.14  | 1.16 |
                                         +------+

48x-HASWELL-NUMA (comparison ratio; higher is better)
                                         +------+
                 I_PSTATE   1C     3C    | 4C   |  12C
pgbench-ro           1.15   ~      ~     | 1.06 |  1.16
pgbench-rw           ~      ~      ~     | ~    |  ~
netperf-udp          1.05   0.97   1.04  | 1.04 |  1.02
netperf-tcp          0.96   1.01   1.01  | 1.01 |  1.01
tbench4              1.50   1.05   1.13  | 1.13 |  1.25
                                         +------+

In the table above we see that active intel_pstate is slightly better than our
4C-turbo patch (both in reference to the baseline non-invariant schedutil) on
read-only pgbench and much better on tbench. Both cases are notable in which
it shows that lowering our freq_max (to 8C-turbo and 12C-turbo on
80x-BROADWELL-NUMA and 48x-HASWELL-NUMA respectively) helps invariant
schedutil to get closer.

If we ignore active intel_pstate and focus on the comparison with baseline
alone, there are several instances of double-digit performance improvement.

80x-BROADWELL-NUMA (comparison ratio; lower is better)
                                         +------+
                 I_PSTATE   1C     3C    | 4C   |  8C
dbench4              1.23   0.95   0.95  | 0.95 |  0.95
kernbench            0.93   0.83   0.83  | 0.83 |  0.82
gitsource            0.98   0.49   0.49  | 0.49 |  0.48
                                         +------+

8x-SKYLAKE-UMA (comparison ratio; lower is better)
                                         +------+
             I_PSTATE/HWP   1C     3C    | 4C   |
dbench4              ~      ~      ~     | ~    |
kernbench            ~      ~      ~     | ~    |
gitsource            0.92   0.55   0.55  | 0.55 |
                                         +------+

48x-HASWELL-NUMA (comparison ratio; lower is better)
                                         +------+
                 I_PSTATE   1C     3C    | 4C   |  8C
dbench4              ~      ~      ~     | ~    |  ~
kernbench            0.94   0.90   0.89  | 0.90 |  0.90
gitsource            0.97   0.69   0.69  | 0.69 |  0.69
                                         +------+

dbench is not very remarkable here, unless we notice how poorly active
intel_pstate is performing on 80x-BROADWELL-NUMA: 23% regression versus
non-invariant schedutil. We repeated that run getting consistent results. Out
of scope for the patch at hand, but deserving future investigation. Other than
that, we previously ran this campaign with Linux v5.0 and saw the patch doing
better on dbench a the time. We haven't checked closely and can only speculate
at this point.

On the NUMA boxes kernbench gets 10-15% improvements on average; we'll see in
the detailed tables that the gains concentrate on low process counts (lightly
loaded machines).

The test we call "gitsource" (running the git unit test suite, a long-running
single-threaded shell script) appears rather spectacular in this table (gains
of 30-50% depending on the machine). It is to be noted, however, that
gitsource has no adjustable parameters (such as the number of jobs in
kernbench, which we average over in order to get a single-number summary
score) and is exactly the kind of low-parallelism workload that benefits the
most from this patch. When looking at the detailed tables of kernbench or
tbench4, at low process or client counts one can see similar numbers.

5.3.3 SELECTION OF DETAILED RESULTS
-----------------------------------

Machine            : 48x-HASWELL-NUMA
Benchmark          : tbench4 (i.e. dbench4 over the network, actually loopback)
Varying parameter  : number of clients
Unit               : MB/sec (higher is better)

                   5.2.0 vanilla (BASELINE)               5.2.0 intel_pstate                   5.2.0 1C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Hmean  1        126.73  +- 0.31% (        )      315.91  +- 0.66% ( 149.28%)      125.03  +- 0.76% (  -1.34%)
Hmean  2        258.04  +- 0.62% (        )      614.16  +- 0.51% ( 138.01%)      269.58  +- 1.45% (   4.47%)
Hmean  4        514.30  +- 0.67% (        )     1146.58  +- 0.54% ( 122.94%)      533.84  +- 1.99% (   3.80%)
Hmean  8       1111.38  +- 2.52% (        )     2159.78  +- 0.38% (  94.33%)     1359.92  +- 1.56% (  22.36%)
Hmean  16      2286.47  +- 1.36% (        )     3338.29  +- 0.21% (  46.00%)     2720.20  +- 0.52% (  18.97%)
Hmean  32      4704.84  +- 0.35% (        )     4759.03  +- 0.43% (   1.15%)     4774.48  +- 0.30% (   1.48%)
Hmean  64      7578.04  +- 0.27% (        )     7533.70  +- 0.43% (  -0.59%)     7462.17  +- 0.65% (  -1.53%)
Hmean  128     6998.52  +- 0.16% (        )     6987.59  +- 0.12% (  -0.16%)     6909.17  +- 0.14% (  -1.28%)
Hmean  192     6901.35  +- 0.25% (        )     6913.16  +- 0.10% (   0.17%)     6855.47  +- 0.21% (  -0.66%)

                             5.2.0 3C-turbo                   5.2.0 4C-turbo                  5.2.0 12C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Hmean  1        128.43  +- 0.28% (   1.34%)      130.64  +- 3.81% (   3.09%)      153.71  +- 5.89% (  21.30%)
Hmean  2        311.70  +- 6.15% (  20.79%)      281.66  +- 3.40% (   9.15%)      305.08  +- 5.70% (  18.23%)
Hmean  4        641.98  +- 2.32% (  24.83%)      623.88  +- 5.28% (  21.31%)      906.84  +- 4.65% (  76.32%)
Hmean  8       1633.31  +- 1.56% (  46.96%)     1714.16  +- 0.93% (  54.24%)     2095.74  +- 0.47% (  88.57%)
Hmean  16      3047.24  +- 0.42% (  33.27%)     3155.02  +- 0.30% (  37.99%)     3634.58  +- 0.15% (  58.96%)
Hmean  32      4734.31  +- 0.60% (   0.63%)     4804.38  +- 0.23% (   2.12%)     4674.62  +- 0.27% (  -0.64%)
Hmean  64      7699.74  +- 0.35% (   1.61%)     7499.72  +- 0.34% (  -1.03%)     7659.03  +- 0.25% (   1.07%)
Hmean  128     6935.18  +- 0.15% (  -0.91%)     6942.54  +- 0.10% (  -0.80%)     7004.85  +- 0.12% (   0.09%)
Hmean  192     6901.62  +- 0.12% (   0.00%)     6856.93  +- 0.10% (  -0.64%)     6978.74  +- 0.10% (   1.12%)

This is one of the cases where the patch still can't surpass active
intel_pstate, not even when freq_max is as low as 12C-turbo. Otherwise, gains are
visible up to 16 clients and the saturated scenario is the same as baseline.

The scores in the summary table from the previous sections are ratios of
geometric means of the results over different clients, as seen in this table.

Machine            : 80x-BROADWELL-NUMA
Benchmark          : kernbench (kernel compilation)
Varying parameter  : number of jobs
Unit               : seconds (lower is better)

                   5.2.0 vanilla (BASELINE)               5.2.0 intel_pstate                   5.2.0 1C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean  2        379.68  +- 0.06% (        )      330.20  +- 0.43% (  13.03%)      285.93  +- 0.07% (  24.69%)
Amean  4        200.15  +- 0.24% (        )      175.89  +- 0.22% (  12.12%)      153.78  +- 0.25% (  23.17%)
Amean  8        106.20  +- 0.31% (        )       95.54  +- 0.23% (  10.03%)       86.74  +- 0.10% (  18.32%)
Amean  16        56.96  +- 1.31% (        )       53.25  +- 1.22% (   6.50%)       48.34  +- 1.73% (  15.13%)
Amean  32        34.80  +- 2.46% (        )       33.81  +- 0.77% (   2.83%)       30.28  +- 1.59% (  12.99%)
Amean  64        26.11  +- 1.63% (        )       25.04  +- 1.07% (   4.10%)       22.41  +- 2.37% (  14.16%)
Amean  128       24.80  +- 1.36% (        )       23.57  +- 1.23% (   4.93%)       21.44  +- 1.37% (  13.55%)
Amean  160       24.85  +- 0.56% (        )       23.85  +- 1.17% (   4.06%)       21.25  +- 1.12% (  14.49%)

                             5.2.0 3C-turbo                   5.2.0 4C-turbo                   5.2.0 8C-turbo
- - - - - - - -  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean  2        284.08  +- 0.13% (  25.18%)      283.96  +- 0.51% (  25.21%)      285.05  +- 0.21% (  24.92%)
Amean  4        153.18  +- 0.22% (  23.47%)      154.70  +- 1.64% (  22.71%)      153.64  +- 0.30% (  23.24%)
Amean  8         87.06  +- 0.28% (  18.02%)       86.77  +- 0.46% (  18.29%)       86.78  +- 0.22% (  18.28%)
Amean  16        48.03  +- 0.93% (  15.68%)       47.75  +- 1.99% (  16.17%)       47.52  +- 1.61% (  16.57%)
Amean  32        30.23  +- 1.20% (  13.14%)       30.08  +- 1.67% (  13.57%)       30.07  +- 1.67% (  13.60%)
Amean  64        22.59  +- 2.02% (  13.50%)       22.63  +- 0.81% (  13.32%)       22.42  +- 0.76% (  14.12%)
Amean  128       21.37  +- 0.67% (  13.82%)       21.31  +- 1.15% (  14.07%)       21.17  +- 1.93% (  14.63%)
Amean  160       21.68  +- 0.57% (  12.76%)       21.18  +- 1.74% (  14.77%)       21.22  +- 1.00% (  14.61%)

The patch outperform active intel_pstate (and baseline) by a considerable
margin; the summary table from the previous section says 4C turbo and active
intel_pstate are 0.83 and 0.93 against baseline respectively, so 4C turbo is
0.83/0.93=0.89 against intel_pstate (~10% better on average). There is no
noticeable difference with regard to the value of freq_max.

Machine            : 8x-SKYLAKE-UMA
Benchmark          : gitsource (time to run the git unit test suite)
Varying parameter  : none
Unit               : seconds (lower is better)

                            5.2.0 vanilla           5.2.0 intel_pstate/hwp         5.2.0 1C-turbo
- - - - - - - -  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean         858.85  +- 1.16% (        )      791.94  +- 0.21% (   7.79%)      474.95 (  44.70%)

                           5.2.0 3C-turbo                   5.2.0 4C-turbo
- - - - - - - -  - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean         475.26  +- 0.20% (  44.66%)      474.34  +- 0.13% (  44.77%)

In this test, which is of interest as representing shell-intensive
(i.e. fork-intensive) serialized workloads, invariant schedutil outperforms
intel_pstate/powersave by a whopping 40% margin.

5.3.4 POWER CONSUMPTION, PERFORMANCE-PER-WATT
---------------------------------------------

The following table shows average power consumption in watt for each
benchmark. Data comes from turbostat (package average), which in turn is read
from the RAPL interface on CPUs. We know the patch affects CPU frequencies so
it's reasonable to ignore other power consumers (such as memory or I/O). Also,
we don't have a power meter available in the lab so RAPL is the best we have.

turbostat sampled average power every 10 seconds for the entire duration of
each benchmark. We took all those values and averaged them (i.e. with don't
have detail on a per-parameter granularity, only on whole benchmarks).

80x-BROADWELL-NUMA (power consumption, watts)
                                                    +--------+
               BASELINE I_PSTATE       1C       3C  |     4C |      8C
pgbench-ro       130.01   142.77   131.11   132.45  | 134.65 |  136.84
pgbench-rw        68.30    60.83    71.45    71.70  |  71.65 |   72.54
dbench4           90.25    59.06   101.43    99.89  | 101.10 |  102.94
netperf-udp       65.70    69.81    66.02    68.03  |  68.27 |   68.95
netperf-tcp       88.08    87.96    88.97    88.89  |  88.85 |   88.20
tbench4          142.32   176.73   153.02   163.91  | 165.58 |  176.07
kernbench         92.94   101.95   114.91   115.47  | 115.52 |  115.10
gitsource         40.92    41.87    75.14    75.20  |  75.40 |   75.70
                                                    +--------+
8x-SKYLAKE-UMA (power consumption, watts)
                                                    +--------+
              BASELINE I_PSTATE/HWP    1C       3C  |     4C |
pgbench-ro        46.49    46.68    46.56    46.59  |  46.52 |
pgbench-rw        29.34    31.38    30.98    31.00  |  31.00 |
dbench4           27.28    27.37    27.49    27.41  |  27.38 |
netperf-udp       22.33    22.41    22.36    22.35  |  22.36 |
netperf-tcp       27.29    27.29    27.30    27.31  |  27.33 |
tbench4           41.13    45.61    43.10    43.33  |  43.56 |
kernbench         42.56    42.63    43.01    43.01  |  43.01 |
gitsource         13.32    13.69    17.33    17.30  |  17.35 |
                                                    +--------+
48x-HASWELL-NUMA (power consumption, watts)
                                                    +--------+
               BASELINE I_PSTATE       1C       3C  |     4C |     12C
pgbench-ro       128.84   136.04   129.87   132.43  | 132.30 |  134.86
pgbench-rw        37.68    37.92    37.17    37.74  |  37.73 |   37.31
dbench4           28.56    28.73    28.60    28.73  |  28.70 |   28.79
netperf-udp       56.70    60.44    56.79    57.42  |  57.54 |   57.52
netperf-tcp       75.49    75.27    75.87    76.02  |  76.01 |   75.95
tbench4          115.44   139.51   119.53   123.07  | 123.97 |  130.22
kernbench         83.23    91.55    95.58    95.69  |  95.72 |   96.04
gitsource         36.79    36.99    39.99    40.34  |  40.35 |   40.23
                                                    +--------+

A lower power consumption isn't necessarily better, it depends on what is done
with that energy. Here are tables with the ratio of performance-per-watt on
each machine and benchmark. Higher is always better; a tilde (~) means a
neutral ratio (i.e. 1.00).

80x-BROADWELL-NUMA (performance-per-watt ratios; higher is better)
                                     +------+
             I_PSTATE     1C     3C  |   4C |    8C
pgbench-ro       1.04   1.06   0.94  | 1.07 |  1.08
pgbench-rw       1.10   0.97   0.96  | 0.96 |  0.97
dbench4          1.24   0.94   0.95  | 0.94 |  0.92
netperf-udp      ~      1.02   1.02  | ~    |  1.02
netperf-tcp      ~      1.02   ~     | ~    |  1.02
tbench4          1.26   1.10   1.06  | 1.12 |  1.26
kernbench        0.98   0.97   0.97  | 0.97 |  0.98
gitsource        ~      1.11   1.11  | 1.11 |  1.13
                                     +------+

8x-SKYLAKE-UMA (performance-per-watt ratios; higher is better)
                                     +------+
         I_PSTATE/HWP     1C     3C  |   4C |
pgbench-ro       ~      ~      ~     | ~    |
pgbench-rw       0.95   0.97   0.96  | 0.96 |
dbench4          ~      ~      ~     | ~    |
netperf-udp      ~      ~      ~     | ~    |
netperf-tcp      ~      ~      ~     | ~    |
tbench4          1.17   1.09   1.08  | 1.10 |
kernbench        ~      ~      ~     | ~    |
gitsource        1.06   1.40   1.40  | 1.40 |
                                     +------+

48x-HASWELL-NUMA  (performance-per-watt ratios; higher is better)
                                     +------+
             I_PSTATE     1C     3C  |   4C |   12C
pgbench-ro       1.09   ~      1.09  | 1.03 |  1.11
pgbench-rw       ~      0.86   ~     | ~    |  0.86
dbench4          ~      1.02   1.02  | 1.02 |  ~
netperf-udp      ~      0.97   1.03  | 1.02 |  ~
netperf-tcp      0.96   ~      ~     | ~    |  ~
tbench4          1.24   ~      1.06  | 1.05 |  1.11
kernbench        0.97   0.97   0.98  | 0.97 |  0.96
gitsource        1.03   1.33   1.32  | 1.32 |  1.33
                                     +------+

These results are overall pleasing: in plenty of cases we observe
performance-per-watt improvements. The few regressions (read/write pgbench and
dbench on the Broadwell machine) are of small magnitude. kernbench loses a few
percentage points (it has a 10-15% performance improvement, but apparently the
increase in power consumption is larger than that). tbench4 and gitsource, which
benefit the most from the patch, keep a positive score in this table which is
a welcome surprise; that suggests that in those particular workloads the
non-invariant schedutil (and active intel_pstate, too) makes some rather
suboptimal frequency selections.

+-------------------------------------------------------------------------+
| 6. MICROARCH'ES ADDRESSED HERE
+-------------------------------------------------------------------------+

The patch addresses Xeon Core processors that use MSR_PLATFORM_INFO and
MSR_TURBO_RATIO_LIMIT to advertise their base frequency and turbo frequencies
respectively. This excludes the recent Xeon Scalable Performance processors
line (Xeon Gold, Platinum etc) whose MSRs have to be parsed differently.

Subsequent patches will address:

* Xeon Scalable Performance processors and Atom Goldmont/Goldmont Plus
* Xeon Phi (Knights Landing, Knights Mill)
* Atom Silvermont

+-------------------------------------------------------------------------+
| 7. REFERENCES
+-------------------------------------------------------------------------+

Tests have been run with the help of the MMTests performance testing
framework, see github.com/gormanm/mmtests. The configuration file names for
the benchmark used are:

    db-pgbench-timed-ro-small-xfs
    db-pgbench-timed-rw-small-xfs
    io-dbench4-async-xfs
    network-netperf-unbound
    network-tbench
    scheduler-unbound
    workload-kerndevel-xfs
    workload-shellscripts-xfs
    hpc-nas-c-class-mpi-full-xfs
    hpc-nas-c-class-omp-full

All those benchmarks are generally available on the web:

pgbench: https://www.postgresql.org/docs/10/pgbench.html
netperf: https://hewlettpackard.github.io/netperf/
dbench/tbench: https://dbench.samba.org/
gitsource: git unit test suite, github.com/git/git
NAS Parallel Benchmarks: https://www.nas.nasa.gov/publications/npb.html
hackbench: https://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Doug Smythies <dsmythies@telus.net>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/20200122151617.531-2-ggherdovich@suse.cz
2020-01-28 21:36:59 +01:00
Vincent Guittot
2a4b03ffc6 sched/fair: Prevent unlimited runtime on throttled group
When a running task is moved on a throttled task group and there is no
other task enqueued on the CPU, the task can keep running using 100% CPU
whatever the allocated bandwidth for the group and although its cfs rq is
throttled. Furthermore, the group entity of the cfs_rq and its parents are
not enqueued but only set as curr on their respective cfs_rqs.

We have the following sequence:

sched_move_task
  -dequeue_task: dequeue task and group_entities.
  -put_prev_task: put task and group entities.
  -sched_change_group: move task to new group.
  -enqueue_task: enqueue only task but not group entities because cfs_rq is
    throttled.
  -set_next_task : set task and group_entities as current sched_entity of
    their cfs_rq.

Another impact is that the root cfs_rq runnable_load_avg at root rq stays
null because the group_entities are not enqueued. This situation will stay
the same until an "external" event triggers a reschedule. Let trigger it
immediately instead.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Ben Segall <bsegall@google.com>
Link: https://lkml.kernel.org/r/1579011236-31256-1-git-send-email-vincent.guittot@linaro.org
2020-01-28 21:36:58 +01:00
Wanpeng Li
e938b9c941 sched/nohz: Optimize get_nohz_timer_target()
On a machine, CPU 0 is used for housekeeping, the other 39 CPUs in the
same socket are in nohz_full mode. We can observe huge time burn in the
loop for seaching nearest busy housekeeper cpu by ftrace.

  2)               |                        get_nohz_timer_target() {
  2)   0.240 us    |                          housekeeping_test_cpu();
  2)   0.458 us    |                          housekeeping_test_cpu();

  ...

  2)   0.292 us    |                          housekeeping_test_cpu();
  2)   0.240 us    |                          housekeeping_test_cpu();
  2)   0.227 us    |                          housekeeping_any_cpu();
  2) + 43.460 us   |                        }

This patch optimizes the searching logic by finding a nearest housekeeper
CPU in the housekeeping cpumask, it can minimize the worst searching time
from ~44us to < 10us in my testing. In addition, the last iterated busy
housekeeper can become a random candidate while current CPU is a better
fallback if it is a housekeeper.

Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/1578876627-11938-1-git-send-email-wanpengli@tencent.com
2020-01-28 21:36:57 +01:00
Qais Yousef
b562d14064 sched/uclamp: Reject negative values in cpu_uclamp_write()
The check to ensure that the new written value into cpu.uclamp.{min,max}
is within range, [0:100], wasn't working because of the signed
comparison

 7301                 if (req.percent > UCLAMP_PERCENT_SCALE) {
 7302                         req.ret = -ERANGE;
 7303                         return req;
 7304                 }

	# echo -1 > cpu.uclamp.min
	# cat cpu.uclamp.min
	42949671.96

Cast req.percent into u64 to force the comparison to be unsigned and
work as intended in capacity_from_percent().

	# echo -1 > cpu.uclamp.min
	sh: write error: Numerical result out of range

Fixes: 2480c09313 ("sched/uclamp: Extend CPU's cgroup controller")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200114210947.14083-1-qais.yousef@arm.com
2020-01-28 21:36:56 +01:00
Mel Gorman
b396f52326 sched/fair: Allow a small load imbalance between low utilisation SD_NUMA domains
The CPU load balancer balances between different domains to spread load
and strives to have equal balance everywhere. Communicating tasks can
migrate so they are topologically close to each other but these decisions
are independent. On a lightly loaded NUMA machine, two communicating tasks
pulled together at wakeup time can be pushed apart by the load balancer.
In isolation, the load balancer decision is fine but it ignores the tasks
data locality and the wakeup/LB paths continually conflict. NUMA balancing
is also a factor but it also simply conflicts with the load balancer.

This patch allows a fixed degree of imbalance of two tasks to exist
between NUMA domains regardless of utilisation levels. In many cases,
this prevents communicating tasks being pulled apart. It was evaluated
whether the imbalance should be scaled to the domain size. However, no
additional benefit was measured across a range of workloads and machines
and scaling adds the risk that lower domains have to be rebalanced. While
this could change again in the future, such a change should specify the
use case and benefit.

The most obvious impact is on netperf TCP_STREAM -- two simple
communicating tasks with some softirq offload depending on the
transmission rate.

 2-socket Haswell machine 48 core, HT enabled
 netperf-tcp -- mmtests config config-network-netperf-unbound
			      baseline              lbnuma-v3
 Hmean     64         568.73 (   0.00%)      577.56 *   1.55%*
 Hmean     128       1089.98 (   0.00%)     1128.06 *   3.49%*
 Hmean     256       2061.72 (   0.00%)     2104.39 *   2.07%*
 Hmean     1024      7254.27 (   0.00%)     7557.52 *   4.18%*
 Hmean     2048     11729.20 (   0.00%)    13350.67 *  13.82%*
 Hmean     3312     15309.08 (   0.00%)    18058.95 *  17.96%*
 Hmean     4096     17338.75 (   0.00%)    20483.66 *  18.14%*
 Hmean     8192     25047.12 (   0.00%)    27806.84 *  11.02%*
 Hmean     16384    27359.55 (   0.00%)    33071.88 *  20.88%*
 Stddev    64           2.16 (   0.00%)        2.02 (   6.53%)
 Stddev    128          2.31 (   0.00%)        2.19 (   5.05%)
 Stddev    256         11.88 (   0.00%)        3.22 (  72.88%)
 Stddev    1024        23.68 (   0.00%)        7.24 (  69.43%)
 Stddev    2048        79.46 (   0.00%)       71.49 (  10.03%)
 Stddev    3312        26.71 (   0.00%)       57.80 (-116.41%)
 Stddev    4096       185.57 (   0.00%)       96.15 (  48.19%)
 Stddev    8192       245.80 (   0.00%)      100.73 (  59.02%)
 Stddev    16384      207.31 (   0.00%)      141.65 (  31.67%)

In this case, there was a sizable improvement to performance and
a general reduction in variance. However, this is not univeral.
For most machines, the impact was roughly a 3% performance gain.

 Ops NUMA base-page range updates       19796.00         292.00
 Ops NUMA PTE updates                   19796.00         292.00
 Ops NUMA PMD updates                       0.00           0.00
 Ops NUMA hint faults                   16113.00         143.00
 Ops NUMA hint local faults %            8407.00         142.00
 Ops NUMA hint local percent               52.18          99.30
 Ops NUMA pages migrated                 4244.00           1.00

Without the patch, only 52.18% of sampled accesses are local.  In an
earlier changelog, 100% of sampled accesses are local and indeed on
most machines, this was still the case. In this specific case, the
local sampled rates was 99.3% but note the "base-page range updates"
and "PTE updates".  The activity with the patch is negligible as were
the number of faults. The small number of pages migrated were related to
shared libraries.  A 2-socket Broadwell showed better results on average
but are not presented for brevity as the performance was similar except
it showed 100% of the sampled NUMA hints were local. The patch holds up
for a 4-socket Haswell, an AMD EPYC and AMD Epyc 2 machine.

For dbench, the impact depends on the filesystem used and the number of
clients. On XFS, there is little difference as the clients typically
communicate with workqueues which have a separate class of scheduler
problem at the moment. For ext4, performance is generally better,
particularly for small numbers of clients as NUMA balancing activity is
negligible with the patch applied.

A more interesting example is the Facebook schbench which uses a
number of messaging threads to communicate with worker threads. In this
configuration, one messaging thread is used per NUMA node and the number of
worker threads is varied. The 50, 75, 90, 95, 99, 99.5 and 99.9 percentiles
for response latency is then reported.

 Lat 50.00th-qrtle-1        44.00 (   0.00%)       37.00 (  15.91%)
 Lat 75.00th-qrtle-1        53.00 (   0.00%)       41.00 (  22.64%)
 Lat 90.00th-qrtle-1        57.00 (   0.00%)       42.00 (  26.32%)
 Lat 95.00th-qrtle-1        63.00 (   0.00%)       43.00 (  31.75%)
 Lat 99.00th-qrtle-1        76.00 (   0.00%)       51.00 (  32.89%)
 Lat 99.50th-qrtle-1        89.00 (   0.00%)       52.00 (  41.57%)
 Lat 99.90th-qrtle-1        98.00 (   0.00%)       55.00 (  43.88%)
 Lat 50.00th-qrtle-2        42.00 (   0.00%)       42.00 (   0.00%)
 Lat 75.00th-qrtle-2        48.00 (   0.00%)       47.00 (   2.08%)
 Lat 90.00th-qrtle-2        53.00 (   0.00%)       52.00 (   1.89%)
 Lat 95.00th-qrtle-2        55.00 (   0.00%)       53.00 (   3.64%)
 Lat 99.00th-qrtle-2        62.00 (   0.00%)       60.00 (   3.23%)
 Lat 99.50th-qrtle-2        63.00 (   0.00%)       63.00 (   0.00%)
 Lat 99.90th-qrtle-2        68.00 (   0.00%)       66.00 (   2.94%

For higher worker threads, the differences become negligible but it's
interesting to note the difference in wakeup latency at low utilisation
and mpstat confirms that activity was almost all on one node until
the number of worker threads increase.

Hackbench generally showed neutral results across a range of machines.
This is different to earlier versions of the patch which allowed imbalances
for higher degrees of utilisation. perf bench pipe showed negligible
differences in overall performance as the differences are very close to
the noise.

An earlier prototype of the patch showed major regressions for NAS C-class
when running with only half of the available CPUs -- 20-30% performance
hits were measured at the time. With this version of the patch, the impact
is negligible with small gains/losses within the noise measured. This is
because the number of threads far exceeds the small imbalance the aptch
cares about. Similarly, there were report of regressions for the autonuma
benchmark against earlier versions but again, normal load balancing now
applies for that workload.

In general, the patch simply seeks to avoid unnecessary cross-node
migrations in the basic case where imbalances are very small.  For low
utilisation communicating workloads, this patch generally behaves better
with less NUMA balancing activity. For high utilisation, there is no
change in behaviour.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Phil Auld <pauld@redhat.com>
Tested-by: Phil Auld <pauld@redhat.com>
Link: https://lkml.kernel.org/r/20200114101319.GO3466@techsingularity.net
2020-01-28 21:36:55 +01:00
Peter Zijlstra (Intel)
ebc0f83c78 timers/nohz: Update NOHZ load in remote tick
The way loadavg is tracked during nohz only pays attention to the load
upon entering nohz.  This can be particularly noticeable if full nohz is
entered while non-idle, and then the cpu goes idle and stays that way for
a long time.

Use the remote tick to ensure that full nohz cpus report their deltas
within a reasonable time.

[ swood: Added changelog and removed recheck of stopped tick. ]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Scott Wood <swood@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/1578736419-14628-3-git-send-email-swood@redhat.com
2020-01-28 21:36:44 +01:00
Scott Wood
488603b815 sched/core: Don't skip remote tick for idle CPUs
This will be used in the next patch to get a loadavg update from
nohz cpus.  The delta check is skipped because idle_sched_class
doesn't update se.exec_start.

Signed-off-by: Scott Wood <swood@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/1578736419-14628-2-git-send-email-swood@redhat.com
2020-01-28 21:36:16 +01:00
Song Liu
07c5972951 perf/cgroups: Install cgroup events to correct cpuctx
cgroup events are always installed in the cpuctx. However, when it is not
installed via IPI, list_update_cgroup_event() adds it to cpuctx of current
CPU, which triggers list corruption:

  [] list_add double add: new=ffff888ff7cf0db0, prev=ffff888ff7ce82f0, next=ffff888ff7cf0db0.

To reproduce this, we can simply run:

  # perf stat -e cs -a &
  # perf stat -e cs -G anycgroup

Fix this by installing it to cpuctx that contains event->ctx, and the
proper cgrp_cpuctx_list.

Fixes: db0503e4f6 ("perf/core: Optimize perf_install_in_event()")
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200122195027.2112449-1-songliubraving@fb.com
2020-01-28 21:20:19 +01:00
Song Liu
003461559e perf/core: Fix mlock accounting in perf_mmap()
Decreasing sysctl_perf_event_mlock between two consecutive perf_mmap()s of
a perf ring buffer may lead to an integer underflow in locked memory
accounting. This may lead to the undesired behaviors, such as failures in
BPF map creation.

Address this by adjusting the accounting logic to take into account the
possibility that the amount of already locked memory may exceed the
current limit.

Fixes: c4b7547974 ("perf/core: Make the mlock accounting simple again")
Suggested-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
Acked-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Link: https://lkml.kernel.org/r/20200123181146.2238074-1-songliubraving@fb.com
2020-01-28 21:20:18 +01:00
Linus Torvalds
c677124e63 Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
 "These were the main changes in this cycle:

   - More -rt motivated separation of CONFIG_PREEMPT and
     CONFIG_PREEMPTION.

   - Add more low level scheduling topology sanity checks and warnings
     to filter out nonsensical topologies that break scheduling.

   - Extend uclamp constraints to influence wakeup CPU placement

   - Make the RT scheduler more aware of asymmetric topologies and CPU
     capacities, via uclamp metrics, if CONFIG_UCLAMP_TASK=y

   - Make idle CPU selection more consistent

   - Various fixes, smaller cleanups, updates and enhancements - please
     see the git log for details"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (58 commits)
  sched/fair: Define sched_idle_cpu() only for SMP configurations
  sched/topology: Assert non-NUMA topology masks don't (partially) overlap
  idle: fix spelling mistake "iterrupts" -> "interrupts"
  sched/fair: Remove redundant call to cpufreq_update_util()
  sched/psi: create /proc/pressure and /proc/pressure/{io|memory|cpu} only when psi enabled
  sched/fair: Fix sgc->{min,max}_capacity calculation for SD_OVERLAP
  sched/fair: calculate delta runnable load only when it's needed
  sched/cputime: move rq parameter in irqtime_account_process_tick
  stop_machine: Make stop_cpus() static
  sched/debug: Reset watchdog on all CPUs while processing sysrq-t
  sched/core: Fix size of rq::uclamp initialization
  sched/uclamp: Fix a bug in propagating uclamp value in new cgroups
  sched/fair: Load balance aggressively for SCHED_IDLE CPUs
  sched/fair : Improve update_sd_pick_busiest for spare capacity case
  watchdog: Remove soft_lockup_hrtimer_cnt and related code
  sched/rt: Make RT capacity-aware
  sched/fair: Make EAS wakeup placement consider uclamp restrictions
  sched/fair: Make task_fits_capacity() consider uclamp restrictions
  sched/uclamp: Rename uclamp_util_with() into uclamp_rq_util_with()
  sched/uclamp: Make uclamp util helpers use and return UL values
  ...
2020-01-28 10:07:09 -08:00
Linus Torvalds
c0e809e244 Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf updates from Ingo Molnar:
 "Kernel side changes:

   - Ftrace is one of the last W^X violators (after this only KLP is
     left). These patches move it over to the generic text_poke()
     interface and thereby get rid of this oddity. This requires a
     surprising amount of surgery, by Peter Zijlstra.

   - x86/AMD PMUs: add support for 'Large Increment per Cycle Events' to
     count certain types of events that have a special, quirky hw ABI
     (by Kim Phillips)

   - kprobes fixes by Masami Hiramatsu

  Lots of tooling updates as well, the following subcommands were
  updated: annotate/report/top, c2c, clang, record, report/top TUI,
  sched timehist, tests; plus updates were done to the gtk ui, libperf,
  headers and the parser"

* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (57 commits)
  perf/x86/amd: Add support for Large Increment per Cycle Events
  perf/x86/amd: Constrain Large Increment per Cycle events
  perf/x86/intel/rapl: Add Comet Lake support
  tracing: Initialize ret in syscall_enter_define_fields()
  perf header: Use last modification time for timestamp
  perf c2c: Fix return type for histogram sorting comparision functions
  perf beauty sockaddr: Fix augmented syscall format warning
  perf/ui/gtk: Fix gtk2 build
  perf ui gtk: Add missing zalloc object
  perf tools: Use %define api.pure full instead of %pure-parser
  libperf: Setup initial evlist::all_cpus value
  perf report: Fix no libunwind compiled warning break s390 issue
  perf tools: Support --prefix/--prefix-strip
  perf report: Clarify in help that --children is default
  tools build: Fix test-clang.cpp with Clang 8+
  perf clang: Fix build with Clang 9
  kprobes: Fix optimize_kprobe()/unoptimize_kprobe() cancellation logic
  tools lib: Fix builds when glibc contains strlcpy()
  perf report/top: Make 'e' visible in the help and make it toggle showing callchains
  perf report/top: Do not offer annotation for symbols without samples
  ...
2020-01-28 09:44:15 -08:00
Linus Torvalds
2180f214f4 Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
 "Just a handful of changes in this cycle: an ARM64 performance
  optimization, a comment fix and a debug output fix"

* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  locking/osq: Use optimized spinning loop for arm64
  locking/qspinlock: Fix inaccessible URL of MCS lock paper
  locking/lockdep: Fix lockdep_stats indentation problem
2020-01-28 09:33:25 -08:00
Linus Torvalds
d99391ec2b Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU updates from Ingo Molnar:
 "The RCU changes in this cycle were:
   - Expedited grace-period updates
   - kfree_rcu() updates
   - RCU list updates
   - Preemptible RCU updates
   - Torture-test updates
   - Miscellaneous fixes
   - Documentation updates"

* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (69 commits)
  rcu: Remove unused stop-machine #include
  powerpc: Remove comment about read_barrier_depends()
  .mailmap: Add entries for old paulmck@kernel.org addresses
  srcu: Apply *_ONCE() to ->srcu_last_gp_end
  rcu: Switch force_qs_rnp() to for_each_leaf_node_cpu_mask()
  rcu: Move rcu_{expedited,normal} definitions into rcupdate.h
  rcu: Move gp_state_names[] and gp_state_getname() to tree_stall.h
  rcu: Remove the declaration of call_rcu() in tree.h
  rcu: Fix tracepoint tracking RCU CPU kthread utilization
  rcu: Fix harmless omission of "CONFIG_" from #if condition
  rcu: Avoid tick_dep_set_cpu() misordering
  rcu: Provide wrappers for uses of ->rcu_read_lock_nesting
  rcu: Use READ_ONCE() for ->expmask in rcu_read_unlock_special()
  rcu: Clear ->rcu_read_unlock_special only once
  rcu: Clear .exp_hint only when deferred quiescent state has been reported
  rcu: Rename some instance of CONFIG_PREEMPTION to CONFIG_PREEMPT_RCU
  rcu: Remove kfree_call_rcu_nobatch()
  rcu: Remove kfree_rcu() special casing and lazy-callback handling
  rcu: Add support for debug_objects debugging for kfree_rcu()
  rcu: Add multiple in-flight batches of kfree_rcu() work
  ...
2020-01-28 08:46:13 -08:00
Sebastian Andrzej Siewior
25a3a15417 smp: Remove superfluous cond_func check in smp_call_function_many_cond()
It was requested to remove the cond_func check but the follow up patch was
overlooked. Remove it now.

Fixes: 67719ef25e ("smp: Add a smp_cond_func_t argument to smp_call_function_many()")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20200127083915.434tdkztorkklpdu@linutronix.de
2020-01-28 15:43:00 +01:00
Mike Christie
8d19f1c8e1 prctl: PR_{G,S}ET_IO_FLUSHER to support controlling memory reclaim
There are several storage drivers like dm-multipath, iscsi, tcmu-runner,
amd nbd that have userspace components that can run in the IO path. For
example, iscsi and nbd's userspace deamons may need to recreate a socket
and/or send IO on it, and dm-multipath's daemon multipathd may need to
send SG IO or read/write IO to figure out the state of paths and re-set
them up.

In the kernel these drivers have access to GFP_NOIO/GFP_NOFS and the
memalloc_*_save/restore functions to control the allocation behavior,
but for userspace we would end up hitting an allocation that ended up
writing data back to the same device we are trying to allocate for.
The device is then in a state of deadlock, because to execute IO the
device needs to allocate memory, but to allocate memory the memory
layers want execute IO to the device.

Here is an example with nbd using a local userspace daemon that performs
network IO to a remote server. We are using XFS on top of the nbd device,
but it can happen with any FS or other modules layered on top of the nbd
device that can write out data to free memory.  Here a nbd daemon helper
thread, msgr-worker-1, is performing a write/sendmsg on a socket to execute
a request. This kicks off a reclaim operation which results in a WRITE to
the nbd device and the nbd thread calling back into the mm layer.

[ 1626.609191] msgr-worker-1   D    0  1026      1 0x00004000
[ 1626.609193] Call Trace:
[ 1626.609195]  ? __schedule+0x29b/0x630
[ 1626.609197]  ? wait_for_completion+0xe0/0x170
[ 1626.609198]  schedule+0x30/0xb0
[ 1626.609200]  schedule_timeout+0x1f6/0x2f0
[ 1626.609202]  ? blk_finish_plug+0x21/0x2e
[ 1626.609204]  ? _xfs_buf_ioapply+0x2e6/0x410
[ 1626.609206]  ? wait_for_completion+0xe0/0x170
[ 1626.609208]  wait_for_completion+0x108/0x170
[ 1626.609210]  ? wake_up_q+0x70/0x70
[ 1626.609212]  ? __xfs_buf_submit+0x12e/0x250
[ 1626.609214]  ? xfs_bwrite+0x25/0x60
[ 1626.609215]  xfs_buf_iowait+0x22/0xf0
[ 1626.609218]  __xfs_buf_submit+0x12e/0x250
[ 1626.609220]  xfs_bwrite+0x25/0x60
[ 1626.609222]  xfs_reclaim_inode+0x2e8/0x310
[ 1626.609224]  xfs_reclaim_inodes_ag+0x1b6/0x300
[ 1626.609227]  xfs_reclaim_inodes_nr+0x31/0x40
[ 1626.609228]  super_cache_scan+0x152/0x1a0
[ 1626.609231]  do_shrink_slab+0x12c/0x2d0
[ 1626.609233]  shrink_slab+0x9c/0x2a0
[ 1626.609235]  shrink_node+0xd7/0x470
[ 1626.609237]  do_try_to_free_pages+0xbf/0x380
[ 1626.609240]  try_to_free_pages+0xd9/0x1f0
[ 1626.609245]  __alloc_pages_slowpath+0x3a4/0xd30
[ 1626.609251]  ? ___slab_alloc+0x238/0x560
[ 1626.609254]  __alloc_pages_nodemask+0x30c/0x350
[ 1626.609259]  skb_page_frag_refill+0x97/0xd0
[ 1626.609274]  sk_page_frag_refill+0x1d/0x80
[ 1626.609279]  tcp_sendmsg_locked+0x2bb/0xdd0
[ 1626.609304]  tcp_sendmsg+0x27/0x40
[ 1626.609307]  sock_sendmsg+0x54/0x60
[ 1626.609308]  ___sys_sendmsg+0x29f/0x320
[ 1626.609313]  ? sock_poll+0x66/0xb0
[ 1626.609318]  ? ep_item_poll.isra.15+0x40/0xc0
[ 1626.609320]  ? ep_send_events_proc+0xe6/0x230
[ 1626.609322]  ? hrtimer_try_to_cancel+0x54/0xf0
[ 1626.609324]  ? ep_read_events_proc+0xc0/0xc0
[ 1626.609326]  ? _raw_write_unlock_irq+0xa/0x20
[ 1626.609327]  ? ep_scan_ready_list.constprop.19+0x218/0x230
[ 1626.609329]  ? __hrtimer_init+0xb0/0xb0
[ 1626.609331]  ? _raw_spin_unlock_irq+0xa/0x20
[ 1626.609334]  ? ep_poll+0x26c/0x4a0
[ 1626.609337]  ? tcp_tsq_write.part.54+0xa0/0xa0
[ 1626.609339]  ? release_sock+0x43/0x90
[ 1626.609341]  ? _raw_spin_unlock_bh+0xa/0x20
[ 1626.609342]  __sys_sendmsg+0x47/0x80
[ 1626.609347]  do_syscall_64+0x5f/0x1c0
[ 1626.609349]  ? prepare_exit_to_usermode+0x75/0xa0
[ 1626.609351]  entry_SYSCALL_64_after_hwframe+0x44/0xa9

This patch adds a new prctl command that daemons can use after they have
done their initial setup, and before they start to do allocations that
are in the IO path. It sets the PF_MEMALLOC_NOIO and PF_LESS_THROTTLE
flags so both userspace block and FS threads can use it to avoid the
allocation recursion and try to prevent from being throttled while
writing out data to free up memory.

Signed-off-by: Mike Christie <mchristi@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Tested-by: Masato Suzuki <masato.suzuki@wdc.com>
Reviewed-by: Damien Le Moal <damien.lemoal@wdc.com>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Link: https://lore.kernel.org/r/20191112001900.9206-1-mchristi@redhat.com
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2020-01-28 10:09:51 +01:00
Ingo Molnar
0cc4bd8f70 Merge branch 'core/kprobes' into perf/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-01-28 07:59:05 +01:00
Linus Torvalds
3d3b44a61a Merge tag 'irq-core-2020-01-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull irq updates from Thomas Gleixner:
 "The interrupt departement provides:

   - A mechanism to shield isolated tasks from managed interrupts:

     The affinity of managed interrupts is completely controlled by the
     kernel and user space has no influence on them. The reason is that
     the automatically assigned affinity correlates to the multi-queue
     CPU handling of block devices.

     If the generated affinity mask spaws both housekeeping and isolated
     CPUs the interrupt could be routed to an isolated CPU which would
     then be disturbed by I/O submitted by a housekeeping CPU.

     The new mechamism ensures that as long as one housekeeping CPU is
     online in the assigned affinity mask the interrupt is routed to a
     housekeeping CPU.

     If there is no online housekeeping CPU in the affinity mask, then
     the interrupt is routed to an isolated CPU to keep the device queue
     intact, but unless the isolated CPU submits I/O by itself these
     interrupts are not raised.

   - A small addon to the device tree irqdomain core code to avoid
     duplication in irq chip drivers

   - Conversion of the SiFive PLIC to hierarchical domains

   - The usual pile of new irq chip drivers: SiFive GPIO, Aspeed SCI,
     NXP INTMUX, Meson A1 GPIO

   - The first cut of support for the new ARM GICv4.1

   - The usual pile of fixes and improvements in core and driver code"

* tag 'irq-core-2020-01-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
  genirq, sched/isolation: Isolate from handling managed interrupts
  irqchip/gic-v4.1: Allow direct invalidation of VLPIs
  irqchip/gic-v4.1: Suppress per-VLPI doorbell
  irqchip/gic-v4.1: Add VPE INVALL callback
  irqchip/gic-v4.1: Add VPE eviction callback
  irqchip/gic-v4.1: Add VPE residency callback
  irqchip/gic-v4.1: Add mask/unmask doorbell callbacks
  irqchip/gic-v4.1: Plumb skeletal VPE irqchip
  irqchip/gic-v4.1: Implement the v4.1 flavour of VMOVP
  irqchip/gic-v4.1: Don't use the VPE proxy if RVPEID is set
  irqchip/gic-v4.1: Implement the v4.1 flavour of VMAPP
  irqchip/gic-v4.1: VPE table (aka GICR_VPROPBASER) allocation
  irqchip/gic-v3: Add GICv4.1 VPEID size discovery
  irqchip/gic-v3: Detect GICv4.1 supporting RVPEID
  irqchip/gic-v3-its: Fix get_vlpi_map() breakage with doorbells
  irqdomain: Fix a memory leak in irq_domain_push_irq()
  irqchip: Add NXP INTMUX interrupt multiplexer support
  dt-bindings: interrupt-controller: Add binding for NXP INTMUX interrupt multiplexer
  irqchip: Define EXYNOS_IRQ_COMBINER
  irqchip/meson-gpio: Add support for meson a1 SoCs
  ...
2020-01-27 17:22:21 -08:00
Linus Torvalds
ab67f60025 Merge tag 'smp-core-2020-01-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core SMP updates from Thomas Gleixner:
 "A small set of SMP core code changes:

   - Rework the smp function call core code to avoid the allocation of
     an additional cpumask

   - Remove the not longer required GFP argument from on_each_cpu_cond()
     and on_each_cpu_cond_mask() and fixup the callers"

* tag 'smp-core-2020-01-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  smp: Remove allocation mask from on_each_cpu_cond.*()
  smp: Add a smp_cond_func_t argument to smp_call_function_many()
  smp: Use smp_cond_func_t as type for the conditional function
2020-01-27 17:04:51 -08:00
Linus Torvalds
e279160f49 Merge tag 'timers-core-2020-01-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
 "The timekeeping and timers departement provides:

   - Time namespace support:

     If a container migrates from one host to another then it expects
     that clocks based on MONOTONIC and BOOTTIME are not subject to
     disruption. Due to different boot time and non-suspended runtime
     these clocks can differ significantly on two hosts, in the worst
     case time goes backwards which is a violation of the POSIX
     requirements.

     The time namespace addresses this problem. It allows to set offsets
     for clock MONOTONIC and BOOTTIME once after creation and before
     tasks are associated with the namespace. These offsets are taken
     into account by timers and timekeeping including the VDSO.

     Offsets for wall clock based clocks (REALTIME/TAI) are not provided
     by this mechanism. While in theory possible, the overhead and code
     complexity would be immense and not justified by the esoteric
     potential use cases which were discussed at Plumbers '18.

     The overhead for tasks in the root namespace (ie where host time
     offsets = 0) is in the noise and great effort was made to ensure
     that especially in the VDSO. If time namespace is disabled in the
     kernel configuration the code is compiled out.

     Kudos to Andrei Vagin and Dmitry Sofanov who implemented this
     feature and kept on for more than a year addressing review
     comments, finding better solutions. A pleasant experience.

   - Overhaul of the alarmtimer device dependency handling to ensure
     that the init/suspend/resume ordering is correct.

   - A new clocksource/event driver for Microchip PIT64

   - Suspend/resume support for the Hyper-V clocksource

   - The usual pile of fixes, updates and improvements mostly in the
     driver code"

* tag 'timers-core-2020-01-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (71 commits)
  alarmtimer: Make alarmtimer_get_rtcdev() a stub when CONFIG_RTC_CLASS=n
  alarmtimer: Use wakeup source from alarmtimer platform device
  alarmtimer: Make alarmtimer platform device child of RTC device
  alarmtimer: Update alarmtimer_get_rtcdev() docs to reflect reality
  hrtimer: Add missing sparse annotation for __run_timer()
  lib/vdso: Only read hrtimer_res when needed in __cvdso_clock_getres()
  MIPS: vdso: Define BUILD_VDSO32 when building a 32bit kernel
  clocksource/drivers/hyper-v: Set TSC clocksource as default w/ InvariantTSC
  clocksource/drivers/hyper-v: Untangle stimers and timesync from clocksources
  clocksource/drivers/timer-microchip-pit64b: Fix sparse warning
  clocksource/drivers/exynos_mct: Rename Exynos to lowercase
  clocksource/drivers/timer-ti-dm: Fix uninitialized pointer access
  clocksource/drivers/timer-ti-dm: Switch to platform_get_irq
  clocksource/drivers/timer-ti-dm: Convert to devm_platform_ioremap_resource
  clocksource/drivers/em_sti: Fix variable declaration in em_sti_probe
  clocksource/drivers/em_sti: Convert to devm_platform_ioremap_resource
  clocksource/drivers/bcm2835_timer: Fix memory leak of timer
  clocksource/drivers/cadence-ttc: Use ttc driver as platform driver
  clocksource/drivers/timer-microchip-pit64b: Add Microchip PIT64B support
  clocksource/drivers/hyper-v: Reserve PAGE_SIZE space for tsc page
  ...
2020-01-27 16:47:05 -08:00
Linus Torvalds
b11c89a158 Merge tag 'core-core-2020-01-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull watchdog updates from Thomas Gleixner:
 "A set of watchdog/softlockup related improvements:

   - Enforce that the watchdog timestamp is always valid on boot. The
     original implementation caused a watchdog disabled gap of one
     second in the boot process due to truncation of the underlying
     sched clock.

     The sched clock is divided by 1e9 to convert nanoseconds to
     seconds. So for the first second of the boot process the result is
     0 which is at the same time the indicator to disable the watchdog.

     The trivial fix is to change the disabled indicator to ULONG_MAX.

   - Two cleanup patches removing unused and redundant code which got
     forgotten to be cleaned up in previous changes"

* tag 'core-core-2020-01-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  watchdog/softlockup: Enforce that timestamp is valid on boot
  watchdog/softlockup: Remove obsolete check of last reported task
  watchdog: Remove soft_lockup_hrtimer_cnt and related code
2020-01-27 16:42:11 -08:00
Linus Torvalds
a56c41e5d7 Merge tag 'timers-urgent-2020-01-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer fixes from Thomas Gleixner:
 "Two fixes for the generic VDSO code which missed 5.5:

   - Make the update to the coarse timekeeper unconditional.

     This is required because the coarse timekeeper interfaces in the
     VDSO do not depend on a VDSO capable clocksource. If the system
     does not have a VDSO capable clocksource and the update is
     depending on the VDSO capable clocksource, the coarse VDSO
     interfaces would operate on stale data forever.

   - Invert the logic of __arch_update_vdso_data() to avoid further head
     scratching.

     Tripped over this several times while analyzing the update problem
     above"

* tag 'timers-urgent-2020-01-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  lib/vdso: Update coarse timekeeper unconditionally
  lib/vdso: Make __arch_update_vdso_data() logic understandable
2020-01-27 16:37:40 -08:00
Linus Torvalds
07e309a972 Merge tag 'audit-pr-20200127' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/audit
Pull audit update from Paul Moore:
 "One small audit patch for the Linux v5.6 merge window, and
  unsurprisingly it passes our test suite with flying colors"

* tag 'audit-pr-20200127' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/audit:
  audit: Add __rcu annotation to RCU pointer
2020-01-27 15:35:50 -08:00
Linus Torvalds
03aa8c8cfa Merge branch 'for-5.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:

 - cgroup2 interface for hugetlb controller. I think this was the last
   remaining bit which was missing from cgroup2

 - fixes for race and a spurious warning in threaded cgroup handling

 - other minor changes

* 'for-5.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
  iocost: Fix iocost_monitor.py due to helper type mismatch
  cgroup: Prevent double killing of css when enabling threaded cgroup
  cgroup: fix function name in comment
  mm: hugetlb controller for cgroups v2
2020-01-27 15:18:25 -08:00
Linus Torvalds
16d06120d7 Merge branch 'for-5.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull workqueue updates from Tejun Heo:
 "Just a couple tracepoint patches"

* 'for-5.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
  workqueue: remove workqueue_work event class
  workqueue: add worker function to workqueue_execute_end tracepoint
2020-01-27 15:16:52 -08:00
Linus Torvalds
6d277aca48 Merge tag 'pm-5.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
 "These add ACPI support to the intel_idle driver along with an admin
  guide document for it, add support for CPR (Core Power Reduction) to
  the AVS (Adaptive Voltage Scaling) subsystem, add new hardware support
  in a few places, add some new sysfs attributes, debugfs files and
  tracepoints, fix bugs and clean up a bunch of things all over.

  Specifics:

   - Update the ACPI processor driver in order to export
     acpi_processor_evaluate_cst() to the code outside of it, add ACPI
     support to the intel_idle driver based on that and clean up that
     driver somewhat (Rafael Wysocki).

   - Add an admin guide document for the intel_idle driver (Rafael
     Wysocki).

   - Clean up cpuidle core and drivers, enable compilation testing for
     some of them (Benjamin Gaignard, Krzysztof Kozlowski, Rafael
     Wysocki, Yangtao Li).

   - Fix reference counting of OPP (operating performance points) table
     structures (Viresh Kumar).

   - Add support for CPR (Core Power Reduction) to the AVS (Adaptive
     Voltage Scaling) subsystem (Niklas Cassel, Colin Ian King,
     YueHaibing).

   - Add support for TigerLake Mobile and JasperLake to the Intel RAPL
     power capping driver (Zhang Rui).

   - Update cpufreq drivers:
      - Add i.MX8MP support to imx-cpufreq-dt (Anson Huang).
      - Fix usage of a macro in loongson2_cpufreq (Alexandre Oliva).
      - Fix cpufreq policy reference counting issues in s3c and
        brcmstb-avs (chenqiwu).
      - Fix ACPI table reference counting issue and HiSilicon quirk
        handling in the CPPC driver (Hanjun Guo).
      - Clean up spelling mistake in intel_pstate (Harry Pan).
      - Convert the kirkwood and tegra186 drivers to using
        devm_platform_ioremap_resource() (Yangtao Li).

   - Update devfreq core:
      - Add 'name' sysfs attribute for devfreq devices (Chanwoo Choi).
      - Clean up the handing of transition statistics and allow them to
        be reset by writing 0 to the 'trans_stat' devfreq device
        attribute in sysfs (Kamil Konieczny).
      - Add 'devfreq_summary' to debugfs (Chanwoo Choi).
      - Clean up kerneldoc comments and Kconfig indentation (Krzysztof
        Kozlowski, Randy Dunlap).

   - Update devfreq drivers:
      - Add dynamic scaling for the imx8m DDR controller and clean up
        imx8m-ddrc (Leonard Crestez, YueHaibing).
      - Fix DT node reference counting and nitialization error code path
        in rk3399_dmc and add COMPILE_TEST and HAVE_ARM_SMCCC dependency
        for it (Chanwoo Choi, Yangtao Li).
      - Fix DT node reference counting in rockchip-dfi and make it use
        devm_platform_ioremap_resource() (Yangtao Li).
      - Fix excessive stack usage in exynos-ppmu (Arnd Bergmann).
      - Fix initialization error code paths in exynos-bus (Yangtao Li).
      - Clean up exynos-bus and exynos somewhat (Artur Świgoń, Krzysztof
        Kozlowski).

   - Add tracepoints for tracking usage_count updates unrelated to
     status changes in PM-runtime (Michał Mirosław).

   - Add sysfs attribute to control the "sync on suspend" behavior
     during system-wide suspend (Jonas Meurer).

   - Switch system-wide suspend tests over to 64-bit time (Alexandre
     Belloni).

   - Make wakeup sources statistics in debugfs cover deleted ones which
     used to be the case some time ago (zhuguangqing).

   - Clean up computations carried out during hibernation, update
     messages related to hibernation and fix a spelling mistake in one
     of them (Wen Yang, Luigi Semenzato, Colin Ian King).

   - Add mailmap entry for maintainer e-mail address that has not been
     functional for several years (Rafael Wysocki)"

* tag 'pm-5.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (83 commits)
  cpufreq: loongson2_cpufreq: adjust cpufreq uses of LOONGSON_CHIPCFG
  intel_idle: Clean up irtl_2_usec()
  intel_idle: Move 3 functions closer to their callers
  intel_idle: Annotate initialization code and data structures
  intel_idle: Move and clean up intel_idle_cpuidle_devices_uninit()
  intel_idle: Rearrange intel_idle_cpuidle_driver_init()
  intel_idle: Clean up NULL pointer check in intel_idle_init()
  intel_idle: Fold intel_idle_probe() into intel_idle_init()
  intel_idle: Eliminate __setup_broadcast_timer()
  cpuidle: fix cpuidle_find_deepest_state() kerneldoc warnings
  cpuidle: sysfs: fix warnings when compiling with W=1
  cpuidle: coupled: fix warnings when compiling with W=1
  cpufreq: brcmstb-avs: fix imbalance of cpufreq policy refcount
  PM: suspend: Add sysfs attribute to control the "sync on suspend" behavior
  PM / devfreq: Add debugfs support with devfreq_summary file
  Documentation: admin-guide: PM: Add intel_idle document
  cpuidle: arm: Enable compile testing for some of drivers
  PM-runtime: add tracepoints for usage_count changes
  cpufreq: intel_pstate: fix spelling mistake: "Whethet" -> "Whether"
  PM: hibernate: fix spelling mistake "shapshot" -> "snapshot"
  ...
2020-01-27 11:23:54 -08:00
Linus Torvalds
0238d3c753 Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
 "The changes are a real mixed bag this time around.

  The only scary looking one from the diffstat is the uapi change to
  asm-generic/mman-common.h, but this has been acked by Arnd and is
  actually just adding a pair of comments in an attempt to prevent
  allocation of some PROT values which tend to get used for
  arch-specific purposes. We'll be using them for Branch Target
  Identification (a CFI-like hardening feature), which is currently
  under review on the mailing list.

  New architecture features:

   - Support for Armv8.5 E0PD, which benefits KASLR in the same way as
     KPTI but without the overhead. This allows KPTI to be disabled on
     CPUs that are not affected by Meltdown, even is KASLR is enabled.

   - Initial support for the Armv8.5 RNG instructions, which claim to
     provide access to a high bandwidth, cryptographically secure
     hardware random number generator. As well as exposing these to
     userspace, we also use them as part of the KASLR seed and to seed
     the crng once all CPUs have come online.

   - Advertise a bunch of new instructions to userspace, including
     support for Data Gathering Hint, Matrix Multiply and 16-bit
     floating point.

  Kexec:

   - Cleanups in preparation for relocating with the MMU enabled

   - Support for loading crash dump kernels with kexec_file_load()

  Perf and PMU drivers:

   - Cleanups and non-critical fixes for a couple of system PMU drivers

  FPU-less (aka broken) CPU support:

   - Considerable fixes to support CPUs without the FP/SIMD extensions,
     including their presence in heterogeneous systems. Good luck
     finding a 64-bit userspace that handles this.

  Modern assembly function annotations:

   - Start migrating our use of ENTRY() and ENDPROC() over to the
     new-fangled SYM_{CODE,FUNC}_{START,END} macros, which are intended
     to aid debuggers

  Kbuild:

   - Cleanup detection of LSE support in the assembler by introducing
     'as-instr'

   - Remove compressed Image files when building clean targets

  IP checksumming:

   - Implement optimised IPv4 checksumming routine when hardware offload
     is not in use. An IPv6 version is in the works, pending testing.

  Hardware errata:

   - Work around Cortex-A55 erratum #1530923

  Shadow call stack:

   - Work around some issues with Clang's integrated assembler not
     liking our perfectly reasonable assembly code

   - Avoid allocating the X18 register, so that it can be used to hold
     the shadow call stack pointer in future

  ACPI:

   - Fix ID count checking in IORT code. This may regress broken
     firmware that happened to work with the old implementation, in
     which case we'll have to revert it and try something else

   - Fix DAIF corruption on return from GHES handler with pseudo-NMIs

  Miscellaneous:

   - Whitelist some CPUs that are unaffected by Spectre-v2

   - Reduce frequency of ASID rollover when KPTI is compiled in but
     inactive

   - Reserve a couple of arch-specific PROT flags that are already used
     by Sparc and PowerPC and are planned for later use with BTI on
     arm64

   - Preparatory cleanup of our entry assembly code in preparation for
     moving more of it into C later on

   - Refactoring and cleanup"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (73 commits)
  arm64: acpi: fix DAIF manipulation with pNMI
  arm64: kconfig: Fix alignment of E0PD help text
  arm64: Use v8.5-RNG entropy for KASLR seed
  arm64: Implement archrandom.h for ARMv8.5-RNG
  arm64: kbuild: remove compressed images on 'make ARCH=arm64 (dist)clean'
  arm64: entry: Avoid empty alternatives entries
  arm64: Kconfig: select HAVE_FUTEX_CMPXCHG
  arm64: csum: Fix pathological zero-length calls
  arm64: entry: cleanup sp_el0 manipulation
  arm64: entry: cleanup el0 svc handler naming
  arm64: entry: mark all entry code as notrace
  arm64: assembler: remove smp_dmb macro
  arm64: assembler: remove inherit_daif macro
  ACPI/IORT: Fix 'Number of IDs' handling in iort_id_map()
  mm: Reserve asm-generic prot flags 0x10 and 0x20 for arch use
  arm64: Use macros instead of hard-coded constants for MAIR_EL1
  arm64: Add KRYO{3,4}XX CPU cores to spectre-v2 safe list
  arm64: kernel: avoid x18 in __cpu_soft_restart
  arm64: kvm: stop treating register x18 as caller save
  arm64/lib: copy_page: avoid x18 register in assembler code
  ...
2020-01-27 08:58:19 -08:00
Steven Rostedt (VMware)
20279420ae tracing/kprobes: Have uname use __get_str() in print_fmt
Thomas Richter reported:

> Test case 66 'Use vfs_getname probe to get syscall args filenames'
> is broken on s390, but works on x86. The test case fails with:
>
>  [root@m35lp76 perf]# perf test -F 66
>  66: Use vfs_getname probe to get syscall args filenames
>            :Recording open file:
>  [ perf record: Woken up 1 times to write data ]
>  [ perf record: Captured and wrote 0.004 MB /tmp/__perf_test.perf.data.TCdYj\
> 	 (20 samples) ]
>  Looking at perf.data file for vfs_getname records for the file we touched:
>   FAILED!
>   [root@m35lp76 perf]#

The root cause was the print_fmt of the kprobe event that referenced the
"ustring"

> Setting up the kprobe event using perf command:
>
>  # ./perf probe "vfs_getname=getname_flags:72 pathname=filename:ustring"
>
> generates this format file:
>   [root@m35lp76 perf]# cat /sys/kernel/debug/tracing/events/probe/\
> 	  vfs_getname/format
>   name: vfs_getname
>   ID: 1172
>   format:
>     field:unsigned short common_type; offset:0; size:2; signed:0;
>     field:unsigned char common_flags; offset:2; size:1; signed:0;
>     field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
>     field:int common_pid; offset:4; size:4; signed:1;
>
>     field:unsigned long __probe_ip; offset:8; size:8; signed:0;
>     field:__data_loc char[] pathname; offset:16; size:4; signed:1;
>
>     print fmt: "(%lx) pathname=\"%s\"", REC->__probe_ip, REC->pathname

Instead of using "__get_str(pathname)" it referenced it directly.

Link: http://lkml.kernel.org/r/20200124100742.4050c15e@gandalf.local.home

Cc: stable@vger.kernel.org
Fixes: 88903c4643 ("tracing/probe: Add ustring type for user-space string")
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Reported-by: Thomas Richter <tmricht@linux.ibm.com>
Tested-by: Thomas Richter <tmricht@linux.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2020-01-27 10:56:02 -05:00
David S. Miller
9e0703a265 Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:

====================
pull-request: bpf-next 2020-01-27

The following pull-request contains BPF updates for your *net-next* tree.

We've added 20 non-merge commits during the last 5 day(s) which contain
a total of 24 files changed, 433 insertions(+), 104 deletions(-).

The main changes are:

1) Make BPF trampolines and dispatcher aware for the stack unwinder, from Jiri Olsa.

2) Improve handling of failed CO-RE relocations in libbpf, from Andrii Nakryiko.

3) Several fixes to BPF sockmap and reuseport selftests, from Lorenz Bauer.

4) Various cleanups in BPF devmap's XDP flush code, from John Fastabend.

5) Fix BPF flow dissector when used with port ranges, from Yoshiki Komachi.

6) Fix bpffs' map_seq_next callback to always inc position index, from Vasily Averin.

7) Allow overriding LLVM tooling for runqslower utility, from Andrey Ignatov.

8) Silence false-positive lockdep splats in devmap hash lookup, from Amol Grover.

9) Fix fentry/fexit selftests to initialize a variable before use, from John Sperbeck.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-27 14:31:40 +01:00
Rafael J. Wysocki
245224d1cb Merge branches 'pm-cpufreq' and 'pm-sleep'
* pm-cpufreq:
  cpufreq: loongson2_cpufreq: adjust cpufreq uses of LOONGSON_CHIPCFG
  cpufreq: brcmstb-avs: fix imbalance of cpufreq policy refcount
  cpufreq: intel_pstate: fix spelling mistake: "Whethet" -> "Whether"
  cpufreq: s3c: fix unbalances of cpufreq policy refcount
  cpufreq: imx-cpufreq-dt: Add i.MX8MP support
  cpufreq: Use imx-cpufreq-dt for i.MX8MP's speed grading
  cpufreq: tegra186: convert to devm_platform_ioremap_resource
  cpufreq: kirkwood: convert to devm_platform_ioremap_resource
  cpufreq: CPPC: put ACPI table after using it
  cpufreq : CPPC: Break out if HiSilicon CPPC workaround is matched

* pm-sleep:
  PM: suspend: Add sysfs attribute to control the "sync on suspend" behavior
  PM: hibernate: fix spelling mistake "shapshot" -> "snapshot"
  PM: hibernate: Add more logging on hibernation failure
  PM: hibernate: improve arithmetic division in preallocate_highmem_fraction()
  PM: wakeup: Show statistics for deleted wakeup sources again
  PM: sleep: Switch to rtc_time64_to_tm()/rtc_tm_to_time64()
2020-01-27 11:29:09 +01:00
John Fastabend
b23bfa5633 bpf, xdp: Remove no longer required rcu_read_{un}lock()
Now that we depend on rcu_call() and synchronize_rcu() to also wait
for preempt_disabled region to complete the rcu read critical section
in __dev_map_flush() is no longer required. Except in a few special
cases in drivers that need it for other reasons.

These originally ensured the map reference was safe while a map was
also being free'd. And additionally that bpf program updates via
ndo_bpf did not happen while flush updates were in flight. But flush
by new rules can only be called from preempt-disabled NAPI context.
The synchronize_rcu from the map free path and the rcu_call from the
delete path will ensure the reference there is safe. So lets remove
the rcu_read_lock and rcu_read_unlock pair to avoid any confusion
around how this is being protected.

If the rcu_read_lock was required it would mean errors in the above
logic and the original patch would also be wrong.

Now that we have done above we put the rcu_read_lock in the driver
code where it is needed in a driver dependent way. I think this
helps readability of the code so we know where and why we are
taking read locks. Most drivers will not need rcu_read_locks here
and further XDP drivers already have rcu_read_locks in their code
paths for reading xdp programs on RX side so this makes it symmetric
where we don't have half of rcu critical sections define in driver
and the other half in devmap.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Link: https://lore.kernel.org/bpf/1580084042-11598-4-git-send-email-john.fastabend@gmail.com
2020-01-27 11:16:25 +01:00
John Fastabend
42a84a8cd0 bpf, xdp: Update devmap comments to reflect napi/rcu usage
Now that we rely on synchronize_rcu and call_rcu waiting to
exit perempt-disable regions (NAPI) lets update the comments
to reflect this.

Fixes: 0536b85239 ("xdp: Simplify devmap cleanup")
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Björn Töpel <bjorn.topel@intel.com>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/1580084042-11598-2-git-send-email-john.fastabend@gmail.com
2020-01-27 11:16:20 +01:00
Vasily Averin
90435a7891 bpf: map_seq_next should always increase position index
If seq_file .next fuction does not change position index,
read after some lseek can generate an unexpected output.

See also: https://bugzilla.kernel.org/show_bug.cgi?id=206283

v1 -> v2: removed missed increment in end of function

Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/eca84fdd-c374-a154-d874-6c7b55fc3bc4@virtuozzo.com
2020-01-27 10:54:32 +01:00
Madhuparna Bhowmik
913292c97d sched.h: Annotate sighand_struct with __rcu
This patch fixes the following sparse errors by annotating the
sighand_struct with __rcu

kernel/fork.c:1511:9: error: incompatible types in comparison expression
kernel/exit.c💯19: error: incompatible types in comparison expression
kernel/signal.c:1370:27: error: incompatible types in comparison expression

This fix introduces the following sparse error in signal.c due to
checking the sighand pointer without rcu primitives:

kernel/signal.c:1386:21: error: incompatible types in comparison expression

This new sparse error is also fixed in this patch.

Signed-off-by: Madhuparna Bhowmik <madhuparnabhowmik10@gmail.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20200124045908.26389-1-madhuparnabhowmik10@gmail.com
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2020-01-26 10:54:47 +01:00
David S. Miller
4d8773b68e Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Minor conflict in mlx5 because changes happened to code that has
moved meanwhile.

Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-26 10:40:21 +01:00
Paul E. McKenney
59d8cc6b2e rcu: Forgive slow expedited grace periods at boot time
Boot-time processing often loops in the kernel longer than one might
prefer, which can prevent expedited grace periods from completing in
a timely manner.  This in turn triggers a splat In nohz_full CPUs  One
could argue that long-looping code should be fixed, but on the other hand,
boot time is a bit special.

This commit therefore removes the splat.  Later commits will add the
splat back in, but in a way that removes false positives.

Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-01-25 12:00:40 -08:00
Steven Rostedt (VMware)
24589e3a20 tracing: Use pr_err() instead of WARN() for memory failures
As warnings can trigger panics, especially when "panic_on_warn" is set,
memory failure warnings can cause panics and fail fuzz testers that are
stressing memory.

Create a MEM_FAIL() macro to use instead of WARN() in the tracing code
(perhaps this should be a kernel wide macro?), and use that for memory
failure issues. This should stop failing fuzz tests due to warnings.

Link: https://lore.kernel.org/r/CACT4Y+ZP-7np20GVRu3p+eZys9GPtbu+JpfV+HtsufAzvTgJrg@mail.gmail.com

Suggested-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2020-01-25 10:52:30 -05:00
Jiri Olsa
e9b4e606c2 bpf: Allow to resolve bpf trampoline and dispatcher in unwind
When unwinding the stack we need to identify each address
to successfully continue. Adding latch tree to keep trampolines
for quick lookup during the unwind.

The patch uses first 48 bytes for latch tree node, leaving 4048
bytes from the rest of the page for trampoline or dispatcher
generated code.

It's still enough not to affect trampoline and dispatcher progs
maximum counts.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200123161508.915203-3-jolsa@kernel.org
2020-01-25 07:12:40 -08:00
Jiri Olsa
84ad7a7ab6 bpf: Allow BTF ctx access for string pointers
When accessing the context we allow access to arguments with
scalar type and pointer to struct. But we deny access for
pointer to scalar type, which is the case for many functions.

Alexei suggested to take conservative approach and allow
currently only string pointer access, which is the case
for most functions now:

Adding check if the pointer is to string type and allow access to it.

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200123161508.915203-2-jolsa@kernel.org
2020-01-25 07:12:40 -08:00
Ingo Molnar
f8a4bb6bfa Merge branch 'for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into core/rcu
Pull RCU updates from Paul E. McKenney:

 - Expedited grace-period updates
 - kfree_rcu() updates
 - RCU list updates
 - Preemptible RCU updates
 - Torture-test updates
 - Miscellaneous fixes
 - Documentation updates

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-01-25 10:05:23 +01:00
Steven Rostedt (VMware)
28394da258 tracing: Decrement trace_array when bootconfig creates an instance
The trace_array_get_by_name() creates a ftrace instance and
trace_array_put() is used to remove the reference. Even though the
trace_array_get_by_name() creates the instance, it also adds a reference
count to it, that prevents user space from removing it.

As the bootconfig just creates the instance on boot up, it should still be
used where it can be deleted by user space after boot. A trace_array_put()
is required to let that happen.

Also, change the documentation on trace_array_get_by_name() to make this not
be so confusing.

Link: https://lore.kernel.org/r/20200124205927.76128804@rorschach.local.home

Fixes: 4f712a4d04 ("tracing/boot: Add instance node support")
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2020-01-24 21:29:13 -05:00
Dan Carpenter
b3f7a6cd49 tracing: Remove unneeded NULL check
We checked "iter->trace" earlier so there is no need to check here.

Link: http://lkml.kernel.org/r/20141122183012.GB6994@mwanda

Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
[ Pulled from the archeological digging of my INBOX ]
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2020-01-24 18:22:33 -05:00
Josef Bacik
cbc3b92ce0 tracing: Set kernel_stack's caller size properly
I noticed when trying to use the trace-cmd python interface that reading the raw
buffer wasn't working for kernel_stack events.  This is because it uses a
stubbed version of __dynamic_array that doesn't do the __data_loc trick and
encode the length of the array into the field.  Instead it just shows up as a
size of 0.  So change this to __array and set the len to FTRACE_STACK_ENTRIES
since this is what we actually do in practice and matches how user_stack_trace
works.

Link: http://lkml.kernel.org/r/1411589652-1318-1-git-send-email-jbacik@fb.com

Signed-off-by: Josef Bacik <jbacik@fb.com>
[ Pulled from the archeological digging of my INBOX ]
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2020-01-24 18:09:40 -05:00
Luis Henriques
afccc00f75 tracing: Fix tracing_stat return values in error handling paths
tracing_stat_init() was always returning '0', even on the error paths.  It
now returns -ENODEV if tracing_init_dentry() fails or -ENOMEM if it fails
to created the 'trace_stat' debugfs directory.

Link: http://lkml.kernel.org/r/1410299381-20108-1-git-send-email-luis.henriques@canonical.com

Fixes: ed6f1c996b ("tracing: Check return value of tracing_init_dentry()")
Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
[ Pulled from the archeological digging of my INBOX ]
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2020-01-24 18:06:48 -05:00
Steven Rostedt (VMware)
dfb6cd1e65 tracing: Fix very unlikely race of registering two stat tracers
Looking through old emails in my INBOX, I came across a patch from Luis
Henriques that attempted to fix a race of two stat tracers registering the
same stat trace (extremely unlikely, as this is done in the kernel, and
probably doesn't even exist). The submitted patch wasn't quite right as it
needed to deal with clean up a bit better (if two stat tracers were the
same, it would have the same files).

But to make the code cleaner, all we needed to do is to keep the
all_stat_sessions_mutex held for most of the registering function.

Link: http://lkml.kernel.org/r/1410299375-20068-1-git-send-email-luis.henriques@canonical.com

Fixes: 002bb86d8d ("tracing/ftrace: separate events tracing and stats tracing engine")
Reported-by: Luis Henriques <luis.henriques@canonical.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2020-01-24 17:54:06 -05:00
Stephen Boyd
fd928f3e32 alarmtimer: Make alarmtimer_get_rtcdev() a stub when CONFIG_RTC_CLASS=n
The stubbed version of alarmtimer_get_rtcdev() is not exported.
so this won't work if this function is used in a module when
CONFIG_RTC_CLASS=n.

Move the stub function to the header file and make it inline so that
callers don't have to worry about linking against this symbol.

rtcdev isn't used outside of this ifdef so it's not required to be
redefined to NULL. Drop that while touching this area.

Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20200124055849.154411-4-swboyd@chromium.org
2020-01-24 21:03:53 +01:00
Stephen Boyd
7c94caca87 alarmtimer: Use wakeup source from alarmtimer platform device
Use the wakeup source that can be associated with the 'alarmtimer'
platform device instead of registering another one by hand.

Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Link: https://lore.kernel.org/r/20200124055849.154411-3-swboyd@chromium.org
2020-01-24 21:00:21 +01:00
Stephen Boyd
c79108bd19 alarmtimer: Make alarmtimer platform device child of RTC device
The alarmtimer_suspend() function will fail if an RTC device is on a bus
such as SPI or i2c and that RTC device registers and probes after
alarmtimer_init() registers and probes the 'alarmtimer' platform device.

This is because system wide suspend suspends devices in the reverse order
of their probe. When alarmtimer_suspend() attempts to program the RTC for a
wakeup it will try to program an RTC device on a bus that has already been
suspended.

Move the alarmtimer device registration to happen when the RTC which is
used for wakeup is registered. Register the 'alarmtimer' platform device as
a child of the RTC device too, so that it can be guaranteed that the RTC
device won't be suspended when alarmtimer_suspend() is called.

Reported-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Link: https://lore.kernel.org/r/20200124055849.154411-2-swboyd@chromium.org
2020-01-24 21:00:20 +01:00
Stephen Boyd
6b088cefbe alarmtimer: Update alarmtimer_get_rtcdev() docs to reflect reality
This function doesn't do anything like this comment says when an RTC device
hasn't been chosen. It looks like we used to do something like that before
commit 8bc0dafb5c ("alarmtimers: Rework RTC device selection using class
interface") but that's long gone now. Remove this sentence to avoid
confusing the reader.

Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20200124055849.154411-5-swboyd@chromium.org
2020-01-24 21:00:20 +01:00