This changes __pidfd_fget to use the new exec_update_mutex
instead of cred_guard_mutex.
This should be safe, as the credentials do not change
before exec_update_mutex is locked. Therefore whatever
file access is possible with holding the cred_guard_mutex
here is also possbile with the exec_update_mutex.
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
This changes perf_event_set_clock to use the new exec_update_mutex
instead of cred_guard_mutex.
This should be safe, as the credentials are only used for reading.
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
This changes kcmp_epoll_target to use the new exec_update_mutex
instead of cred_guard_mutex.
This should be safe, as the credentials are only used for reading,
and furthermore ->mm and ->sighand are updated on execve,
but only under the new exec_update_mutex.
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
This removes an outdated comment in prepare_kernel_cred.
There is no "cred_replace_mutex" any more, so the comment must
go away.
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
This fixes a deadlock in the tracer when tracing a multi-threaded
application that calls execve while more than one thread are running.
I observed that when running strace on the gcc test suite, it always
blocks after a while, when expect calls execve, because other threads
have to be terminated. They send ptrace events, but the strace is no
longer able to respond, since it is blocked in vm_access.
The deadlock is always happening when strace needs to access the
tracees process mmap, while another thread in the tracee starts to
execve a child process, but that cannot continue until the
PTRACE_EVENT_EXIT is handled and the WIFEXITED event is received:
strace D 0 30614 30584 0x00000000
Call Trace:
__schedule+0x3ce/0x6e0
schedule+0x5c/0xd0
schedule_preempt_disabled+0x15/0x20
__mutex_lock.isra.13+0x1ec/0x520
__mutex_lock_killable_slowpath+0x13/0x20
mutex_lock_killable+0x28/0x30
mm_access+0x27/0xa0
process_vm_rw_core.isra.3+0xff/0x550
process_vm_rw+0xdd/0xf0
__x64_sys_process_vm_readv+0x31/0x40
do_syscall_64+0x64/0x220
entry_SYSCALL_64_after_hwframe+0x44/0xa9
expect D 0 31933 30876 0x80004003
Call Trace:
__schedule+0x3ce/0x6e0
schedule+0x5c/0xd0
flush_old_exec+0xc4/0x770
load_elf_binary+0x35a/0x16c0
search_binary_handler+0x97/0x1d0
__do_execve_file.isra.40+0x5d4/0x8a0
__x64_sys_execve+0x49/0x60
do_syscall_64+0x64/0x220
entry_SYSCALL_64_after_hwframe+0x44/0xa9
This changes mm_access to use the new exec_update_mutex
instead of cred_guard_mutex.
This patch is based on the following patch by Eric W. Biederman:
"[PATCH 0/5] Infrastructure to allow fixing exec deadlocks"
Link: https://lore.kernel.org/lkml/87v9ne5y4y.fsf_-_@x220.int.ebiederm.org/
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
The cred_guard_mutex is problematic as it is held over possibly
indefinite waits for userspace. The possible indefinite waits for
userspace that I have identified are: The cred_guard_mutex is held in
PTRACE_EVENT_EXIT waiting for the tracer. The cred_guard_mutex is
held over "put_user(0, tsk->clear_child_tid)" in exit_mm(). The
cred_guard_mutex is held over "get_user(futex_offset, ...") in
exit_robust_list. The cred_guard_mutex held over copy_strings.
The functions get_user and put_user can trigger a page fault which can
potentially wait indefinitely in the case of userfaultfd or if
userspace implements part of the page fault path.
In any of those cases the userspace process that the kernel is waiting
for might make a different system call that winds up taking the
cred_guard_mutex and result in deadlock.
Holding a mutex over any of those possibly indefinite waits for
userspace does not appear necessary. Add exec_update_mutex that will
just cover updating the process during exec where the permissions and
the objects pointed to by the task struct may be out of sync.
The plan is to switch the users of cred_guard_mutex to
exec_update_mutex one by one. This lets us move forward while still
being careful and not introducing any regressions.
Link: https://lore.kernel.org/lkml/20160921152946.GA24210@dhcp22.suse.cz/
Link: https://lore.kernel.org/lkml/AM6PR03MB5170B06F3A2B75EFB98D071AE4E60@AM6PR03MB5170.eurprd03.prod.outlook.com/
Link: https://lore.kernel.org/linux-fsdevel/20161102181806.GB1112@redhat.com/
Link: https://lore.kernel.org/lkml/20160923095031.GA14923@redhat.com/
Link: https://lore.kernel.org/lkml/20170213141452.GA30203@redhat.com/
Ref: 45c1a159b85b ("Add PTRACE_O_TRACEVFORKDONE and PTRACE_O_TRACEEXIT facilities.")
Ref: 456f17cd1a28 ("[PATCH] user-vm-unlock-2.5.31-A2")
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Use separate functions for the device core to bring a CPU up and down.
Users outside the device core must use add/remove_cpu() which will take
care of extra housekeeping work like keeping sysfs in sync.
Make cpu_up/down() static and replace the extra layer of indirection.
[ tglx: Removed the extra wrapper functions and adjusted function names ]
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200323135110.30522-18-qais.yousef@arm.com
The core device API performs extra housekeeping bits that are missing
from directly calling cpu_up/down().
See commit a6717c01dd ("powerpc/rtas: use device model APIs and
serialization during LPM") for an example description of what might go
wrong.
This also prepares to make cpu_up/down() a private interface of the CPU
subsystem.
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: "Paul E. McKenney" <paulmck@kernel.org>
Link: https://lkml.kernel.org/r/20200323135110.30522-16-qais.yousef@arm.com
This function will be used later in machine_shutdown() for some
architectures.
disable_nonboot_cpus() is not safe to use when doing machine_down(),
because it relies on freeze_secondary_cpus() which in turn is a
suspend/resume related freeze and could abort if the logic detects any
pending activities that can prevent finishing the offlining process.
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200323135110.30522-3-qais.yousef@arm.com
Some .gitignore files have comments like "Generated files",
"Ignore generated files" at the header part, but they are
too obvious.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull RCU changes from Paul E. McKenney:
- Make kfree_rcu() use kfree_bulk() for added performance
- RCU updates
- Callback-overload handling updates
- Tasks-RCU KCSAN and sparse updates
- Locking torture test and RCU torture test updates
- Documentation updates
- Miscellaneous fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The warning was intended to spot complete_all() users from hardirq
context on PREEMPT_RT. The warning as-is will also trigger in interrupt
handlers, which are threaded on PREEMPT_RT, which was not intended.
Use lockdep_assert_RT_in_threaded_ctx() which triggers in non-preemptive
context on PREEMPT_RT.
Fixes: a5c6234e10 ("completion: Use simple wait queues")
Reported-by: kernel test robot <rong.a.chen@intel.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200323152019.4qjwluldohuh3by5@linutronix.de
ARCH_SAVE_PAGE_KEYS has been introduced in order to be able to save
and restore s390 specific storage keys into a hibernation image.
With hibernation support removed from s390 there is no point in
keeping the callbacks.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Currently, rcu_barrier() ignores offline CPUs, However, it is possible
for an offline no-CBs CPU to have callbacks queued, and rcu_barrier()
must wait for those callbacks. This commit therefore makes rcu_barrier()
directly invoke the rcu_barrier_func() with interrupts disabled for such
CPUs. This requires passing the CPU number into this function so that
it can entrain the rcu_barrier() callback onto the correct CPU's callback
list, given that the code must instead execute on the current CPU.
While in the area, this commit fixes a bug where the first CPU's callback
might have been invoked before rcu_segcblist_entrain() returned, which
would also result in an early wakeup.
Fixes: 5d6742b377 ("rcu/nocb: Use rcu_segcblist for no-CBs CPUs")
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
[ paulmck: Apply optimization feedback from Boqun Feng. ]
Cc: <stable@vger.kernel.org> # 5.5.x
The rcu_state structure's gp_seq field is only to be modified by the RCU
grace-period kthread, which is single-threaded. This commit therefore
enlists KCSAN's help in enforcing this restriction.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The handling of notify->work did not properly maintain notify->kref in two
cases:
1) where the work was already scheduled, another irq_set_affinity_locked()
would get the ref and (no-op-ly) schedule the work. Thus when
irq_affinity_notify() ran, it would drop the original ref but not the
additional one.
2) when cancelling the (old) work in irq_set_affinity_notifier(), if there
was outstanding work a ref had been got for it but was never put.
Fix both by checking the return values of the work handling functions
(schedule_work() for (1) and cancel_work_sync() for (2)) and put the
extra ref if the return value indicates preexisting work.
Fixes: cd7eab44e9 ("genirq: Add IRQ affinity notifiers")
Fixes: 59c39840f5 ("genirq: Prevent use-after-free and work list corruption")
Signed-off-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ben Hutchings <ben@decadent.org.uk>
Link: https://lkml.kernel.org/r/24f5983f-2ab5-e83a-44ee-a45b5f9300f5@solarflare.com
Continue what commit:
d820ac4c2f ("locking: rename trace_softirq_[enter|exit] => lockdep_softirq_[enter|exit]")
started, rename these to avoid confusing them with tracepoints.
git grep -l "trace_\(soft\|hard\)\(irq_context\|irqs_enabled\)" | while read file;
do
sed -ie 's/trace_\(soft\|hard\)\(irq_context\|irqs_enabled\)/lockdep_\1\2/g' $file;
done
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lkml.kernel.org/r/20200320115859.178626842@infradead.org
Splitting run_posix_cpu_timers() into two parts is work in progress which
is stuck on other entry code related problems. The heavy lifting which
involves locking of sighand lock will be moved into task context so the
necessary execution time is burdened on the task and not on interrupt
context.
Until this work completes lockdep with the spinlock nesting rules enabled
would emit warnings for this known context.
Prevent it by setting "->irq_config = 1" for the invocation of
run_posix_cpu_timers() so lockdep does not complain when sighand lock is
acquried. This will be removed once the split is completed.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200321113242.751182723@linutronix.de
Mark irq_work items with IRQ_WORK_HARD_IRQ which should be invoked in
hardirq context even on PREEMPT_RT. IRQ_WORK without this flag will be
invoked in softirq context on PREEMPT_RT.
Set ->irq_config to 1 for the IRQ_WORK items which are invoked in softirq
context so lockdep knows that these can safely acquire a spinlock_t.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200321113242.643576700@linutronix.de
Set current->irq_config = 1 for hrtimers which are not marked to expire in
hard interrupt context during hrtimer_init(). These timers will expire in
softirq context on PREEMPT_RT.
Setting this allows lockdep to differentiate these timers. If a timer is
marked to expire in hard interrupt context then the timer callback is not
supposed to acquire a regular spinlock instead of a raw_spinlock in the
expiry callback.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200321113242.534508206@linutronix.de
Extend lockdep to validate lock wait-type context.
The current wait-types are:
LD_WAIT_FREE, /* wait free, rcu etc.. */
LD_WAIT_SPIN, /* spin loops, raw_spinlock_t etc.. */
LD_WAIT_CONFIG, /* CONFIG_PREEMPT_LOCK, spinlock_t etc.. */
LD_WAIT_SLEEP, /* sleeping locks, mutex_t etc.. */
Where lockdep validates that the current lock (the one being acquired)
fits in the current wait-context (as generated by the held stack).
This ensures that there is no attempt to acquire mutexes while holding
spinlocks, to acquire spinlocks while holding raw_spinlocks and so on. In
other words, its a more fancy might_sleep().
Obviously RCU made the entire ordeal more complex than a simple single
value test because RCU can be acquired in (pretty much) any context and
while it presents a context to nested locks it is not the same as it
got acquired in.
Therefore its necessary to split the wait_type into two values, one
representing the acquire (outer) and one representing the nested context
(inner). For most 'normal' locks these two are the same.
[ To make static initialization easier we have the rule that:
.outer == INV means .outer == .inner; because INV == 0. ]
It further means that its required to find the minimal .inner of the held
stack to compare against the outer of the new lock; because while 'normal'
RCU presents a CONFIG type to nested locks, if it is taken while already
holding a SPIN type it obviously doesn't relax the rules.
Below is an example output generated by the trivial test code:
raw_spin_lock(&foo);
spin_lock(&bar);
spin_unlock(&bar);
raw_spin_unlock(&foo);
[ BUG: Invalid wait context ]
-----------------------------
swapper/0/1 is trying to lock:
ffffc90000013f20 (&bar){....}-{3:3}, at: kernel_init+0xdb/0x187
other info that might help us debug this:
1 lock held by swapper/0/1:
#0: ffffc90000013ee0 (&foo){+.+.}-{2:2}, at: kernel_init+0xd1/0x187
The way to read it is to look at the new -{n,m} part in the lock
description; -{3:3} for the attempted lock, and try and match that up to
the held locks, which in this case is the one: -{2,2}.
This tells that the acquiring lock requires a more relaxed environment than
presented by the lock stack.
Currently only the normal locks and RCU are converted, the rest of the
lockdep users defaults to .inner = INV which is ignored. More conversions
can be done when desired.
The check for spinlock_t nesting is not enabled by default. It's a separate
config option for now as there are known problems which are currently
addressed. The config option allows to identify these problems and to
verify that the solutions found are indeed solving them.
The config switch will be removed and the checks will permanently enabled
once the vast majority of issues has been addressed.
[ bigeasy: Move LD_WAIT_FREE,… out of CONFIG_LOCKDEP to avoid compile
failure with CONFIG_DEBUG_SPINLOCK + !CONFIG_LOCKDEP]
[ tglx: Add the config option ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200321113242.427089655@linutronix.de
completion uses a wait_queue_head_t to enqueue waiters.
wait_queue_head_t contains a spinlock_t to protect the list of waiters
which excludes it from being used in truly atomic context on a PREEMPT_RT
enabled kernel.
The spinlock in the wait queue head cannot be replaced by a raw_spinlock
because:
- wait queues can have custom wakeup callbacks, which acquire other
spinlock_t locks and have potentially long execution times
- wake_up() walks an unbounded number of list entries during the wake up
and may wake an unbounded number of waiters.
For simplicity and performance reasons complete() should be usable on
PREEMPT_RT enabled kernels.
completions do not use custom wakeup callbacks and are usually single
waiter, except for a few corner cases.
Replace the wait queue in the completion with a simple wait queue (swait),
which uses a raw_spinlock_t for protecting the waiter list and therefore is
safe to use inside truly atomic regions on PREEMPT_RT.
There is no semantical or functional change:
- completions use the exclusive wait mode which is what swait provides
- complete() wakes one exclusive waiter
- complete_all() wakes all waiters while holding the lock which protects
the wait queue against newly incoming waiters. The conversion to swait
preserves this behaviour.
complete_all() might cause unbound latencies with a large number of waiters
being woken at once, but most complete_all() usage sites are either in
testing or initialization code or have only a really small number of
concurrent waiters which for now does not cause a latency problem. Keep it
simple for now.
The fixup of the warning check in the USB gadget driver is just a straight
forward conversion of the lockless waiter check from one waitqueue type to
the other.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Davidlohr Bueso <dbueso@suse.de>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lkml.kernel.org/r/20200321113242.317954042@linutronix.de
As a preparation to use simple wait queues for completions:
- Provide swake_up_all_locked() to support complete_all()
- Make __prepare_to_swait() public available
This is done to enable the usage of complete() within truly atomic contexts
on a PREEMPT_RT enabled kernel.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200321113242.228481202@linutronix.de
seqlock consists of a sequence counter and a spinlock_t which is used to
serialize the writers. spinlock_t is substituted by a "sleeping" spinlock
on PREEMPT_RT enabled kernels which breaks the usage in the timekeeping
code as the writers are executed in hard interrupt and therefore
non-preemptible context even on PREEMPT_RT.
The spinlock in seqlock cannot be unconditionally replaced by a
raw_spinlock_t as many seqlock users have nesting spinlock sections or
other code which is not suitable to run in truly atomic context on RT.
Instead of providing a raw_seqlock API for a single use case, open code the
seqlock for the jiffies use case and implement it with a raw_spinlock_t and
a sequence counter.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200321113242.120587764@linutronix.de
Previously the system would lock up if ftrace was enabled together with
KCSAN. This is due to recursion on reporting if the tracer code is
instrumented with KCSAN.
To avoid this for all types of tracing, disable KCSAN instrumentation
for all of kernel/trace.
Furthermore, since KCSAN relies on udelay() to introduce delay, we have
to disable ftrace for udelay() (currently done for x86) in case KCSAN is
used together with lockdep and ftrace. The reason is that it may corrupt
lockdep IRQ flags tracing state due to a peculiar case of recursion
(details in Makefile comment).
Reported-by: Qian Cai <cai@lca.pw>
Tested-by: Qian Cai <cai@lca.pw>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This introduces ASSERT_EXCLUSIVE_BITS(var, mask).
ASSERT_EXCLUSIVE_BITS(var, mask) will cause KCSAN to assume that the
following access is safe w.r.t. data races (however, please see the
docbook comment for disclaimer here).
For more context on why this was considered necessary, please see:
http://lkml.kernel.org/r/1580995070-25139-1-git-send-email-cai@lca.pw
In particular, before this patch, data races between reads (that use
@mask bits of an access that should not be modified concurrently) and
writes (that change ~@mask bits not used by the readers) would have been
annotated with "data_race()" (or "READ_ONCE()"). However, doing so would
then hide real problems: we would no longer be able to detect harmful
races between reads to @mask bits and writes to @mask bits.
Therefore, by using ASSERT_EXCLUSIVE_BITS(var, mask), we accomplish:
1. Avoid proliferation of specific macros at the call sites: by
including a single mask in the argument list, we can use the same
macro in a wide variety of call sites, regardless of how and which
bits in a field each call site actually accesses.
2. The existing code does not need to be modified (although READ_ONCE()
may still be advisable if we cannot prove that the data race is
always safe).
3. We catch bugs where the exclusive bits are modified concurrently.
4. We document properties of the current code.
Acked-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Qian Cai <cai@lca.pw>
When setting up an access mask with kcsan_set_access_mask(), KCSAN will
only report races if concurrent changes to bits set in access_mask are
observed. Conveying access_mask via a separate call avoids introducing
overhead in the common-case fast-path.
Acked-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduces kcsan_value_change type, which explicitly points out if we
either observed a value-change (TRUE), or we could not observe one but
cannot rule out a value-change happened (MAYBE). The MAYBE state can
either be reported or not, depending on configuration preferences.
A follow-up patch introduces the FALSE state, which should never be
reported.
No functional change intended.
Acked-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If there are at least 4 threads racing on the same address, it can
happen that one of the readers may observe another matching reader in
other_info. To avoid locking up, we have to consume 'other_info'
regardless, but skip the report. See the added comment for more details.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This adds early_boot, udelay_{task,interrupt}, and skip_watch as module
params. The latter parameters are useful to modify at runtime to tune
KCSAN's performance on new systems. This will also permit auto-tuning
these parameters to maximize overall system performance and KCSAN's race
detection ability.
None of the parameters are used in the fast-path and referring to them
via static variables instead of CONFIG constants will not affect
performance.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Qian Cai <cai@lca.pw>
Add 'test=<iters>' option to KCSAN's debugfs interface to invoke KCSAN
checks on a dummy variable. By writing 'test=<iters>' to the debugfs
file from multiple tasks, we can generate real conflicts, and trigger
data race reports.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The KCSAN_ACCESS_ASSERT access type may be used to introduce dummy reads
and writes to assert certain properties of concurrent code, where bugs
could not be detected as normal data races.
For example, a variable that is only meant to be written by a single
CPU, but may be read (without locking) by other CPUs must still be
marked properly to avoid data races. However, concurrent writes,
regardless if WRITE_ONCE() or not, would be a bug. Using
kcsan_check_access(&x, sizeof(x), KCSAN_ACCESS_ASSERT) would allow
catching such bugs.
To support KCSAN_ACCESS_ASSERT the following notable changes were made:
* If an access is of type KCSAN_ASSERT_ACCESS, disable various filters
that only apply to data races, so that all races that KCSAN observes are
reported.
* Bug reports that involve an ASSERT access type will be reported as
"KCSAN: assert: race in ..." instead of "data-race"; this will help
more easily distinguish them.
* Update a few comments to just mention 'races' where we do not always
mean pure data races.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Instrumentation of arbitrary memory-copy functions, such as user-copies,
may be called with size of 0, which could lead to false positives.
To avoid this, add a comparison in check_access() for size==0, which
will be optimized out for constant sized instrumentation
(__tsan_{read,write}N), and therefore not affect the common-case
fast-path.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This adds option KCSAN_ASSUME_PLAIN_WRITES_ATOMIC. If enabled, plain
aligned writes up to word size are assumed to be atomic, and also not
subject to other unsafe compiler optimizations resulting in data races.
This option has been enabled by default to reflect current kernel-wide
preferences.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Even with KCSAN_REPORT_VALUE_CHANGE_ONLY, KCSAN still reports data
races between reads and watchpointed writes, even if the writes wrote
values already present. This commit causes KCSAN to unconditionally
skip reporting in this case.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We must avoid any recursion into lockdep if KCSAN is enabled on utilities
used by lockdep. One manifestation of this is corruption of lockdep's
IRQ trace state (if TRACE_IRQFLAGS), resulting in spurious warnings
(see below). This commit fixes this by:
1. Using raw_local_irq{save,restore} in kcsan_setup_watchpoint().
2. Disabling lockdep in kcsan_report().
Tested with:
CONFIG_LOCKDEP=y
CONFIG_DEBUG_LOCKDEP=y
CONFIG_TRACE_IRQFLAGS=y
This fix eliminates spurious warnings such as the following one:
WARNING: CPU: 0 PID: 2 at kernel/locking/lockdep.c:4406 check_flags.part.0+0x101/0x220
Modules linked in:
CPU: 0 PID: 2 Comm: kthreadd Not tainted 5.5.0-rc1+ #11
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
RIP: 0010:check_flags.part.0+0x101/0x220
<snip>
Call Trace:
lock_is_held_type+0x69/0x150
freezer_fork+0x20b/0x370
cgroup_post_fork+0x2c9/0x5c0
copy_process+0x2675/0x3b40
_do_fork+0xbe/0xa30
? _raw_spin_unlock_irqrestore+0x40/0x50
? match_held_lock+0x56/0x250
? kthread_park+0xf0/0xf0
kernel_thread+0xa6/0xd0
? kthread_park+0xf0/0xf0
kthreadd+0x321/0x3d0
? kthread_create_on_cpu+0x130/0x130
ret_from_fork+0x3a/0x50
irq event stamp: 64
hardirqs last enabled at (63): [<ffffffff9a7995d0>] _raw_spin_unlock_irqrestore+0x40/0x50
hardirqs last disabled at (64): [<ffffffff992a96d2>] kcsan_setup_watchpoint+0x92/0x460
softirqs last enabled at (32): [<ffffffff990489b8>] fpu__copy+0xe8/0x470
softirqs last disabled at (30): [<ffffffff99048939>] fpu__copy+0x69/0x470
Reported-by: Qian Cai <cai@lca.pw>
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Alexander Potapenko <glider@google.com>
Tested-by: Qian Cai <cai@lca.pw>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
KCSAN data-race reports can occur quite frequently, so much so as
to render the system useless. This commit therefore adds support for
time-based rate-limiting KCSAN reports, with the time interval specified
by a new KCSAN_REPORT_ONCE_IN_MS Kconfig option. The default is 3000
milliseconds, also known as three seconds.
Because KCSAN must detect data races in allocators and in other contexts
where use of allocation is ill-advised, a fixed-size array is used to
buffer reports during each reporting interval. To reduce the number of
reports lost due to array overflow, this commit stores only one instance
of duplicate reports, which has the benefit of further reducing KCSAN's
console output rate.
Reported-by: Qian Cai <cai@lca.pw>
Suggested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit adds access-type information to KCSAN's reports as follows:
"read", "read (marked)", "write", and "write (marked)".
Suggested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>