Pull hyperv fixes from Wei Liu:
- a series from Tianyu Lan to fix crash reporting on Hyper-V
- three miscellaneous cleanup patches
* tag 'hyperv-fixes-signed' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux:
x86/Hyper-V: Report crash data in die() when panic_on_oops is set
x86/Hyper-V: Report crash register data when sysctl_record_panic_msg is not set
x86/Hyper-V: Report crash register data or kmsg before running crash kernel
x86/Hyper-V: Trigger crash enlightenment only once during system crash.
x86/Hyper-V: Free hv_panic_page when fail to register kmsg dump
x86/Hyper-V: Unload vmbus channel in hv panic callback
x86: hyperv: report value of misc_features
hv_debugfs: Make hv_debug_root static
hv: hyperv_vmbus.h: Replace zero-length array with flexible-array member
The severity grading code returns IN_KERNEL_RECOV error context for
errors which have happened in kernel space but from which the kernel can
recover. Whether the recovery can happen is determined by the exception
table entry having as handler ex_handler_fault() and which has been
declared at build time using _ASM_EXTABLE_FAULT().
IN_KERNEL_RECOV is used in mce_severity_intel() to lookup the
corresponding error severity in the severities table.
However, the mapping back from error severity to whether the error is
IN_KERNEL_RECOV is ambiguous and in the very paranoid case - which
might not be possible right now - but be better safe than sorry later,
an exception fixup could be attempted for another MCE whose address
is in the exception table and has the proper severity. Which would be
unfortunate, to say the least.
Therefore, mark such MCEs explicitly as MCE_IN_KERNEL_RECOV so that the
recovery attempt is done only for them.
Document the whole handling, while at it, as it is not trivial.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200407163414.18058-10-bp@alien8.de
If the handler took any action to log or deal with the error, set a bit
in mce->kflags so that the default handler on the end of the machine
check chain can see what has been done.
Get rid of NOTIFY_STOP returns. Make the EDAC and dev-mcelog handlers
skip over errors already processed by CEC.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200214222720.13168-5-tony.luck@intel.com
It isn't going to be first on the notifier chain when the CEC is moved
to be a normal user of the notifier chain.
Fix the enum for the MCE_PRIO symbols to list them in reverse order so
that the compiler can give them numbers from low to high priority. Add
an entry for MCE_PRIO_CEC as the highest priority.
[ bp: Use passive voice, add comments. ]
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200214222720.13168-2-tony.luck@intel.com
Pass in the bank pointer directly to the cleaning up functions,
obviating the need for per-CPU accesses. Make the clean up path
interrupt-safe by cleaning the bank pointer first so that the rest of
the teardown happens safe from the thresholding interrupt.
No functional changes.
[ bp: Write commit message and reverse bank->shared test to save an
indentation level in threshold_remove_bank(). ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200403161943.1458-7-bp@alien8.de
mce_threshold_create_device() hotplug callback runs on the plugged in
CPU so:
- use this_cpu_read() which is faster
- pass in struct threshold_bank **bp to threshold_create_bank() and
instead of doing per-CPU accesses
- Use rdmsr_safe() instead of rdmsr_safe_on_cpu() which avoids an IPI.
No functional changes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200403161943.1458-6-bp@alien8.de
Drop the stupid threshold_init_device() initcall iterating over all
online CPUs in favor of properly setting up everything on the CPU
hotplug path, when each CPU's callback is invoked.
[ bp: Write commit message. ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200403161943.1458-5-bp@alien8.de
Make sure the thresholding bank descriptor is fully initialized when the
thresholding interrupt fires after a hotplug event.
[ bp: Write commit message and document long-forgotten bank_map. ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200403161943.1458-4-bp@alien8.de
Resolve these conflicts:
arch/x86/Kconfig
arch/x86/kernel/Makefile
Do a minor "evil merge" to move the KCSAN entry up a bit by a few lines
in the Kconfig to reduce the probability of future conflicts.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We want to notify Hyper-V when a Linux guest VM crash occurs, so
there is a record of the crash even when kdump is enabled. But
crash_kexec_post_notifiers defaults to "false", so the kdump kernel
runs before the notifiers and Hyper-V never gets notified. Fix this by
always setting crash_kexec_post_notifiers to be true for Hyper-V VMs.
Fixes: 81b18bce48 ("Drivers: HV: Send one page worth of kmsg dump over Hyper-V during panic")
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Link: https://lore.kernel.org/r/20200406155331.2105-5-Tianyu.Lan@microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Without at least minimal handling for split lock detection induced #AC,
VMX will just run into the same problem as the VMWare hypervisor, which
was reported by Kenneth.
It will inject the #AC blindly into the guest whether the guest is
prepared or not.
Provide a function for guest mode which acts depending on the host
SLD mode. If mode == sld_warn, treat it like user space, i.e. emit a
warning, disable SLD and mark the task accordingly. Otherwise force
SIGBUS.
[ bp: Add a !CPU_SUP_INTEL stub for handle_guest_split_lock(). ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lkml.kernel.org/r/20200410115516.978037132@linutronix.de
Link: https://lkml.kernel.org/r/20200402123258.895628824@linutronix.de
Pull SPDX updates from Greg KH:
"Here are three SPDX patches for 5.7-rc1.
One fixes up the SPDX tag for a single driver, while the other two go
through the tree and add SPDX tags for all of the .gitignore files as
needed.
Nothing too complex, but you will get a merge conflict with your
current tree, that should be trivial to handle (one file modified by
two things, one file deleted.)
All three of these have been in linux-next for a while, with no
reported issues other than the merge conflict"
* tag 'spdx-5.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/spdx:
ASoC: MT6660: make spdxcheck.py happy
.gitignore: add SPDX License Identifier
.gitignore: remove too obvious comments
Pull x86 vmware updates from Ingo Molnar:
"The main change in this tree is the addition of 'steal time clock
support' for VMware guests"
* 'x86-vmware-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vmware: Use bool type for vmw_sched_clock
x86/vmware: Enable steal time accounting
x86/vmware: Add steal time clock support for VMware guests
x86/vmware: Remove vmware_sched_clock_setup()
x86/vmware: Make vmware_select_hypercall() __init
Pull x86 cleanups from Ingo Molnar:
"This topic tree contains more commits than usual:
- most of it are uaccess cleanups/reorganization by Al
- there's a bunch of prototype declaration (--Wmissing-prototypes)
cleanups
- misc other cleanups all around the map"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
x86/mm/set_memory: Fix -Wmissing-prototypes warnings
x86/efi: Add a prototype for efi_arch_mem_reserve()
x86/mm: Mark setup_emu2phys_nid() static
x86/jump_label: Move 'inline' keyword placement
x86/platform/uv: Add a missing prototype for uv_bau_message_interrupt()
kill uaccess_try()
x86: unsafe_put-style macro for sigmask
x86: x32_setup_rt_frame(): consolidate uaccess areas
x86: __setup_rt_frame(): consolidate uaccess areas
x86: __setup_frame(): consolidate uaccess areas
x86: setup_sigcontext(): list user_access_{begin,end}() into callers
x86: get rid of put_user_try in __setup_rt_frame() (both 32bit and 64bit)
x86: ia32_setup_rt_frame(): consolidate uaccess areas
x86: ia32_setup_frame(): consolidate uaccess areas
x86: ia32_setup_sigcontext(): lift user_access_{begin,end}() into the callers
x86/alternatives: Mark text_poke_loc_init() static
x86/cpu: Fix a -Wmissing-prototypes warning for init_ia32_feat_ctl()
x86/mm: Drop pud_mknotpresent()
x86: Replace setup_irq() by request_irq()
x86/configs: Slightly reduce defconfigs
...
Pull x86 splitlock updates from Thomas Gleixner:
"Support for 'split lock' detection:
Atomic operations (lock prefixed instructions) which span two cache
lines have to acquire the global bus lock. This is at least 1k cycles
slower than an atomic operation within a cache line and disrupts
performance on other cores. Aside of performance disruption this is a
unpriviledged form of DoS.
Some newer CPUs have the capability to raise an #AC trap when such an
operation is attempted. The detection is by default enabled in warning
mode which will warn once when a user space application is caught. A
command line option allows to disable the detection or to select fatal
mode which will terminate offending applications with SIGBUS"
* tag 'x86-splitlock-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/split_lock: Avoid runtime reads of the TEST_CTRL MSR
x86/split_lock: Rework the initialization flow of split lock detection
x86/split_lock: Enable split lock detection by kernel
Pull x86 entry code updates from Thomas Gleixner:
- Convert the 32bit syscalls to be pt_regs based which removes the
requirement to push all 6 potential arguments onto the stack and
consolidates the interface with the 64bit variant
- The first small portion of the exception and syscall related entry
code consolidation which aims to address the recently discovered
issues vs. RCU, int3, NMI and some other exceptions which can
interrupt any context. The bulk of the changes is still work in
progress and aimed for 5.8.
- A few lockdep namespace cleanups which have been applied into this
branch to keep the prerequisites for the ongoing work confined.
* tag 'x86-entry-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (35 commits)
x86/entry: Fix build error x86 with !CONFIG_POSIX_TIMERS
lockdep: Rename trace_{hard,soft}{irq_context,irqs_enabled}()
lockdep: Rename trace_softirqs_{on,off}()
lockdep: Rename trace_hardirq_{enter,exit}()
x86/entry: Rename ___preempt_schedule
x86: Remove unneeded includes
x86/entry: Drop asmlinkage from syscalls
x86/entry/32: Enable pt_regs based syscalls
x86/entry/32: Use IA32-specific wrappers for syscalls taking 64-bit arguments
x86/entry/32: Rename 32-bit specific syscalls
x86/entry/32: Clean up syscall_32.tbl
x86/entry: Remove ABI prefixes from functions in syscall tables
x86/entry/64: Add __SYSCALL_COMMON()
x86/entry: Remove syscall qualifier support
x86/entry/64: Remove ptregs qualifier from syscall table
x86/entry: Move max syscall number calculation to syscallhdr.sh
x86/entry/64: Split X32 syscall table into its own file
x86/entry/64: Move sys_ni_syscall stub to common.c
x86/entry/64: Use syscall wrappers for x32_rt_sigreturn
x86/entry: Refactor SYS_NI macros
...
Pull perf updates from Ingo Molnar:
"The main changes in this cycle were:
Kernel side changes:
- A couple of x86/cpu cleanups and changes were grandfathered in due
to patch dependencies. These clean up the set of CPU model/family
matching macros with a consistent namespace and C99 initializer
style.
- A bunch of updates to various low level PMU drivers:
* AMD Family 19h L3 uncore PMU
* Intel Tiger Lake uncore support
* misc fixes to LBR TOS sampling
- optprobe fixes
- perf/cgroup: optimize cgroup event sched-in processing
- misc cleanups and fixes
Tooling side changes are to:
- perf {annotate,expr,record,report,stat,test}
- perl scripting
- libapi, libperf and libtraceevent
- vendor events on Intel and S390, ARM cs-etm
- Intel PT updates
- Documentation changes and updates to core facilities
- misc cleanups, fixes and other enhancements"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (89 commits)
cpufreq/intel_pstate: Fix wrong macro conversion
x86/cpu: Cleanup the now unused CPU match macros
hwrng: via_rng: Convert to new X86 CPU match macros
crypto: Convert to new CPU match macros
ASoC: Intel: Convert to new X86 CPU match macros
powercap/intel_rapl: Convert to new X86 CPU match macros
PCI: intel-mid: Convert to new X86 CPU match macros
mmc: sdhci-acpi: Convert to new X86 CPU match macros
intel_idle: Convert to new X86 CPU match macros
extcon: axp288: Convert to new X86 CPU match macros
thermal: Convert to new X86 CPU match macros
hwmon: Convert to new X86 CPU match macros
platform/x86: Convert to new CPU match macros
EDAC: Convert to new X86 CPU match macros
cpufreq: Convert to new X86 CPU match macros
ACPI: Convert to new X86 CPU match macros
x86/platform: Convert to new CPU match macros
x86/kernel: Convert to new CPU match macros
x86/kvm: Convert to new CPU match macros
x86/perf/events: Convert to new CPU match macros
...
Pull RAS updates from Borislav Petkov:
- Do not report spurious MCEs on some Intel platforms caused by errata;
by Prarit Bhargava.
- Change dev-mcelog's hardcoded limit of 32 error records to a dynamic
one, controlled by the number of logical CPUs, by Tony Luck.
- Add support for the processor identification number (PPIN) on AMD, by
Wei Huang.
* tag 'ras_updates_for_5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce/amd: Add PPIN support for AMD MCE
x86/mce/dev-mcelog: Dynamically allocate space for machine check records
x86/mce: Do not log spurious corrected mce errors
In a context switch from a task that is detecting split locks to one that
is not (or vice versa) we need to update the TEST_CTRL MSR. Currently this
is done with the common sequence:
read the MSR
flip the bit
write the MSR
in order to avoid changing the value of any reserved bits in the MSR.
Cache unused and reserved bits of TEST_CTRL MSR with SPLIT_LOCK_DETECT bit
cleared during initialization, so we can avoid an expensive RDMSR
instruction during context switch.
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Originally-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200325030924.132881-3-xiaoyao.li@intel.com
Current initialization flow of split lock detection has following issues:
1. It assumes the initial value of MSR_TEST_CTRL.SPLIT_LOCK_DETECT to be
zero. However, it's possible that BIOS/firmware has set it.
2. X86_FEATURE_SPLIT_LOCK_DETECT flag is unconditionally set even if
there is a virtualization flaw that FMS indicates the existence while
it's actually not supported.
Rework the initialization flow to solve above issues. In detail, explicitly
clear and set split_lock_detect bit to verify MSR_TEST_CTRL can be
accessed, and rdmsr after wrmsr to ensure bit is cleared/set successfully.
X86_FEATURE_SPLIT_LOCK_DETECT flag is set only when the feature does exist
and the feature is not disabled with kernel param "split_lock_detect=off"
On each processor, explicitly updating the SPLIT_LOCK_DETECT bit based on
sld_sate in split_lock_init() since BIOS/firmware may touch it.
Originally-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200325030924.132881-2-xiaoyao.li@intel.com
Finding all places which build x86_cpu_id match tables is tedious and the
logic is hidden in lots of differently named macro wrappers.
Most of these initializer macros use plain C89 initializers which rely on
the ordering of the struct members. So new members could only be added at
the end of the struct, but that's ugly as hell and C99 initializers are
really the right thing to use.
Provide a set of macros which:
- Have a proper naming scheme, starting with X86_MATCH_
- Use C99 initializers
The set of provided macros are all subsets of the base macro
X86_MATCH_VENDOR_FAM_MODEL_FEATURE()
which allows to supply all possible selection criteria:
vendor, family, model, feature
The other macros shorten this to avoid typing all arguments when they are
not needed and would require one of the _ANY constants. They have been
created due to the requirements of the existing usage sites.
Also add a few model constants for Centaur CPUs and QUARK.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Link: https://lkml.kernel.org/r/20200320131508.826011988@linutronix.de
Steal time is the amount of CPU time needed by a guest virtual machine
that is not provided by the host. Steal time occurs when the host
allocates this CPU time elsewhere, for example, to another guest.
Steal time can be enabled by adding the VM configuration option
stealclock.enable = "TRUE". It is supported by VMs that run hardware
version 13 or newer.
Introduce the VMware steal time infrastructure. The high level code
(such as enabling, disabling and hot-plug routines) was derived from KVM.
[ Tomer: use READ_ONCE macros and 32bit guests support. ]
[ bp: Massage. ]
Co-developed-by: Tomer Zeltzer <tomerr90@gmail.com>
Signed-off-by: Alexey Makhalov <amakhalov@vmware.com>
Signed-off-by: Tomer Zeltzer <tomerr90@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200323195707.31242-4-amakhalov@vmware.com
Add a missing include in order to fix -Wmissing-prototypes warning:
arch/x86/kernel/cpu/feat_ctl.c:95:6: warning: no previous prototype for ‘init_ia32_feat_ctl’ [-Wmissing-prototypes]
95 | void init_ia32_feat_ctl(struct cpuinfo_x86 *c)
Signed-off-by: Benjamin Thiel <b.thiel@posteo.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200323105934.26597-1-b.thiel@posteo.de
Newer AMD CPUs support a feature called protected processor
identification number (PPIN). This feature can be detected via
CPUID_Fn80000008_EBX[23].
However, CPUID alone is not enough to read the processor identification
number - MSR_AMD_PPIN_CTL also needs to be configured properly. If, for
any reason, MSR_AMD_PPIN_CTL[PPIN_EN] can not be turned on, such as
disabled in BIOS, the CPU capability bit X86_FEATURE_AMD_PPIN needs to
be cleared.
When the X86_FEATURE_AMD_PPIN capability is available, the
identification number is issued together with the MCE error info in
order to keep track of the source of MCE errors.
[ bp: Massage. ]
Co-developed-by: Smita Koralahalli Channabasappa <smita.koralahallichannabasappa@amd.com>
Signed-off-by: Smita Koralahalli Channabasappa <smita.koralahallichannabasappa@amd.com>
Signed-off-by: Wei Huang <wei.huang2@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200321193800.3666964-1-wei.huang2@amd.com
Pull RAS fixes from Thomas Gleixner:
"Two RAS related fixes:
- Shut down the per CPU thermal throttling poll work properly when a
CPU goes offline.
The missing shutdown caused the poll work to be migrated to a
unbound worker which triggered warnings about the usage of
smp_processor_id() in preemptible context
- Fix the PPIN feature initialization which missed to enable the
functionality when PPIN_CTL was enabled but the MSR locked against
updates"
* tag 'ras-urgent-2020-03-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Fix logic and comments around MSR_PPIN_CTL
x86/mce/therm_throt: Undo thermal polling properly on CPU offline
Family 19h CPUs are Zen-based and still share most architectural
features with Family 17h CPUs, and therefore still need to call
init_amd_zn() e.g., to set the RECLAIM_DISTANCE override.
init_amd_zn() also sets X86_FEATURE_ZEN, which today is only used
in amd_set_core_ssb_state(), which isn't called on some late
model Family 17h CPUs, nor on any Family 19h CPUs:
X86_FEATURE_AMD_SSBD replaces X86_FEATURE_LS_CFG_SSBD on those
later model CPUs, where the SSBD mitigation is done via the
SPEC_CTRL MSR instead of the LS_CFG MSR.
Family 19h CPUs also don't have the erratum where the CPB feature
bit isn't set, but that code can stay unchanged and run safely
on Family 19h.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200311191451.13221-1-kim.phillips@amd.com
We have had a hard coded limit of 32 machine check records since the
dawn of time. But as numbers of cores increase, it is possible for
more than 32 errors to be reported before a user process reads from
/dev/mcelog. In this case the additional errors are lost.
Keep 32 as the minimum. But tune the maximum value up based on the
number of processors.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200218184408.GA23048@agluck-desk2.amr.corp.intel.com
There are two implemented bits in the PPIN_CTL MSR:
Bit 0: LockOut (R/WO)
Set 1 to prevent further writes to MSR_PPIN_CTL.
Bit 1: Enable_PPIN (R/W)
If 1, enables MSR_PPIN to be accessible using RDMSR.
If 0, an attempt to read MSR_PPIN will cause #GP.
So there are four defined values:
0: PPIN is disabled, PPIN_CTL may be updated
1: PPIN is disabled. PPIN_CTL is locked against updates
2: PPIN is enabled. PPIN_CTL may be updated
3: PPIN is enabled. PPIN_CTL is locked against updates
Code would only enable the X86_FEATURE_INTEL_PPIN feature for case "2".
When it should have done so for both case "2" and case "3".
Fix the final test to just check for the enable bit. Also fix some of
the other comments in this function.
Fixes: 3f5a7896a5 ("x86/mce: Include the PPIN in MCE records when available")
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200226011737.9958-1-tony.luck@intel.com
Explicitly set X86_FEATURE_OSPKE via set_cpu_cap() instead of calling
get_cpu_cap() to pull the feature bit from CPUID after enabling CR4.PKE.
Invoking get_cpu_cap() effectively wipes out any {set,clear}_cpu_cap()
changes that were made between this_cpu->c_init() and setup_pku(), as
all non-synthetic feature words are reinitialized from the CPU's CPUID
values.
Blasting away capability updates manifests most visibility when running
on a VMX capable CPU, but with VMX disabled by BIOS. To indicate that
VMX is disabled, init_ia32_feat_ctl() clears X86_FEATURE_VMX, using
clear_cpu_cap() instead of setup_clear_cpu_cap() so that KVM can report
which CPU is misconfigured (KVM needs to probe every CPU anyways).
Restoring X86_FEATURE_VMX from CPUID causes KVM to think VMX is enabled,
ultimately leading to an unexpected #GP when KVM attempts to do VMXON.
Arguably, init_ia32_feat_ctl() should use setup_clear_cpu_cap() and let
KVM figure out a different way to report the misconfigured CPU, but VMX
is not the only feature bit that is affected, i.e. there is precedent
that tweaking feature bits via {set,clear}_cpu_cap() after ->c_init()
is expected to work. Most notably, x86_init_rdrand()'s clearing of
X86_FEATURE_RDRAND when RDRAND malfunctions is also overwritten.
Fixes: 0697694564 ("x86/mm/pkeys: Actually enable Memory Protection Keys in the CPU")
Reported-by: Jacob Keller <jacob.e.keller@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Jacob Keller <jacob.e.keller@intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200226231615.13664-1-sean.j.christopherson@intel.com
Chris Wilson reported splats from running the thermal throttling
workqueue callback on offlined CPUs. The problem is that that callback
should not even run on offlined CPUs but it happens nevertheless because
the offlining callback thermal_throttle_offline() does not symmetrically
undo the setup work done in its onlining counterpart. IOW,
1. The thermal interrupt vector should be masked out before ...
2. ... cancelling any pending work synchronously so that no new work is
enqueued anymore.
Do those things and fix the issue properly.
[ bp: Write commit message. ]
Fixes: f6656208f0 ("x86/mce/therm_throt: Optimize notifications of thermal throttle")
Reported-by: Chris Wilson <chris@chris-wilson.co.uk>
Tested-by: Pandruvada, Srinivas <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/158120068234.18291.7938335950259651295@skylake-alporthouse-com
Pull RAS fixes from Thomas Gleixner:
"Two fixes for the AMD MCE driver:
- Populate the per CPU MCA bank descriptor pointer only after it has
been completely set up to prevent a use-after-free in case that one
of the subsequent initialization step fails
- Implement a proper release function for the sysfs entries of MCA
threshold controls instead of freeing the memory right in the CPU
teardown code, which leads to another use-after-free when the
associated sysfs file is opened and accessed"
* tag 'ras-urgent-2020-02-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce/amd: Fix kobject lifetime
x86/mce/amd: Publish the bank pointer only after setup has succeeded