The access to the iommu->need_sync member needs to be protected by the
iommu->lock. Otherwise this is a possible race condition. Fix it with
this patch.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
In some rare cases a request can arrive an IOMMU with its originial
requestor id even it is aliased. Handle this by setting the device table
entry to the same protection domain for the original and the aliased
requestor id.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Impact: remove stale IOTLB entries
In the non-default nofullflush case the GART is only flushed when
next_bit wraps around. But it can happen that an unmap operation unmaps
memory which is behind the current next_bit location. If these addresses
are reused it may result in stale GART IO/TLB entries. Fix this by
setting the GART next_bit always behind an unmapped location.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Import: robustness checks
Add more checks in the function graph code to detect errors and
perhaps print out better information if a bug happens.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: feature, let entry function decide to trace or not
This patch lets the graph tracer entry function decide if the tracing
should be done at the end as well. This requires all function graph
entry functions return 1 if it should trace, or 0 if the return should
not be traced.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: better dumpstack output
I noticed in my crash dumps and even in the stack tracer that a
lot of functions listed in the stack trace are simply
return_to_handler which is ftrace graphs way to insert its own
call into the return of a function.
But we lose out where the actually function was called from.
This patch adds in hooks to the dumpstack mechanism that detects
this and finds the real function to print. Both are printed to
let the user know that a hook is still in place.
This does give a funny side effect in the stack tracer output:
Depth Size Location (80 entries)
----- ---- --------
0) 4144 48 save_stack_trace+0x2f/0x4d
1) 4096 128 ftrace_call+0x5/0x2b
2) 3968 16 mempool_alloc_slab+0x16/0x18
3) 3952 384 return_to_handler+0x0/0x73
4) 3568 -240 stack_trace_call+0x11d/0x209
5) 3808 144 return_to_handler+0x0/0x73
6) 3664 -128 mempool_alloc+0x4d/0xfe
7) 3792 128 return_to_handler+0x0/0x73
8) 3664 -32 scsi_sg_alloc+0x48/0x4a [scsi_mod]
As you can see, the real functions are now negative. This is due
to them not being found inside the stack.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: new ftrace_graph_stop function
While developing more features of function graph, I hit a bug that
caused the WARN_ON to trigger in the prepare_ftrace_return function.
Well, it was hard for me to find out that was happening because the
bug would not print, it would just cause a hard lockup or reboot.
The reason is that it is not safe to call printk from this function.
Looking further, I also found that it calls unregister_ftrace_graph,
which grabs a mutex and calls kstop machine. This would definitely
lock the box up if it were to trigger.
This patch adds a fast and safe ftrace_graph_stop() which will
stop the function tracer. Then it is safe to call the WARN ON.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: consistency change for function graph
This patch makes function graph record the mcount caller address
the same way the function tracer does.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: clean up
There exists macros for x86 asm to handle x86_64 and i386.
This patch updates function graph asm to use them.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Merge x86/dumpstack into tracing/ftrace because upcoming ftrace changes
depend on cleanups already in x86/dumpstack.
Also merge to latest upstream -rc.
Impact: remove stale IOTLB entries
In the non-default nofullflush case the GART is only flushed when
next_bit wraps around. But it can happen that an unmap operation unmaps
memory which is behind the current next_bit location. If these addresses
are reused it may result in stale GART IO/TLB entries. Fix this by
setting the GART next_bit always behind an unmapped location.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Remove CONFIG_APM_REAL_MODE_POWER_OFF like CONFIG_APM_POWER_OFF which
has been done for linux-2.2.14pre8 (http://lkml.org/lkml/1999/11/23/3).
Re-introducing CONFIG_APM_POWER_OFF got nack-ed. Stephen didn't bother
to remove CONFIG_APM_REAL_MODE_POWER_OFF, let's get rid of it now.
Reference: http://lkml.org/lkml/2008/5/7/97
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: extend and enable the function graph tracer to 64-bit x86
This patch implements the support for function graph tracer under x86-64.
Both static and dynamic tracing are supported.
This causes some small CPP conditional asm on arch/x86/kernel/ftrace.c I
wanted to use probe_kernel_read/write to make the return address
saving/patching code more generic but it causes tracing recursion.
That would be perhaps useful to implement a notrace version of these
function for other archs ports.
Note that arch/x86/process_64.c is not traced, as in X86-32. I first
thought __switch_to() was responsible of crashes during tracing because I
believed current task were changed inside but that's actually not the
case (actually yes, but not the "current" pointer).
So I will have to investigate to find the functions that harm here, to
enable tracing of the other functions inside (but there is no issue at
this time, while process_64.c stays out of -pg flags).
A little possible race condition is fixed inside this patch too. When the
tracer allocate a return stack dynamically, the current depth is not
initialized before but after. An interrupt could occur at this time and,
after seeing that the return stack is allocated, the tracer could try to
trace it with a random uninitialized depth. It's a prevention, even if I
hadn't problems with it.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tim Bird <tim.bird@am.sony.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'irq-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
irq.h: fix missing/extra kernel-doc
genirq: __irq_set_trigger: change pr_warning to pr_debug
irq: fix typo
x86: apic honour irq affinity which was set in early boot
genirq: fix the affinity setting in setup_irq
genirq: keep affinities set from userspace across free/request_irq()
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: always define DECLARE_PCI_UNMAP* macros
x86: fixup config space size of CPU functions for AMD family 11h
x86, bts: fix wrmsr and spinlock over kmalloc
x86, pebs: fix PEBS record size configuration
x86, bts: turn macro into static inline function
x86, bts: exclude ds.c from build when disabled
arch/x86/kernel/pci-calgary_64.c: change simple_strtol to simple_strtoul
x86: use limited register constraint for setnz
xen: pin correct PGD on suspend
x86: revert irq number limitation
x86: fixing __cpuinit/__init tangle, xsave_cntxt_init()
x86: fix __cpuinit/__init tangle in init_thread_xstate()
oprofile: fix an overflow in ppro code
* 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/davej/cpufreq:
[CPUFREQ] powernow-k8: ignore out-of-range PstateStatus value
[CPUFREQ] Documentation: Add Blackfin to list of supported processors
Impact: update comment
Clarify that too small aperture is valid reason for this code.
Signed-off-by: Pavel Machek <pavel@suse.cz>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: remove dead code
If we take a closer look at the rff_trace/rff_action ret_from_fork code,
we have to realize that it does all the wrong things: for example it
checks the TIF flag - while later on jumping back to the ret-from-syscall
path - duplicating the check needlessly.
But checking for _TIF_SYSCALL_TRACE is completely unnecessary here because
we clear that flag for every freshly forked task. So the whole "tracing"
code here, for which there is a out of line jump optimization that makes
it even harder to read, is in reality completely dead code ...
Reported-by: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Tested-by: Cyrill Gorcunov <gorcunov@gmail.com>
We merge this branch because x86/debug touches code that we started
cleaning up in x86/irq. The two branches started out independent,
but as unexpected amount of activity went into x86/irq, they became
dependent. Resolve that by this cross-merge.
child_rip is called not by its name but indirectly
rather so make it global and aligned.
Signed-off-by: Cyrill Gorcunov <gorcunov@gmail.com>
Acked-by: Alexander van Heukelum <heukelum@fastmail.fm>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
entry_32.S is now the only user of KPROBE_ENTRY / KPROBE_END,
treewide. This patch reorders entry_64.S and explicitly generates
a separate section for functions that need the protection. The
generated code before and after the patch is equal.
The KPROBE_ENTRY and KPROBE_END macro's are removed too.
Signed-off-by: Alexander van Heukelum <heukelum@fastmail.fm>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: clean up assembly macros and annotations - with some object impact
entry_64.S is the only user of KPROBE_ENTRY / KPROBE_END on
x86_64. This patch reorders entry_64.S and explicitly generates
a separate section for functions that need the protection. The
generated code before and after the patch is equal.
Implicitly changing sections in assembly files makes it more
difficult to follow why the assembler is doing certain things.
For example,
.p2align 5
KPROBE_ENTRY(...)
was not doing what you would expect. Other section changes
(__ex_table, .fixup, .init.rodata) are done explicitly already.
Signed-off-by: Alexander van Heukelum <heukelum@fastmail.fm>
Acked-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: make global variables and a function static
Fix following sparse warnings:
arch/x86/kernel/microcode_core.c:102:22: warning: symbol
'microcode_ops' was not declared. Should it be static?
arch/x86/kernel/microcode_core.c:206:24: warning: symbol
'microcode_pdev' was not declared. Should it be static?
arch/x86/kernel/microcode_core.c:322:6: warning: symbol
'microcode_update_cpu' was not declared. Should it be static?
arch/x86/kernel/microcode_intel.c:468:22: warning: symbol
'microcode_intel_ops' was not declared. Should it be static?
Signed-off-by: Hannes Eder <hannes@hanneseder.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: new "power-tracer" ftrace plugin
This patch adds a C/P-state ftrace plugin that will generate
detailed statistics about the C/P-states that are being used,
so that we can look at detailed decisions that the C/P-state
code is making, rather than the too high level "average"
that we have today.
An example way of using this is:
mount -t debugfs none /sys/kernel/debug
echo cstate > /sys/kernel/debug/tracing/current_tracer
echo 1 > /sys/kernel/debug/tracing/tracing_enabled
sleep 1
echo 0 > /sys/kernel/debug/tracing/tracing_enabled
cat /sys/kernel/debug/tracing/trace | perl scripts/trace/cstate.pl > out.svg
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: more efficient code for ftrace graph tracer
This patch uses the dynamic patching, when available, to patch
the function graph code into the kernel.
This patch will ease the way for letting both function tracing
and function graph tracing run together.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: feature
This patch sets a C-like output for the function graph tracing.
For this aim, we now call two handler for each function: one on the entry
and one other on return. This way we can draw a well-ordered call stack.
The pid of the previous trace is loosely stored to be compared against
the one of the current trace to see if there were a context switch.
Without this little feature, the call tree would seem broken at
some locations.
We could use the sched_tracer to capture these sched_events but this
way of processing is much more simpler.
2 spaces have been chosen for indentation to fit the screen while deep
calls. The time of execution in nanosecs is printed just after closed
braces, it seems more easy this way to find the corresponding function.
If the time was printed as a first column, it would be not so easy to
find the corresponding function if it is called on a deep depth.
I plan to output the return value but on 32 bits CPU, the return value
can be 32 or 64, and its difficult to guess on which case we are.
I don't know what would be the better solution on X86-32: only print
eax (low-part) or even edx (high-part).
Actually it's thee same problem when a function return a 8 bits value, the
high part of eax could contain junk values...
Here is an example of trace:
sys_read() {
fget_light() {
} 526
vfs_read() {
rw_verify_area() {
security_file_permission() {
cap_file_permission() {
} 519
} 1564
} 2640
do_sync_read() {
pipe_read() {
__might_sleep() {
} 511
pipe_wait() {
prepare_to_wait() {
} 760
deactivate_task() {
dequeue_task() {
dequeue_task_fair() {
dequeue_entity() {
update_curr() {
update_min_vruntime() {
} 504
} 1587
clear_buddies() {
} 512
add_cfs_task_weight() {
} 519
update_min_vruntime() {
} 511
} 5602
dequeue_entity() {
update_curr() {
update_min_vruntime() {
} 496
} 1631
clear_buddies() {
} 496
update_min_vruntime() {
} 527
} 4580
hrtick_update() {
hrtick_start_fair() {
} 488
} 1489
} 13700
} 14949
} 16016
msecs_to_jiffies() {
} 496
put_prev_task_fair() {
} 504
pick_next_task_fair() {
} 489
pick_next_task_rt() {
} 496
pick_next_task_fair() {
} 489
pick_next_task_idle() {
} 489
------------8<---------- thread 4 ------------8<----------
finish_task_switch() {
} 1203
do_softirq() {
__do_softirq() {
__local_bh_disable() {
} 669
rcu_process_callbacks() {
__rcu_process_callbacks() {
cpu_quiet() {
rcu_start_batch() {
} 503
} 1647
} 3128
__rcu_process_callbacks() {
} 542
} 5362
_local_bh_enable() {
} 587
} 8880
} 9986
kthread_should_stop() {
} 669
deactivate_task() {
dequeue_task() {
dequeue_task_fair() {
dequeue_entity() {
update_curr() {
calc_delta_mine() {
} 511
update_min_vruntime() {
} 511
} 2813
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
This patch changes the name of the "return function tracer" into
function-graph-tracer which is a more suitable name for a tracing
which makes one able to retrieve the ordered call stack during
the code flow.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
A workaround for AMD CPU family 11h erratum 311 might cause that the
P-state Status Register shows a "current P-state" which is larger than
the "current P-state limit" in P-state Current Limit Register. For the
wrong P-state value there is no ACPI _PSS object defined and
powernow-k8/cpufreq can't determine the proper CPU frequency for that
state.
As a consequence this can cause a panic during boot (potentially with
all recent kernel versions -- at least I have reproduced it with
various 2.6.27 kernels and with the current .28 series), as an
example:
powernow-k8: Found 1 AMD Turion(tm)X2 Ultra DualCore Mobile ZM-82 processors (2 \
)
powernow-k8: 0 : pstate 0 (2200 MHz)
powernow-k8: 1 : pstate 1 (1100 MHz)
powernow-k8: 2 : pstate 2 (600 MHz)
BUG: unable to handle kernel paging request at ffff88086e7528b8
IP: [<ffffffff80486361>] cpufreq_stats_update+0x4a/0x5f
PGD 202063 PUD 0
Oops: 0002 [#1] SMP
last sysfs file:
CPU 1
Modules linked in:
Pid: 1, comm: swapper Not tainted 2.6.28-rc3-dirty #16
RIP: 0010:[<ffffffff80486361>] [<ffffffff80486361>] cpufreq_stats_update+0x4a/0\
f
Synaptics claims to have extended capabilities, but I'm not able to read them.<6\
6
RAX: 0000000000000000 RBX: 0000000000000001 RCX: ffff88006e7528c0
RDX: 00000000ffffffff RSI: ffff88006e54af00 RDI: ffffffff808f056c
RBP: 00000000fffee697 R08: 0000000000000003 R09: ffff88006e73f080
R10: 0000000000000001 R11: 00000000002191c0 R12: ffff88006fb83c10
R13: 00000000ffffffff R14: 0000000000000001 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff88006fb50740(0000) knlGS:0000000000000000
Unable to initialize Synaptics hardware.
CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b
CR2: ffff88086e7528b8 CR3: 0000000000201000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Process swapper (pid: 1, threadinfo ffff88006fb82000, task ffff88006fb816d0)
Stack:
ffff88006e74da50 0000000000000000 ffff88006e54af00 ffffffff804863c7
ffff88006e74da50 0000000000000000 00000000ffffffff 0000000000000000
ffff88006fb83c10 ffffffff8024b46c ffffffff808f0560 ffff88006fb83c10
Call Trace:
[<ffffffff804863c7>] ? cpufreq_stat_notifier_trans+0x51/0x83
[<ffffffff8024b46c>] ? notifier_call_chain+0x29/0x4c
[<ffffffff8024b561>] ? __srcu_notifier_call_chain+0x46/0x61
[<ffffffff8048496d>] ? cpufreq_notify_transition+0x93/0xa9
[<ffffffff8021ab8d>] ? powernowk8_target+0x1e8/0x5f3
[<ffffffff80486687>] ? cpufreq_governor_performance+0x1b/0x20
[<ffffffff80484886>] ? __cpufreq_governor+0x71/0xa8
[<ffffffff80484b21>] ? __cpufreq_set_policy+0x101/0x13e
[<ffffffff80485bcd>] ? cpufreq_add_dev+0x3f0/0x4cd
[<ffffffff8048577a>] ? handle_update+0x0/0x8
[<ffffffff803c2062>] ? sysdev_driver_register+0xb6/0x10d
[<ffffffff8056592c>] ? powernowk8_init+0x0/0x7e
[<ffffffff8048604c>] ? cpufreq_register_driver+0x8f/0x140
[<ffffffff80209056>] ? _stext+0x56/0x14f
[<ffffffff802c2234>] ? proc_register+0x122/0x17d
[<ffffffff802c23a0>] ? create_proc_entry+0x73/0x8a
[<ffffffff8025c259>] ? register_irq_proc+0x92/0xaa
[<ffffffff8025c2c8>] ? init_irq_proc+0x57/0x69
[<ffffffff807fc85f>] ? kernel_init+0x116/0x169
[<ffffffff8020cc79>] ? child_rip+0xa/0x11
[<ffffffff807fc749>] ? kernel_init+0x0/0x169
[<ffffffff8020cc6f>] ? child_rip+0x0/0x11
Code: 05 c5 83 36 00 48 c7 c2 48 5d 86 80 48 8b 04 d8 48 8b 40 08 48 8b 34 02 48\
RIP [<ffffffff80486361>] cpufreq_stats_update+0x4a/0x5f
RSP <ffff88006fb83b20>
CR2: ffff88086e7528b8
---[ end trace 0678bac75e67a2f7 ]---
Kernel panic - not syncing: Attempted to kill init!
In short, aftereffect of the wrong P-state is that
cpufreq_stats_update() uses "-1" as index for some array in
cpufreq_stats_update (unsigned int cpu)
{
...
if (stat->time_in_state)
stat->time_in_state[stat->last_index] =
cputime64_add(stat->time_in_state[stat->last_index],
cputime_sub(cur_time, stat->last_time));
...
}
Fortunately, the wrong P-state value is returned only if the core is
in P-state 0. This fix solves the problem by detecting the
out-of-range P-state, ignoring it, and using "0" instead.
Cc: Mark Langsdorf <mark.langsdorf@amd.com>
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Impact: restructure DS memory allocation to be done by the usage site of DS
Require pre-allocated buffers in ds.h.
Move the BTS buffer allocation for ptrace into ptrace.c.
The pointer to the allocated buffer is stored in the traced task's
task_struct together with the handle returned by ds_request_bts().
Removes memory accounting code.
Signed-off-by: Markus Metzger <markus.t.metzger@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: generalize the DS code to shared buffers
Change the in-kernel ds.h interface to identify the tracer via a
handle returned on ds_request_~().
Tracers used to be identified via their task_struct.
The changes are required to allow DS to be shared between different
tasks, which is needed for perfmon2 and for ftrace.
For ptrace, the handle is stored in the traced task's task_struct.
This should probably go into a (arch-specific) ptrace context some
time.
Signed-off-by: Markus Metzger <markus.t.metzger@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix sleeping-with-spinlock-held bugs/crashes
- Turn a wrmsr to write the DS_AREA MSR into a wrmsrl.
- Use irqsave variants of spinlocks.
- Do not allocate memory while holding spinlocks.
Reported-by: Stephane Eranian <eranian@googlemail.com>
Reported-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Markus Metzger <markus.t.metzger@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix DS hw enablement on 64-bit x86
Fix the PEBS record size in the DS configuration.
Reported-by: Stephane Eranian <eranian@googlemail.com>
Signed-off-by: Markus Metzger <markus.t.metzger@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix theoretical option string parsing overflow
Since bridge is unsigned, it would seem better to use simple_strtoul that
simple_strtol.
A simplified version of the semantic patch that makes this change is as
follows: (http://www.emn.fr/x-info/coccinelle/)
// <smpl>
@r2@
long e;
position p;
@@
e = simple_strtol@p(...)
@@
position p != r2.p;
type T;
T e;
@@
e =
- simple_strtol@p
+ simple_strtoul
(...)
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Cc: muli@il.ibm.com
Cc: jdmason@kudzu.us
Cc: discuss@x86-64.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>