Pull speculation mitigation update from Ingo Molnar:
"This adds the "mitigations=" bootline option, which offers a
cross-arch set of options that will work on x86, PowerPC and s390 that
will map to the arch specific option internally"
* 'core-speculation-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
s390/speculation: Support 'mitigations=' cmdline option
powerpc/speculation: Support 'mitigations=' cmdline option
x86/speculation: Support 'mitigations=' cmdline option
cpu/speculation: Add 'mitigations=' cmdline option
Using scripts/coccinelle/api/stream_open.cocci added in 10dce8af34
("fs: stream_open - opener for stream-like files so that read and write
can run simultaneously without deadlock"), search and convert to
stream_open all in-kernel nonseekable_open users for which read and
write actually do not depend on ppos and where there is no other methods
in file_operations which assume @offset access.
I've verified each generated change manually - that it is correct to convert -
and each other nonseekable_open instance left - that it is either not correct
to convert there, or that it is not converted due to current stream_open.cocci
limitations. The script also does not convert files that should be valid to
convert, but that currently have .llseek = noop_llseek or generic_file_llseek
for unknown reason despite file being opened with nonseekable_open (e.g.
drivers/input/mousedev.c)
Among cases converted 14 were potentially vulnerable to read vs write deadlock
(see details in 10dce8af34):
drivers/char/pcmcia/cm4000_cs.c:1685:7-23: ERROR: cm4000_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/gnss/core.c:45:1-17: ERROR: gnss_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/hid/uhid.c:635:1-17: ERROR: uhid_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/infiniband/core/user_mad.c:988:1-17: ERROR: umad_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/input/evdev.c:527:1-17: ERROR: evdev_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/input/misc/uinput.c:401:1-17: ERROR: uinput_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/isdn/capi/capi.c:963:8-24: ERROR: capi_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/leds/uleds.c:77:1-17: ERROR: uleds_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/media/rc/lirc_dev.c:198:1-17: ERROR: lirc_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/s390/char/fs3270.c:488:1-17: ERROR: fs3270_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/usb/misc/ldusb.c:310:1-17: ERROR: ld_usb_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/xen/evtchn.c:667:8-24: ERROR: evtchn_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
net/batman-adv/icmp_socket.c:80:1-17: ERROR: batadv_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
net/rfkill/core.c:1146:8-24: ERROR: rfkill_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
and the rest were just safe to convert to stream_open because their read and
write do not use ppos at all and corresponding file_operations do not
have methods that assume @offset file access(*):
arch/powerpc/platforms/52xx/mpc52xx_gpt.c:631:8-24: WARNING: mpc52xx_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_ibox_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_ibox_stat_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_mbox_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_mbox_stat_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_wbox_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_wbox_stat_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/um/drivers/harddog_kern.c:88:8-24: WARNING: harddog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/x86/kernel/cpu/microcode/core.c:430:33-49: WARNING: microcode_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/char/ds1620.c:215:8-24: WARNING: ds1620_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/char/dtlk.c:301:1-17: WARNING: dtlk_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/char/ipmi/ipmi_watchdog.c:840:9-25: WARNING: ipmi_wdog_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/char/pcmcia/scr24x_cs.c:95:8-24: WARNING: scr24x_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/char/tb0219.c:246:9-25: WARNING: tb0219_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/firewire/nosy.c:306:8-24: WARNING: nosy_ops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/hwmon/fschmd.c:840:8-24: WARNING: watchdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/hwmon/w83793.c:1344:8-24: WARNING: watchdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/infiniband/core/ucma.c:1747:8-24: WARNING: ucma_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/infiniband/core/ucm.c:1178:8-24: WARNING: ucm_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/infiniband/core/uverbs_main.c:1086:8-24: WARNING: uverbs_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/input/joydev.c:282:1-17: WARNING: joydev_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/pci/switch/switchtec.c:393:1-17: WARNING: switchtec_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/platform/chrome/cros_ec_debugfs.c:135:8-24: WARNING: cros_ec_console_log_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/rtc/rtc-ds1374.c:470:9-25: WARNING: ds1374_wdt_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/rtc/rtc-m41t80.c:805:9-25: WARNING: wdt_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/s390/char/tape_char.c:293:2-18: WARNING: tape_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/s390/char/zcore.c:194:8-24: WARNING: zcore_reipl_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/s390/crypto/zcrypt_api.c:528:8-24: WARNING: zcrypt_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/spi/spidev.c:594:1-17: WARNING: spidev_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/staging/pi433/pi433_if.c:974:1-17: WARNING: pi433_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/acquirewdt.c:203:8-24: WARNING: acq_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/advantechwdt.c:202:8-24: WARNING: advwdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/alim1535_wdt.c:252:8-24: WARNING: ali_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/alim7101_wdt.c:217:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/ar7_wdt.c:166:8-24: WARNING: ar7_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/at91rm9200_wdt.c:113:8-24: WARNING: at91wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/ath79_wdt.c:135:8-24: WARNING: ath79_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/bcm63xx_wdt.c:119:8-24: WARNING: bcm63xx_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/cpu5wdt.c:143:8-24: WARNING: cpu5wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/cpwd.c:397:8-24: WARNING: cpwd_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/eurotechwdt.c:319:8-24: WARNING: eurwdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/f71808e_wdt.c:528:8-24: WARNING: watchdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/gef_wdt.c:232:8-24: WARNING: gef_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/geodewdt.c:95:8-24: WARNING: geodewdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/ib700wdt.c:241:8-24: WARNING: ibwdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/ibmasr.c:326:8-24: WARNING: asr_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/indydog.c:80:8-24: WARNING: indydog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/intel_scu_watchdog.c:307:8-24: WARNING: intel_scu_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/iop_wdt.c:104:8-24: WARNING: iop_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/it8712f_wdt.c:330:8-24: WARNING: it8712f_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/ixp4xx_wdt.c:68:8-24: WARNING: ixp4xx_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/ks8695_wdt.c:145:8-24: WARNING: ks8695wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/m54xx_wdt.c:88:8-24: WARNING: m54xx_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/machzwd.c:336:8-24: WARNING: zf_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/mixcomwd.c:153:8-24: WARNING: mixcomwd_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/mtx-1_wdt.c:121:8-24: WARNING: mtx1_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/mv64x60_wdt.c:136:8-24: WARNING: mv64x60_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/nuc900_wdt.c:134:8-24: WARNING: nuc900wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/nv_tco.c:164:8-24: WARNING: nv_tco_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pc87413_wdt.c:289:8-24: WARNING: pc87413_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pcwd.c:698:8-24: WARNING: pcwd_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pcwd.c:737:8-24: WARNING: pcwd_temp_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pcwd_pci.c:581:8-24: WARNING: pcipcwd_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pcwd_pci.c:623:8-24: WARNING: pcipcwd_temp_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pcwd_usb.c:488:8-24: WARNING: usb_pcwd_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pcwd_usb.c:527:8-24: WARNING: usb_pcwd_temperature_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pika_wdt.c:121:8-24: WARNING: pikawdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pnx833x_wdt.c:119:8-24: WARNING: pnx833x_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/rc32434_wdt.c:153:8-24: WARNING: rc32434_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/rdc321x_wdt.c:145:8-24: WARNING: rdc321x_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/riowd.c:79:1-17: WARNING: riowd_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sa1100_wdt.c:62:8-24: WARNING: sa1100dog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sbc60xxwdt.c:211:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sbc7240_wdt.c:139:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sbc8360.c:274:8-24: WARNING: sbc8360_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sbc_epx_c3.c:81:8-24: WARNING: epx_c3_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sbc_fitpc2_wdt.c:78:8-24: WARNING: fitpc2_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sb_wdog.c:108:1-17: WARNING: sbwdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sc1200wdt.c:181:8-24: WARNING: sc1200wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sc520_wdt.c:261:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sch311x_wdt.c:319:8-24: WARNING: sch311x_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/scx200_wdt.c:105:8-24: WARNING: scx200_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/smsc37b787_wdt.c:369:8-24: WARNING: wb_smsc_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/w83877f_wdt.c:227:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/w83977f_wdt.c:301:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wafer5823wdt.c:200:8-24: WARNING: wafwdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/watchdog_dev.c:828:8-24: WARNING: watchdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdrtas.c:379:8-24: WARNING: wdrtas_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdrtas.c:445:8-24: WARNING: wdrtas_temp_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdt285.c:104:1-17: WARNING: watchdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdt977.c:276:8-24: WARNING: wdt977_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdt.c:424:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdt.c:484:8-24: WARNING: wdt_temp_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdt_pci.c:464:8-24: WARNING: wdtpci_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdt_pci.c:527:8-24: WARNING: wdtpci_temp_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
net/batman-adv/log.c:105:1-17: WARNING: batadv_log_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
sound/core/control.c:57:7-23: WARNING: snd_ctl_f_ops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
sound/core/rawmidi.c:385:7-23: WARNING: snd_rawmidi_f_ops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
sound/core/seq/seq_clientmgr.c:310:7-23: WARNING: snd_seq_f_ops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
sound/core/timer.c:1428:7-23: WARNING: snd_timer_f_ops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
One can also recheck/review the patch via generating it with explanation comments included via
$ make coccicheck MODE=patch COCCI=scripts/coccinelle/api/stream_open.cocci SPFLAGS="-D explain"
(*) This second group also contains cases with read/write deadlocks that
stream_open.cocci don't yet detect, but which are still valid to convert to
stream_open since ppos is not used. For example drivers/pci/switch/switchtec.c
calls wait_for_completion_interruptible() in its .read, but stream_open.cocci
currently detects only "wait_event*" as blocking.
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Yongzhi Pan <panyongzhi@gmail.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Tejun Heo <tj@kernel.org>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Julia Lawall <Julia.Lawall@lip6.fr>
Cc: Nikolaus Rath <Nikolaus@rath.org>
Cc: Han-Wen Nienhuys <hanwen@google.com>
Cc: Anatolij Gustschin <agust@denx.de>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James R. Van Zandt" <jrv@vanzandt.mv.com>
Cc: Corey Minyard <minyard@acm.org>
Cc: Harald Welte <laforge@gnumonks.org>
Acked-by: Lubomir Rintel <lkundrak@v3.sk> [scr24x_cs]
Cc: Stefan Richter <stefanr@s5r6.in-berlin.de>
Cc: Johan Hovold <johan@kernel.org>
Cc: David Herrmann <dh.herrmann@googlemail.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Cc: Jean Delvare <jdelvare@suse.com>
Acked-by: Guenter Roeck <linux@roeck-us.net> [watchdog/* hwmon/*]
Cc: Rudolf Marek <r.marek@assembler.cz>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: Karsten Keil <isdn@linux-pingi.de>
Cc: Jacek Anaszewski <jacek.anaszewski@gmail.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: Kurt Schwemmer <kurt.schwemmer@microsemi.com>
Acked-by: Logan Gunthorpe <logang@deltatee.com> [drivers/pci/switch/switchtec]
Acked-by: Bjorn Helgaas <bhelgaas@google.com> [drivers/pci/switch/switchtec]
Cc: Benson Leung <bleung@chromium.org>
Acked-by: Enric Balletbo i Serra <enric.balletbo@collabora.com> [platform/chrome]
Cc: Alessandro Zummo <a.zummo@towertech.it>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com> [rtc/*]
Cc: Mark Brown <broonie@kernel.org>
Cc: Wim Van Sebroeck <wim@linux-watchdog.org>
Cc: Florian Fainelli <f.fainelli@gmail.com>
Cc: bcm-kernel-feedback-list@broadcom.com
Cc: Wan ZongShun <mcuos.com@gmail.com>
Cc: Zwane Mwaikambo <zwanem@gmail.com>
Cc: Marek Lindner <mareklindner@neomailbox.ch>
Cc: Simon Wunderlich <sw@simonwunderlich.de>
Cc: Antonio Quartulli <a@unstable.cc>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: Jaroslav Kysela <perex@perex.cz>
Cc: Takashi Iwai <tiwai@suse.com>
Signed-off-by: Kirill Smelkov <kirr@nexedi.com>
With gcc toplevel assembler statements that do not mark themselves as .text
may end up in other sections. This causes LTO boot crashes because various
assembler statements ended up in the middle of the initcall section. It's
also a latent problem without LTO, although it's currently not known to
cause any real problems.
According to the gcc team it's expected behavior.
Always mark all the top level assembler statements as text so that they
switch to the right section.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190330004743.29541-1-andi@firstfloor.org
Add MDS to the new 'mitigations=' cmdline option.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently, when a new resource group is created, the allocation values
of the MBA resource are not initialized and remain meaningless data.
For example:
mkdir /sys/fs/resctrl/p1
cat /sys/fs/resctrl/p1/schemata
MB:0=100;1=100
echo "MB:0=10;1=20" > /sys/fs/resctrl/p1/schemata
cat /sys/fs/resctrl/p1/schemata
MB:0= 10;1= 20
rmdir /sys/fs/resctrl/p1
mkdir /sys/fs/resctrl/p2
cat /sys/fs/resctrl/p2/schemata
MB:0= 10;1= 20
Therefore, when the new group is created, it is reasonable to initialize
MBA resource with default values.
Initialize the MBA resource and cache resources in separate functions.
[ bp: Add newlines between code blocks for better readability. ]
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: pei.p.jia@intel.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1555499329-1170-3-git-send-email-xiaochen.shen@intel.com
This code is only for CPUs which are affected by MSBDS, but are *not*
affected by the other two MDS issues.
For such CPUs, enabling the mds_idle_clear mitigation is enough to
mitigate SMT.
However if user boots with 'mds=off' and still has SMT enabled, we should
not report that SMT is mitigated:
$cat /sys//devices/system/cpu/vulnerabilities/mds
Vulnerable; SMT mitigated
But rather:
Vulnerable; SMT vulnerable
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20190412215118.294906495@localhost.localdomain
The debug IST stack is actually two separate debug stacks to handle #DB
recursion. This is required because the CPU starts always at top of stack
on exception entry, which means on #DB recursion the second #DB would
overwrite the stack of the first.
The low level entry code therefore adjusts the top of stack on entry so a
secondary #DB starts from a different stack page. But the stack pages are
adjacent without a guard page between them.
Split the debug stack into 3 stacks which are separated by guard pages. The
3rd stack is never mapped into the cpu_entry_area and is only there to
catch triple #DB nesting:
--- top of DB_stack <- Initial stack
--- end of DB_stack
guard page
--- top of DB1_stack <- Top of stack after entering first #DB
--- end of DB1_stack
guard page
--- top of DB2_stack <- Top of stack after entering second #DB
--- end of DB2_stack
guard page
If DB2 would not act as the final guard hole, a second #DB would point the
top of #DB stack to the stack below #DB1 which would be valid and not catch
the not so desired triple nesting.
The backing store does not allocate any memory for DB2 and its guard page
as it is not going to be mapped into the cpu_entry_area.
- Adjust the low level entry code so it adjusts top of #DB with the offset
between the stacks instead of exception stack size.
- Make the dumpstack code aware of the new stacks.
- Adjust the in_debug_stack() implementation and move it into the NMI code
where it belongs. As this is NMI hotpath code, it just checks the full
area between top of DB_stack and bottom of DB1_stack without checking
for the guard page. That's correct because the NMI cannot hit a
stackpointer pointing to the guard page between DB and DB1 stack. Even
if it would, then the NMI operation still is unaffected, but the resume
of the debug exception on the topmost DB stack will crash by touching
the guard page.
[ bp: Make exception_stack_names static const char * const ]
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: linux-doc@vger.kernel.org
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160145.439944544@linutronix.de
At the moment everything assumes a full linear mapping of the various
exception stacks. Adding guard pages to the cpu entry area mapping of the
exception stacks will break that assumption.
As a preparatory step convert both the real storage and the effective
mapping in the cpu entry area from character arrays to structures.
To ensure that both arrays have the same ordering and the same size of the
individual stacks fill the members with a macro. The guard size is the only
difference between the two resulting structures. For now both have guard
size 0 until the preparation of all usage sites is done.
Provide a couple of helper macros which are used in the following
conversions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.506807893@linutronix.de
When cache allocation is supported and the user creates a new resctrl
resource group, the allocations of the new resource group are
initialized to all regions that it can possibly use. At this time these
regions are all that are shareable by other resource groups as well as
regions that are not currently used. The new resource group's mode is
also initialized to reflect this initialization and set to "shareable".
The new resource group's mode is currently repeatedly initialized within
the loop that configures the hardware with the resource group's default
allocations.
Move the initialization of the resource group's mode outside the
hardware configuration loop. The resource group's mode is now
initialized only once as the final step to reflect that its configured
allocations are "shareable".
Fixes: 95f0b77efa ("x86/intel_rdt: Initialize new resource group with sane defaults")
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: pei.p.jia@intel.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1554839629-5448-1-git-send-email-xiaochen.shen@intel.com
Commit
2613f36ed9 ("x86/microcode: Attempt late loading only when new microcode is present")
added the new define UCODE_NEW to denote that an update should happen
only when newer microcode (than installed on the system) has been found.
But it missed adjusting that for the old /dev/cpu/microcode loading
interface. Fix it.
Fixes: 2613f36ed9 ("x86/microcode: Attempt late loading only when new microcode is present")
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jann Horn <jannh@google.com>
Link: https://lkml.kernel.org/r/20190405133010.24249-3-bp@alien8.de
Change generic_load_microcode() to use the iov_iter API instead of a
clumsy open-coded version which has to pay attention to __user data
or kernel data, depending on the loading method. This allows to avoid
explicit casting between user and kernel pointers.
Because the iov_iter API makes it hard to read the same location twice,
as a side effect, also fix a double-read of the microcode header (which
could e.g. lead to out-of-bounds reads in microcode_sanity_check()).
Not that it matters much, only root is allowed to load microcode
anyway...
[ bp: Massage a bit, sort function-local variables. ]
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190404111128.131157-1-jannh@google.com
The Performance and Energy Bias Hint (EPB) is expected to be set by
user space through the generic MSR interface, but that interface is
not particularly nice and there are security concerns regarding it,
so it is not always available.
For this reason, add a sysfs interface for reading and updating the
EPB, in the form of a new attribute, energy_perf_bias, located
under /sys/devices/system/cpu/cpu#/power/ for online CPUs that
support the EPB feature.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Acked-by: Borislav Petkov <bp@suse.de>
The current handling of MSR_IA32_ENERGY_PERF_BIAS in the kernel is
problematic, because it may cause changes made by user space to that
MSR (with the help of the x86_energy_perf_policy tool, for example)
to be lost every time a CPU goes offline and then back online as well
as during system-wide power management transitions into sleep states
and back into the working state.
The first problem is that if the current EPB value for a CPU going
online is 0 ('performance'), the kernel will change it to 6 ('normal')
regardless of whether or not this is the first bring-up of that CPU.
That also happens during system-wide resume from sleep states
(including, but not limited to, hibernation). However, the EPB may
have been adjusted by user space this way and the kernel should not
blindly override that setting.
The second problem is that if the platform firmware resets the EPB
values for any CPUs during system-wide resume from a sleep state,
the kernel will not restore their previous EPB values that may
have been set by user space before the preceding system-wide
suspend transition. Again, that behavior may at least be confusing
from the user space perspective.
In order to address these issues, rework the handling of
MSR_IA32_ENERGY_PERF_BIAS so that the EPB value is saved on CPU
offline and restored on CPU online as well as (for the boot CPU)
during the syscore stages of system-wide suspend and resume
transitions, respectively.
However, retain the policy by which the EPB is set to 6 ('normal')
on the first bring-up of each CPU if its initial value is 0, based
on the observation that 0 may mean 'not initialized' just as well as
'performance' in that case.
While at it, move the MSR_IA32_ENERGY_PERF_BIAS handling code into
a separate file and document it in Documentation/admin-guide.
Fixes: abe48b1082 (x86, intel, power: Initialize MSR_IA32_ENERGY_PERF_BIAS)
Fixes: b51ef52df7 (x86/cpu: Restore MSR_IA32_ENERGY_PERF_BIAS after resume)
Reported-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Acked-by: Borislav Petkov <bp@suse.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
MDS is vulnerable with SMT. Make that clear with a one-time printk
whenever SMT first gets enabled.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
arch_smt_update() now has a dependency on both Spectre v2 and MDS
mitigations. Move its initial call to after all the mitigation decisions
have been made.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Add the mds=full,nosmt cmdline option. This is like mds=full, but with
SMT disabled if the CPU is vulnerable.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Calling this function has been wrong for a while now:
* Can't call schedule_work() in #MC context.
* mce_notify_irq() either.
* None of that noodling is needed anymore - all it needs to do is kick
the IRQ work which would self-IPI so that once the #MC handler is done,
the work queue will run and process queued MCE records.
So remove it.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20190325172121.7926-1-bp@alien8.de
Linux reads MCG_CAP[Count] to find the number of MCA banks visible to a
CPU. Currently, this number is the same for all CPUs and a warning is
shown if there is a difference. The number of banks is overwritten with
the MCG_CAP[Count] value of each following CPU that boots.
According to the Intel SDM and AMD APM, the MCG_CAP[Count] value gives
the number of banks that are available to a "processor implementation".
The AMD BKDGs/PPRs further clarify that this value is per core. This
value has historically been the same for every core in the system, but
that is not an architectural requirement.
Future AMD systems may have different MCG_CAP[Count] values per core,
so the assumption that all CPUs will have the same MCG_CAP[Count] value
will no longer be valid.
Also, the first CPU to boot will allocate the struct mce_banks[] array
using the number of banks based on its MCG_CAP[Count] value. The machine
check handler and other functions use the global number of banks to
iterate and index into the mce_banks[] array. So it's possible to use an
out-of-bounds index on an asymmetric system where a following CPU sees a
MCG_CAP[Count] value greater than its predecessors.
Thus, allocate the mce_banks[] array to the maximum number of banks.
This will avoid the potential out-of-bounds index since the value of
mca_cfg.banks is capped to MAX_NR_BANKS.
Set the value of mca_cfg.banks equal to the max of the previous value
and the value for the current CPU. This way mca_cfg.banks will always
represent the max number of banks detected on any CPU in the system.
This will ensure that all CPUs will access all the banks that are
visible to them. A CPU that can access fewer than the max number of
banks will find the registers of the extra banks to be read-as-zero.
Furthermore, print the resulting number of MCA banks in use. Do this in
mcheck_late_init() so that the final value is printed after all CPUs
have been initialized.
Finally, get bank count from target CPU when doing injection with mce-inject
module.
[ bp: Remove out-of-bounds example, passify and cleanup commit message. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20180727214009.78289-1-Yazen.Ghannam@amd.com
There has been a lurking "TBD" in the machine check poll routine ever
since it was first split out from the machine check handler. The
potential issue is that the poll routine may have just begun a read from
the STATUS register in a machine check bank when the hardware logs an
error in that bank and signals a machine check.
That race used to be pretty small back when machine checks were
broadcast, but the addition of local machine check means that the poll
code could continue running and clear the error from the bank before the
local machine check handler on another CPU gets around to reading it.
Fix the code to be sure to only process errors that need to be processed
in the poll code, leaving other logged errors alone for the machine
check handler to find and process.
[ bp: Massage a bit and flip the "== 0" check to the usual !(..) test. ]
Fixes: b79109c3bb ("x86, mce: separate correct machine check poller and fatal exception handler")
Fixes: ed7290d0ee ("x86, mce: implement new status bits")
Reported-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Link: https://lkml.kernel.org/r/20190312170938.GA23035@agluck-desk
The Hygon family 18h multi-die processor platform supports 1, 2 or
4-Dies per socket. The topology looks like this:
System View (with 1-Die 2-Socket):
|------------|
------ -----
SOCKET0 | D0 | | D1 | SOCKET1
------ -----
System View (with 2-Die 2-socket):
--------------------
| -------------|------
| | | |
------------ ------------
SOCKET0 | D1 -- D0 | | D3 -- D2 | SOCKET1
------------ ------------
System View (with 4-Die 2-Socket) :
--------------------
| -------------|------
| | | |
------------ ------------
| D1 -- D0 | | D7 -- D6 |
| | \/ | | | | \/ | |
SOCKET0 | | /\ | | | | /\ | | SOCKET1
| D2 -- D3 | | D4 -- D5 |
------------ ------------
| | | |
------|------------| |
--------------------
Currently
phys_proc_id = initial_apicid >> bits
calculates the physical processor ID from the initial_apicid by shifting
*bits*.
However, this does not work for 1-Die and 2-Die 2-socket systems.
According to document [1] section 2.1.11.1, the bits is the value of
CPUID_Fn80000008_ECX[12:15]. The possible values are 4, 5 or 6 which
mean:
4 - 1 die
5 - 2 dies
6 - 3/4 dies.
Hygon programs the initial ApicId the same way as AMD. The ApicId is
read from CPUID_Fn00000001_EBX (see section 2.1.11.1 of referrence [1])
and the definition is as below (see section 2.1.10.2.1.3 of [1]):
-------------------------------------------------
Bit | 6 | 5 4 | 3 | 2 1 0 |
|-----------|---------|--------|----------------|
IDs | Socket ID | Node ID | CCX ID | Core/Thread ID |
-------------------------------------------------
So for 3/4-Die configurations, the bits variable is 6, which is the same
as the ApicID definition field.
For 1-Die and 2-Die configurations, bits is 4 or 5, which will cause the
right shifted result to not be exactly the value of socket ID.
However, the socket ID should be obtained from ApicId[6]. To fix the
problem and match the ApicID field definition, set the shift bits to 6
for all Hygon family 18h multi-die CPUs.
Because AMD doesn't have 2-Socket systems with 1-Die/2-Die processors
(see reference [2]), this doesn't need to be changed on the AMD side but
only for Hygon.
References:
[1] https://www.amd.com/system/files/TechDocs/54945_PPR_Family_17h_Models_00h-0Fh.pdf
[2] https://www.amd.com/en/products/specifications/processors
[bp: heavily massage commit message. ]
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1553355740-19999-1-git-send-email-puwen@hygon.cn
There are comments in processor-cyrix.h advising you to _not_ make calls
using the deprecated macros in this style:
setCx86_old(CX86_CCR4, getCx86_old(CX86_CCR4) | 0x80);
This is because it expands the macro into a non-functioning calling
sequence. The calling order must be:
outb(CX86_CCR2, 0x22);
inb(0x23);
From the comments:
* When using the old macros a line like
* setCx86(CX86_CCR2, getCx86(CX86_CCR2) | 0x88);
* gets expanded to:
* do {
* outb((CX86_CCR2), 0x22);
* outb((({
* outb((CX86_CCR2), 0x22);
* inb(0x23);
* }) | 0x88), 0x23);
* } while (0);
The new macros fix this problem, so use them instead. Tested on an
actual Geode processor.
Signed-off-by: Matthew Whitehead <tedheadster@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: luto@kernel.org
Link: https://lkml.kernel.org/r/1552596361-8967-2-git-send-email-tedheadster@gmail.com
Pull vfs mount infrastructure updates from Al Viro:
"The rest of core infrastructure; no new syscalls in that pile, but the
old parts are switched to new infrastructure. At that point
conversions of individual filesystems can happen independently; some
are done here (afs, cgroup, procfs, etc.), there's also a large series
outside of that pile dealing with NFS (quite a bit of option-parsing
stuff is getting used there - it's one of the most convoluted
filesystems in terms of mount-related logics), but NFS bits are the
next cycle fodder.
It got seriously simplified since the last cycle; documentation is
probably the weakest bit at the moment - I considered dropping the
commit introducing Documentation/filesystems/mount_api.txt (cutting
the size increase by quarter ;-), but decided that it would be better
to fix it up after -rc1 instead.
That pile allows to do followup work in independent branches, which
should make life much easier for the next cycle. fs/super.c size
increase is unpleasant; there's a followup series that allows to
shrink it considerably, but I decided to leave that until the next
cycle"
* 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (41 commits)
afs: Use fs_context to pass parameters over automount
afs: Add fs_context support
vfs: Add some logging to the core users of the fs_context log
vfs: Implement logging through fs_context
vfs: Provide documentation for new mount API
vfs: Remove kern_mount_data()
hugetlbfs: Convert to fs_context
cpuset: Use fs_context
kernfs, sysfs, cgroup, intel_rdt: Support fs_context
cgroup: store a reference to cgroup_ns into cgroup_fs_context
cgroup1_get_tree(): separate "get cgroup_root to use" into a separate helper
cgroup_do_mount(): massage calling conventions
cgroup: stash cgroup_root reference into cgroup_fs_context
cgroup2: switch to option-by-option parsing
cgroup1: switch to option-by-option parsing
cgroup: take options parsing into ->parse_monolithic()
cgroup: fold cgroup1_mount() into cgroup1_get_tree()
cgroup: start switching to fs_context
ipc: Convert mqueue fs to fs_context
proc: Add fs_context support to procfs
...
Pull IOMMU updates from Joerg Roedel:
- A big cleanup and optimization patch-set for the Tegra GART driver
- Documentation updates and fixes for the IOMMU-API
- Support for page request in Intel VT-d scalable mode
- Intel VT-d dma_[un]map_resource() support
- Updates to the ATS enabling code for PCI (acked by Bjorn) and Intel
VT-d to align with the latest version of the ATS spec
- Relaxed IRQ source checking in the Intel VT-d driver for some aliased
devices, needed for future devices which send IRQ messages from more
than on request-ID
- IRQ remapping driver for Hyper-V
- Patches to make generic IOVA and IO-Page-Table code usable outside of
the IOMMU code
- Various other small fixes and cleanups
* tag 'iommu-updates-v5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (60 commits)
iommu/vt-d: Get domain ID before clear pasid entry
iommu/vt-d: Fix NULL pointer reference in intel_svm_bind_mm()
iommu/vt-d: Set context field after value initialized
iommu/vt-d: Disable ATS support on untrusted devices
iommu/mediatek: Fix semicolon code style issue
MAINTAINERS: Add Hyper-V IOMMU driver into Hyper-V CORE AND DRIVERS scope
iommu/hyper-v: Add Hyper-V stub IOMMU driver
x86/Hyper-V: Set x2apic destination mode to physical when x2apic is available
PCI/ATS: Add inline to pci_prg_resp_pasid_required()
iommu/vt-d: Check identity map for hot-added devices
iommu: Fix IOMMU debugfs fallout
iommu: Document iommu_ops.is_attach_deferred()
iommu: Document iommu_ops.iotlb_sync_map()
iommu/vt-d: Enable ATS only if the device uses page aligned address.
PCI/ATS: Add pci_ats_page_aligned() interface
iommu/vt-d: Fix PRI/PASID dependency issue.
PCI/ATS: Add pci_prg_resp_pasid_required() interface.
iommu/vt-d: Allow interrupts from the entire bus for aliased devices
iommu/vt-d: Add helper to set an IRTE to verify only the bus number
iommu: Fix flush_tlb_all typo
...
Pull RAS updates from Borislav Petkov:
"This time around we have in store:
- Disable MC4_MISC thresholding banks on all AMD family 0x15 models
(Shirish S)
- AMD MCE error descriptions update and error decode improvements
(Yazen Ghannam)
- The usual smaller conversions and fixes"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Improve error message when kernel cannot recover, p2
EDAC/mce_amd: Decode MCA_STATUS in bit definition order
EDAC/mce_amd: Decode MCA_STATUS[Scrub] bit
EDAC, mce_amd: Print ExtErrorCode and description on a single line
EDAC, mce_amd: Match error descriptions to latest documentation
x86/MCE/AMD, EDAC/mce_amd: Add new error descriptions for some SMCA bank types
x86/MCE/AMD, EDAC/mce_amd: Add new McaTypes for CS, PSP, and SMU units
x86/MCE/AMD, EDAC/mce_amd: Add new MP5, NBIO, and PCIE SMCA bank types
RAS: Add a MAINTAINERS entry
RAS: Use consistent types for UUIDs
x86/MCE/AMD: Carve out the MC4_MISC thresholding quirk
x86/MCE/AMD: Turn off MC4_MISC thresholding on all family 0x15 models
x86/MCE: Switch to use the new generic UUID API
Pull x86 cleanups from Ingo Molnar:
"Various cleanups and simplifications, none of them really stands out,
they are all over the place"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/uaccess: Remove unused __addr_ok() macro
x86/smpboot: Remove unused phys_id variable
x86/mm/dump_pagetables: Remove the unused prev_pud variable
x86/fpu: Move init_xstate_size() to __init section
x86/cpu_entry_area: Move percpu_setup_debug_store() to __init section
x86/mtrr: Remove unused variable
x86/boot/compressed/64: Explain paging_prepare()'s return value
x86/resctrl: Remove duplicate MSR_MISC_FEATURE_CONTROL definition
x86/asm/suspend: Drop ENTRY from local data
x86/hw_breakpoints, kprobes: Remove kprobes ifdeffery
x86/boot: Save several bytes in decompressor
x86/trap: Remove useless declaration
x86/mm/tlb: Remove unused cpu variable
x86/events: Mark expected switch-case fall-throughs
x86/asm-prototypes: Remove duplicate include <asm/page.h>
x86/kernel: Mark expected switch-case fall-throughs
x86/insn-eval: Mark expected switch-case fall-through
x86/platform/UV: Replace kmalloc() and memset() with k[cz]alloc() calls
x86/e820: Replace kmalloc() + memcpy() with kmemdup()
Move L!TF to a separate directory so the MDS stuff can be added at the
side. Otherwise the all hardware vulnerabilites have their own top level
entry. Should have done that right away.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
In virtualized environments it can happen that the host has the microcode
update which utilizes the VERW instruction to clear CPU buffers, but the
hypervisor is not yet updated to expose the X86_FEATURE_MD_CLEAR CPUID bit
to guests.
Introduce an internal mitigation mode VMWERV which enables the invocation
of the CPU buffer clearing even if X86_FEATURE_MD_CLEAR is not set. If the
system has no updated microcode this results in a pointless execution of
the VERW instruction wasting a few CPU cycles. If the microcode is updated,
but not exposed to a guest then the CPU buffers will be cleared.
That said: Virtual Machines Will Eventually Receive Vaccine
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>