Commit Graph

4892 Commits

Author SHA1 Message Date
Jan H. Schönherr
90454e4959 x86/mce: Fix mce=nobootlog
Since commit

  8b38937b7a ("x86/mce: Do not enter deferred errors into the generic
		 pool twice")

the mce=nobootlog option has become mostly ineffective (after being only
slightly ineffective before), as the code is taking actions on MCEs left
over from boot when they have a usable address.

Move the check for MCP_DONTLOG a bit outward to make it effective again.

Also, since commit

  011d826111 ("RAS: Add a Corrected Errors Collector")

the two branches of the remaining "if" at the bottom of machine_check_poll()
do same. Unify them.

Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200103150722.20313-3-jschoenh@amazon.de
2020-01-13 10:07:56 +01:00
Jan H. Schönherr
8438b84ab4 x86/mce: Take action on UCNA/Deferred errors again
Commit

  fa92c58694 ("x86, mce: Support memory error recovery for both UCNA
		and Deferred error in machine_check_poll")

added handling of UCNA and Deferred errors by adding them to the ring
for SRAO errors.

Later, commit

  fd4cf79fcc ("x86/mce: Remove the MCE ring for Action Optional errors")

switched storage from the SRAO ring to the unified pool that is still
in use today. In order to only act on the intended errors, a filter
for MCE_AO_SEVERITY is used -- effectively removing handling of
UCNA/Deferred errors again.

Extend the severity filter to include UCNA/Deferred errors again.
Also, generalize the naming of the notifier from SRAO to UC to capture
the extended scope.

Note, that this change may cause a message like the following to appear,
as the same address may be reported as SRAO and as UCNA:

 Memory failure: 0x5fe3284: already hardware poisoned

Technically, this is a return to previous behavior.

Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200103150722.20313-2-jschoenh@amazon.de
2020-01-13 10:07:23 +01:00
Ingo Molnar
57ad87ddce Merge branch 'x86/mm' into efi/core, to pick up dependencies
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-01-10 18:53:14 +01:00
Benjamin Thiel
b47a36982d x86/cpu: Add a missing prototype for arch_smt_update()
.. in order to fix a -Wmissing-prototype warning.

No functional change.

Signed-off-by: Benjamin Thiel <b.thiel@posteo.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200109121723.8151-1-b.thiel@posteo.de
2020-01-09 14:31:53 +01:00
Shakeel Butt
ab6a211443 x86/resctrl: Fix potential memory leak
set_cache_qos_cfg() is leaking memory when the given level is not
RDT_RESOURCE_L3 or RDT_RESOURCE_L2. At the moment, this function is
called with only valid levels but move the allocation after the valid
level checks in order to make it more robust and future proof.

 [ bp: Massage commit message. ]

Fixes: 99adde9b37 ("x86/intel_rdt: Enable L2 CDP in MSR IA32_L2_QOS_CFG")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20200102165844.133133-1-shakeelb@google.com
2020-01-02 18:26:27 +01:00
Qian Cai
e278af89f1 x86/resctrl: Fix an imbalance in domain_remove_cpu()
A system that supports resource monitoring may have multiple resources
while not all of these resources are capable of monitoring. Monitoring
related state is initialized only for resources that are capable of
monitoring and correspondingly this state should subsequently only be
removed from these resources that are capable of monitoring.

domain_add_cpu() calls domain_setup_mon_state() only when r->mon_capable
is true where it will initialize d->mbm_over. However,
domain_remove_cpu() calls cancel_delayed_work(&d->mbm_over) without
checking r->mon_capable resulting in an attempt to cancel d->mbm_over on
all resources, even those that never initialized d->mbm_over because
they are not capable of monitoring. Hence, it triggers a debugobjects
warning when offlining CPUs because those timer debugobjects are never
initialized:

  ODEBUG: assert_init not available (active state 0) object type:
  timer_list hint: 0x0
  WARNING: CPU: 143 PID: 789 at lib/debugobjects.c:484
  debug_print_object
  Hardware name: HP Synergy 680 Gen9/Synergy 680 Gen9 Compute Module, BIOS I40 05/23/2018
  RIP: 0010:debug_print_object
  Call Trace:
  debug_object_assert_init
  del_timer
  try_to_grab_pending
  cancel_delayed_work
  resctrl_offline_cpu
  cpuhp_invoke_callback
  cpuhp_thread_fun
  smpboot_thread_fn
  kthread
  ret_from_fork

Fixes: e33026831b ("x86/intel_rdt/mbm: Handle counter overflow")
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: john.stultz@linaro.org
Cc: sboyd@kernel.org
Cc: <stable@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: tj@kernel.org
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191211033042.2188-1-cai@lca.pw
2019-12-30 19:25:59 +01:00
Ingo Molnar
28336be568 Merge tag 'v5.5-rc4' into locking/kcsan, to resolve conflicts
Conflicts:
	init/main.c
	lib/Kconfig.debug

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-30 08:10:51 +01:00
Jan H. Schönherr
81736abd55 x86/mce: Remove mce_inject_log() in favor of mce_log()
The mutex in mce_inject_log() became unnecessary with commit

  5de97c9f6d ("x86/mce: Factor out and deprecate the /dev/mcelog driver"),

though the original reason for its presence only vanished with commit

  7298f08ea8 ("x86/mcelog: Get rid of RCU remnants").

Drop the mutex. And as that makes mce_inject_log() identical to mce_log(),
get rid of the former in favor of the latter.

Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191210000733.17979-7-jschoenh@amazon.de
2019-12-17 10:26:41 +01:00
Jan H. Schönherr
2d806d0723 x86/mce: Pass MCE message to mce_panic() on failed kernel recovery
In commit

  b2f9d678e2 ("x86/mce: Check for faults tagged in EXTABLE_CLASS_FAULT exception table entries")

another call to mce_panic() was introduced. Pass the message of the
handled MCE to that instance of mce_panic() as well, as there doesn't
seem to be a reason not to.

Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191210000733.17979-6-jschoenh@amazon.de
2019-12-17 10:26:35 +01:00
Arnd Bergmann
db1ae0314f x86/mce/therm_throt: Mark throttle_active_work() as __maybe_unused
throttle_active_work() is only called if CONFIG_SYSFS is set, otherwise
we get a harmless warning:

  arch/x86/kernel/cpu/mce/therm_throt.c:238:13: error: 'throttle_active_work' \
	  defined but not used [-Werror=unused-function]

Mark the function as __maybe_unused to avoid the warning.

Fixes: f6656208f0 ("x86/mce/therm_throt: Optimize notifications of thermal throttle")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: bberg@redhat.com
Cc: ckellner@redhat.com
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: hdegoede@redhat.com
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191210203925.3119091-1-arnd@arndb.de
2019-12-17 10:26:28 +01:00
Jan H. Schönherr
a3a57ddad0 x86/mce: Fix possibly incorrect severity calculation on AMD
The function mce_severity_amd_smca() requires m->bank to be initialized
for correct operation. Fix the one case, where mce_severity() is called
without doing so.

Fixes: 6bda529ec4 ("x86/mce: Grade uncorrected errors for SMCA-enabled systems")
Fixes: d28af26faa ("x86/MCE: Initialize mce.bank in the case of a fatal error in mce_no_way_out()")
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: <stable@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Link: https://lkml.kernel.org/r/20191210000733.17979-4-jschoenh@amazon.de
2019-12-17 09:39:53 +01:00
Yazen Ghannam
966af20929 x86/MCE/AMD: Allow Reserved types to be overwritten in smca_banks[]
Each logical CPU in Scalable MCA systems controls a unique set of MCA
banks in the system. These banks are not shared between CPUs. The bank
types and ordering will be the same across CPUs on currently available
systems.

However, some CPUs may see a bank as Reserved/Read-as-Zero (RAZ) while
other CPUs do not. In this case, the bank seen as Reserved on one CPU is
assumed to be the same type as the bank seen as a known type on another
CPU.

In general, this occurs when the hardware represented by the MCA bank
is disabled, e.g. disabled memory controllers on certain models, etc.
The MCA bank is disabled in the hardware, so there is no possibility of
getting an MCA/MCE from it even if it is assumed to have a known type.

For example:

Full system:
	Bank  |  Type seen on CPU0  |  Type seen on CPU1
	------------------------------------------------
	 0    |         LS          |          LS
	 1    |         UMC         |          UMC
	 2    |         CS          |          CS

System with hardware disabled:
	Bank  |  Type seen on CPU0  |  Type seen on CPU1
	------------------------------------------------
	 0    |         LS          |          LS
	 1    |         UMC         |          RAZ
	 2    |         CS          |          CS

For this reason, there is a single, global struct smca_banks[] that is
initialized at boot time. This array is initialized on each CPU as it
comes online. However, the array will not be updated if an entry already
exists.

This works as expected when the first CPU (usually CPU0) has all
possible MCA banks enabled. But if the first CPU has a subset, then it
will save a "Reserved" type in smca_banks[]. Successive CPUs will then
not be able to update smca_banks[] even if they encounter a known bank
type.

This may result in unexpected behavior. Depending on the system
configuration, a user may observe issues enumerating the MCA
thresholding sysfs interface. The issues may be as trivial as sysfs
entries not being available, or as severe as system hangs.

For example:

	Bank  |  Type seen on CPU0  |  Type seen on CPU1
	------------------------------------------------
	 0    |         LS          |          LS
	 1    |         RAZ         |          UMC
	 2    |         CS          |          CS

Extend the smca_banks[] entry check to return if the entry is a
non-reserved type. Otherwise, continue so that CPUs that encounter a
known bank type can update smca_banks[].

Fixes: 68627a697c ("x86/mce/AMD, EDAC/mce_amd: Enumerate Reserved SMCA bank type")
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: <stable@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191121141508.141273-1-Yazen.Ghannam@amd.com
2019-12-17 09:39:53 +01:00
Konstantin Khlebnikov
246ff09f89 x86/MCE/AMD: Do not use rdmsr_safe_on_cpu() in smca_configure()
... because interrupts are disabled that early and sending IPIs can
deadlock:

  BUG: sleeping function called from invalid context at kernel/sched/completion.c:99
  in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 0, name: swapper/1
  no locks held by swapper/1/0.
  irq event stamp: 0
  hardirqs last  enabled at (0): [<0000000000000000>] 0x0
  hardirqs last disabled at (0): [<ffffffff8106dda9>] copy_process+0x8b9/0x1ca0
  softirqs last  enabled at (0): [<ffffffff8106dda9>] copy_process+0x8b9/0x1ca0
  softirqs last disabled at (0): [<0000000000000000>] 0x0
  Preemption disabled at:
  [<ffffffff8104703b>] start_secondary+0x3b/0x190
  CPU: 1 PID: 0 Comm: swapper/1 Not tainted 5.5.0-rc2+ #1
  Hardware name: GIGABYTE MZ01-CE1-00/MZ01-CE1-00, BIOS F02 08/29/2018
  Call Trace:
   dump_stack
   ___might_sleep.cold.92
   wait_for_completion
   ? generic_exec_single
   rdmsr_safe_on_cpu
   ? wrmsr_on_cpus
   mce_amd_feature_init
   mcheck_cpu_init
   identify_cpu
   identify_secondary_cpu
   smp_store_cpu_info
   start_secondary
   secondary_startup_64

The function smca_configure() is called only on the current CPU anyway,
therefore replace rdmsr_safe_on_cpu() with atomic rdmsr_safe() and avoid
the IPI.

 [ bp: Update commit message. ]

Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: <stable@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/157252708836.3876.4604398213417262402.stgit@buzz
2019-12-17 09:39:33 +01:00
Borislav Petkov
d157aa0fb2 x86/cpu/tsx: Define pr_fmt()
... so that all current and future pr_* statements in this file have the
proper prefix.

No functional changes.

Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20191112221823.19677-2-bp@alien8.de
2019-12-15 10:58:54 +01:00
Borislav Petkov
72c2ce9867 x86/bugs: Move enum taa_mitigations to bugs.c
... because it is used only there.

No functional changes.

Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20191112221823.19677-1-bp@alien8.de
2019-12-14 16:06:33 +01:00
Ingo Molnar
eb243d1d28 x86/mm/pat: Rename <asm/pat.h> => <asm/memtype.h>
pat.h is a file whose main purpose is to provide the memtype_*() APIs.

PAT is the low level hardware mechanism - but the high level abstraction
is memtype.

So name the header <memtype.h> as well - this goes hand in hand with memtype.c
and memtype_interval.c.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-10 10:12:55 +01:00
Kees Cook
4fc265a9c9 x86/mtrr: Require CAP_SYS_ADMIN for all access
Zhang Xiaoxu noted that physical address locations for MTRR were visible
to non-root users, which could be considered an information leak.
In discussing[1] the options for solving this, it sounded like just
moving the capable check into open() was the first step.

If this breaks userspace, then we will have a test case for the more
conservative approaches discussed in the thread. In summary:

- MTRR should check capabilities at open time (or retain the
  checks on the opener's permissions for later checks).

- changing the DAC permissions might break something that expects to
  open mtrr when not uid 0.

- if we leave the DAC permissions alone and just move the capable check
  to the opener, we should get the desired protection. (i.e. check
  against CAP_SYS_ADMIN not just the wider uid 0.)

- if that still breaks things, as in userspace expects to be able to
  read other parts of the file as non-uid-0 and non-CAP_SYS_ADMIN, then
  we need to censor the contents using the opener's permissions. For
  example, as done in other /proc cases, like commit

  51d7b12041 ("/proc/iomem: only expose physical resource addresses to privileged users").

[1] https://lore.kernel.org/lkml/201911110934.AC5BA313@keescook/

Reported-by: Zhang Xiaoxu <zhangxiaoxu5@huawei.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: James Morris <jamorris@linux.microsoft.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Colin Ian King <colin.king@canonical.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-security-module@vger.kernel.org
Cc: Matthew Garrett <mjg59@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: x86-ml <x86@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/201911181308.63F06502A1@keescook
2019-12-09 09:24:24 +01:00
Borislav Petkov
2e30dd9e06 x86/mtrr: Get rid of mtrr_seq_show() forward declaration
... by moving the function up in the file.

No functional changes.

Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20191108200815.24589-1-bp@alien8.de
2019-12-09 09:23:44 +01:00
Linus Torvalds
e5b3fc125d Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar:
 "Various fixes:

   - Fix the PAT performance regression that downgraded write-combining
     device memory regions to uncached.

   - There's been a number of bugs in 32-bit double fault handling -
     hopefully all fixed now.

   - Fix an LDT crash

   - Fix an FPU over-optimization that broke with GCC9 code
     optimizations.

   - Misc cleanups"

* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/mm/pat: Fix off-by-one bugs in interval tree search
  x86/ioperm: Save an indentation level in tss_update_io_bitmap()
  x86/fpu: Don't cache access to fpu_fpregs_owner_ctx
  x86/entry/32: Remove unused 'restore_all_notrace' local label
  x86/ptrace: Document FSBASE and GSBASE ABI oddities
  x86/ptrace: Remove set_segment_reg() implementations for current
  x86/traps: die() instead of panicking on a double fault
  x86/doublefault/32: Rewrite the x86_32 #DF handler and unify with 64-bit
  x86/doublefault/32: Move #DF stack and TSS to cpu_entry_area
  x86/doublefault/32: Rename doublefault.c to doublefault_32.c
  x86/traps: Disentangle the 32-bit and 64-bit doublefault code
  lkdtm: Add a DOUBLE_FAULT crash type on x86
  selftests/x86/single_step_syscall: Check SYSENTER directly
  x86/mm/32: Sync only to VMALLOC_END in vmalloc_sync_all()
2019-12-01 19:05:07 -08:00
Srinivas Pandruvada
5a43b87b3c x86/mce/therm_throt: Mask out read-only and reserved MSR bits
While writing to MSR IA32_THERM_STATUS/IA32_PKG_THERM_STATUS, avoid
writing 1 to read only and reserved fields because updating some fields
generates exception.

 [ bp: Vertically align for better readability. ]

Fixes: f6656208f0 ("x86/mce/therm_throt: Optimize notifications of thermal throttle")
Reported-by: Dominik Brodowski <linux@dominikbrodowski.net>
Tested-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191128150824.22413-1-srinivas.pandruvada@linux.intel.com
2019-11-29 09:17:52 +01:00
Andy Lutomirski
dc4e0021b0 x86/doublefault/32: Move #DF stack and TSS to cpu_entry_area
There are three problems with the current layout of the doublefault
stack and TSS.  First, the TSS is only cacheline-aligned, which is
not enough -- if the hardware portion of the TSS (struct x86_hw_tss)
crosses a page boundary, horrible things happen [0].  Second, the
stack and TSS are global, so simultaneous double faults on different
CPUs will cause massive corruption.  Third, the whole mechanism
won't work if user CR3 is loaded, resulting in a triple fault [1].

Let the doublefault stack and TSS share a page (which prevents the
TSS from spanning a page boundary), make it percpu, and move it into
cpu_entry_area.  Teach the stack dump code about the doublefault
stack.

[0] Real hardware will read past the end of the page onto the next
    *physical* page if a task switch happens.  Virtual machines may
    have any number of bugs, and I would consider it reasonable for
    a VM to summarily kill the guest if it tries to task-switch to
    a page-spanning TSS.

[1] Real hardware triple faults.  At least some VMs seem to hang.
    I'm not sure what's going on.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-26 21:53:34 +01:00
Linus Torvalds
ab851d49f6 Merge branch 'x86-iopl-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 iopl updates from Ingo Molnar:
 "This implements a nice simplification of the iopl and ioperm code that
  Thomas Gleixner discovered: we can implement the IO privilege features
  of the iopl system call by using the IO permission bitmap in
  permissive mode, while trapping CLI/STI/POPF/PUSHF uses in user-space
  if they change the interrupt flag.

  This implements that feature, with testing facilities and related
  cleanups"

[ "Simplification" may be an over-statement. The main goal is to avoid
  the cli/sti of iopl by effectively implementing the IO port access
  parts of iopl in terms of ioperm.

  This may end up not workign well in case people actually depend on
  cli/sti being available, or if there are mixed uses of iopl and
  ioperm. We will see..       - Linus ]

* 'x86-iopl-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (22 commits)
  x86/ioperm: Fix use of deprecated config option
  x86/entry/32: Clarify register saving in __switch_to_asm()
  selftests/x86/iopl: Extend test to cover IOPL emulation
  x86/ioperm: Extend IOPL config to control ioperm() as well
  x86/iopl: Remove legacy IOPL option
  x86/iopl: Restrict iopl() permission scope
  x86/iopl: Fixup misleading comment
  selftests/x86/ioperm: Extend testing so the shared bitmap is exercised
  x86/ioperm: Share I/O bitmap if identical
  x86/ioperm: Remove bitmap if all permissions dropped
  x86/ioperm: Move TSS bitmap update to exit to user work
  x86/ioperm: Add bitmap sequence number
  x86/ioperm: Move iobitmap data into a struct
  x86/tss: Move I/O bitmap data into a seperate struct
  x86/io: Speedup schedule out of I/O bitmap user
  x86/ioperm: Avoid bitmap allocation if no permissions are set
  x86/ioperm: Simplify first ioperm() invocation logic
  x86/iopl: Cleanup include maze
  x86/tss: Fix and move VMX BUILD_BUG_ON()
  x86/cpu: Unify cpu_init()
  ...
2019-11-26 11:12:02 -08:00
Linus Torvalds
53a07a148f Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 PTI updates from Ingo Molnar:
 "Fix reporting bugs of the MDS and TAA mitigation status, if one or
  both are set via a boot option.

  No change to mitigation behavior intended"

* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/speculation: Fix redundant MDS mitigation message
  x86/speculation: Fix incorrect MDS/TAA mitigation status
2019-11-26 10:11:01 -08:00
Linus Torvalds
1c134b198d Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm updates from Ingo Molnar:
 "The main changes in this cycle were:

   - A PAT series from Davidlohr Bueso, which simplifies the memtype
     rbtree by using the interval tree helpers. (There's more cleanups
     in this area queued up, but they didn't make the merge window.)

   - Also flip over CONFIG_X86_5LEVEL to default-y. This might draw in a
     few more testers, as all the major distros are going to have
     5-level paging enabled by default in their next iterations.

   - Misc cleanups"

* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/mm/pat: Rename pat_rbtree.c to pat_interval.c
  x86/mm/pat: Drop the rbt_ prefix from external memtype calls
  x86/mm/pat: Do not pass 'rb_root' down the memtype tree helper functions
  x86/mm/pat: Convert the PAT tree to a generic interval tree
  x86/mm: Clean up the pmd_read_atomic() comments
  x86/mm: Fix function name typo in pmd_read_atomic() comment
  x86/cpu: Clean up intel_tlb_table[]
  x86/mm: Enable 5-level paging support by default
2019-11-26 09:50:14 -08:00
Linus Torvalds
64d6a12094 Merge branch 'x86-hyperv-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 hyperv updates from Ingo Molnar:
 "Misc updates to the hyperv guest code:

   - Rework clockevents initialization to better support hibernation

   - Allow guests to enable InvariantTSC

   - Micro-optimize send_ipi_one"

* 'x86-hyperv-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/hyperv: Initialize clockevents earlier in CPU onlining
  x86/hyperv: Allow guests to enable InvariantTSC
  x86/hyperv: Micro-optimize send_ipi_one()
2019-11-26 09:43:34 -08:00
Linus Torvalds
a25bbc2644 Merge branches 'x86-cpu-for-linus' and 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu and fpu updates from Ingo Molnar:

 - math-emu fixes

 - CPUID updates

 - sanity-check RDRAND output to see whether the CPU at least pretends
   to produce random data

 - various unaligned-access across cachelines fixes in preparation of
   hardware level split-lock detection

 - fix MAXSMP constraints to not allow !CPUMASK_OFFSTACK kernels with
   larger than 512 NR_CPUS

 - misc FPU related cleanups

* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/cpu: Align the x86_capability array to size of unsigned long
  x86/cpu: Align cpu_caps_cleared and cpu_caps_set to unsigned long
  x86/umip: Make the comments vendor-agnostic
  x86/Kconfig: Rename UMIP config parameter
  x86/Kconfig: Enforce limit of 512 CPUs with MAXSMP and no CPUMASK_OFFSTACK
  x86/cpufeatures: Add feature bit RDPRU on AMD
  x86/math-emu: Limit MATH_EMULATION to 486SX compatibles
  x86/math-emu: Check __copy_from_user() result
  x86/rdrand: Sanity-check RDRAND output

* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/fpu: Use XFEATURE_FP/SSE enum values instead of hardcoded numbers
  x86/fpu: Shrink space allocated for xstate_comp_offsets
  x86/fpu: Update stale variable name in comment
2019-11-26 08:58:08 -08:00
Linus Torvalds
28fcb77b38 Merge branch 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS updates from Borislav Petkov:

 - Fully reworked thermal throttling notifications, there should be no
   more spamming of dmesg (Srinivas Pandruvada and Benjamin Berg)

 - More enablement for the Intel-compatible CPUs Zhaoxin (Tony W
   Wang-oc)

 - PPIN support for Icelake (Tony Luck)

* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/mce/therm_throt: Optimize notifications of thermal throttle
  x86/mce: Add Xeon Icelake to list of CPUs that support PPIN
  x86/mce: Lower throttling MCE messages' priority to warning
  x86/mce: Add Zhaoxin LMCE support
  x86/mce: Add Zhaoxin CMCI support
  x86/mce: Add Zhaoxin MCE support
  x86/mce/amd: Make disable_err_thresholding() static
2019-11-25 17:31:39 -08:00
Linus Torvalds
63c2291f83 Merge branch 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 microcode updates from Borislav Petkov:
 "This converts the late loading method to load the microcode in
  parallel (vs sequentially currently). The patch remained in linux-next
  for the maximum amount of time so that any potential and hard to debug
  fallout be minimized.

  Now cloud folks have their milliseconds back but all the normal people
  should use early loading anyway :-)"

* 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/microcode/intel: Issue the revision updated message only on the BSP
  x86/microcode: Update late microcode in parallel
  x86/microcode/amd: Fix two -Wunused-but-set-variable warnings
2019-11-25 17:28:35 -08:00
Ingo Molnar
8e1d58ae0c Merge branch 'for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into locking/kcsan
Pull the KCSAN subsystem from Paul E. McKenney:

   "This pull request contains base kernel concurrency sanitizer
    (KCSAN) enablement for x86, courtesy of Marco Elver.  KCSAN is a
    sampling watchpoint-based data-race detector, and is documented in
    Documentation/dev-tools/kcsan.rst.  KCSAN was announced in September,
    and much feedback has since been incorporated:

      http://lkml.kernel.org/r/CANpmjNPJ_bHjfLZCAPV23AXFfiPiyXXqqu72n6TgWzb2Gnu1eA@mail.gmail.com

    The data races located thus far have resulted in a number of fixes:

      https://github.com/google/ktsan/wiki/KCSAN#upstream-fixes-of-data-races-found-by-kcsan

    Additional information may be found here:

      https://lore.kernel.org/lkml/20191114180303.66955-1-elver@google.com/
   "

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-19 19:56:28 +01:00
Ingo Molnar
9f4813b531 Merge tag 'v5.4-rc8' into WIP.x86/mm, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-19 09:00:45 +01:00
Linus Torvalds
fe30021c36 Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar:
 "Two fixes: disable unreliable HPET on Intel Coffe Lake platforms, and
  fix a lockdep splat in the resctrl code"

* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/resctrl: Fix potential lockdep warning
  x86/quirks: Disable HPET on Intel Coffe Lake platforms
2019-11-16 16:10:59 -08:00
Marco Elver
40d04110f8 x86, kcsan: Enable KCSAN for x86
This patch enables KCSAN for x86, with updates to build rules to not use
KCSAN for several incompatible compilation units.

Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2019-11-16 07:23:16 -08:00
Waiman Long
cd5a2aa89e x86/speculation: Fix redundant MDS mitigation message
Since MDS and TAA mitigations are inter-related for processors that are
affected by both vulnerabilities, the followiing confusing messages can
be printed in the kernel log:

  MDS: Vulnerable
  MDS: Mitigation: Clear CPU buffers

To avoid the first incorrect message, defer the printing of MDS
mitigation after the TAA mitigation selection has been done. However,
that has the side effect of printing TAA mitigation first before MDS
mitigation.

 [ bp: Check box is affected/mitigations are disabled first before
   printing and massage. ]

Suggested-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Mark Gross <mgross@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191115161445.30809-3-longman@redhat.com
2019-11-16 15:24:56 +01:00
Waiman Long
64870ed1b1 x86/speculation: Fix incorrect MDS/TAA mitigation status
For MDS vulnerable processors with TSX support, enabling either MDS or
TAA mitigations will enable the use of VERW to flush internal processor
buffers at the right code path. IOW, they are either both mitigated
or both not. However, if the command line options are inconsistent,
the vulnerabilites sysfs files may not report the mitigation status
correctly.

For example, with only the "mds=off" option:

  vulnerabilities/mds:Vulnerable; SMT vulnerable
  vulnerabilities/tsx_async_abort:Mitigation: Clear CPU buffers; SMT vulnerable

The mds vulnerabilities file has wrong status in this case. Similarly,
the taa vulnerability file will be wrong with mds mitigation on, but
taa off.

Change taa_select_mitigation() to sync up the two mitigation status
and have them turned off if both "mds=off" and "tsx_async_abort=off"
are present.

Update documentation to emphasize the fact that both "mds=off" and
"tsx_async_abort=off" have to be specified together for processors that
are affected by both TAA and MDS to be effective.

 [ bp: Massage and add kernel-parameters.txt change too. ]

Fixes: 1b42f01741 ("x86/speculation/taa: Add mitigation for TSX Async Abort")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: linux-doc@vger.kernel.org
Cc: Mark Gross <mgross@linux.intel.com>
Cc: <stable@vger.kernel.org>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191115161445.30809-2-longman@redhat.com
2019-11-16 13:17:49 +01:00
Thomas Gleixner
111e7b15cf x86/ioperm: Extend IOPL config to control ioperm() as well
If iopl() is disabled, then providing ioperm() does not make much sense.

Rename the config option and disable/enable both syscalls with it. Guard
the code with #ifdefs where appropriate.

Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2019-11-16 11:24:06 +01:00
Thomas Gleixner
c8137ace56 x86/iopl: Restrict iopl() permission scope
The access to the full I/O port range can be also provided by the TSS I/O
bitmap, but that would require to copy 8k of data on scheduling in the
task. As shown with the sched out optimization TSS.io_bitmap_base can be
used to switch the incoming task to a preallocated I/O bitmap which has all
bits zero, i.e. allows access to all I/O ports.

Implementing this allows to provide an iopl() emulation mode which restricts
the IOPL level 3 permissions to I/O port access but removes the STI/CLI
permission which is coming with the hardware IOPL mechansim.

Provide a config option to switch IOPL to emulation mode, make it the
default and while at it also provide an option to disable IOPL completely.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
2019-11-16 11:24:05 +01:00
Thomas Gleixner
060aa16fdb x86/ioperm: Add bitmap sequence number
Add a globally unique sequence number which is incremented when ioperm() is
changing the I/O bitmap of a task. Store the new sequence number in the
io_bitmap structure and compare it with the sequence number of the I/O
bitmap which was last loaded on a CPU. Only update the bitmap if the
sequence is different.

That should further reduce the overhead of I/O bitmap scheduling when there
are only a few I/O bitmap users on the system.

The 64bit sequence counter is sufficient. A wraparound of the sequence
counter assuming an ioperm() call every nanosecond would require about 584
years of uptime.

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2019-11-16 11:24:02 +01:00
Thomas Gleixner
f5848e5fd2 x86/tss: Move I/O bitmap data into a seperate struct
Move the non hardware portion of I/O bitmap data into a seperate struct for
readability sake.

Originally-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2019-11-16 11:24:01 +01:00
Thomas Gleixner
ecc7e37d4d x86/io: Speedup schedule out of I/O bitmap user
There is no requirement to update the TSS I/O bitmap when a thread using it is
scheduled out and the incoming thread does not use it.

For the permission check based on the TSS I/O bitmap the CPU calculates the memory
location of the I/O bitmap by the address of the TSS and the io_bitmap_base member
of the tss_struct. The easiest way to invalidate the I/O bitmap is to switch the
offset to an address outside of the TSS limit.

If an I/O instruction is issued from user space the TSS limit causes #GP to be
raised in the same was as valid I/O bitmap with all bits set to 1 would do.

This removes the extra work when an I/O bitmap using task is scheduled out
and puts the burden on the rare I/O bitmap users when they are scheduled
in.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2019-11-16 11:24:01 +01:00
Thomas Gleixner
505b789996 x86/cpu: Unify cpu_init()
Similar to copy_thread_tls() the 32bit and 64bit implementations of
cpu_init() are very similar and unification avoids duplicate changes in the
future.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
2019-11-16 11:23:59 +01:00
Fenghua Yu
f6a892ddd5 x86/cpu: Align cpu_caps_cleared and cpu_caps_set to unsigned long
cpu_caps_cleared[] and cpu_caps_set[] are arrays of type u32 and therefore
naturally aligned to 4 bytes, which is also unsigned long aligned on
32-bit, but not on 64-bit.

The array pointer is handed into atomic bit operations. If the access not
aligned to unsigned long then the atomic bit operations can end up crossing
a cache line boundary, which causes the CPU to do a full bus lock as it
can't lock both cache lines at once. The bus lock operation is heavy weight
and can cause severe performance degradation.

The upcoming #AC split lock detection mechanism will issue warnings for
this kind of access.

Force the alignment of these arrays to unsigned long. This avoids the
massive code changes which would be required when converting the array data
type to unsigned long.

[ tglx: Rewrote changelog ]

Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20190916223958.27048-2-tony.luck@intel.com
2019-11-15 20:20:32 +01:00
Thomas Gleixner
ac94be498f Merge branch 'linus' into x86/hyperv
Pick up upstream fixes to avoid conflicts.
2019-11-15 10:30:50 +01:00
Xiaochen Shen
c8eafe1495 x86/resctrl: Fix potential lockdep warning
rdtgroup_cpus_write() and mkdir_rdt_prepare() call
rdtgroup_kn_lock_live() -> kernfs_to_rdtgroup() to get 'rdtgrp', and
then call the rdt_last_cmd_{clear,puts,...}() functions which will check
if rdtgroup_mutex is held/requires its caller to hold rdtgroup_mutex.

But if 'rdtgrp' returned from kernfs_to_rdtgroup() is NULL,
rdtgroup_mutex is not held and calling rdt_last_cmd_{clear,puts,...}()
will result in a self-incurred, potential lockdep warning.

Remove the rdt_last_cmd_{clear,puts,...}() calls in these two paths.
Just returning error should be sufficient to report to the user that the
entry doesn't exist any more.

 [ bp: Massage. ]

Fixes: 94457b36e8 ("x86/intel_rdt: Add diagnostics when writing the cpus file")
Fixes: cfd0f34e4c ("x86/intel_rdt: Add diagnostics when making directories")
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: pei.p.jia@intel.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1573079796-11713-1-git-send-email-xiaochen.shen@intel.com
2019-11-13 12:34:44 +01:00
Linus Torvalds
eb094f0696 Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 TSX Async Abort and iTLB Multihit mitigations from Thomas Gleixner:
 "The performance deterioration departement is not proud at all of
  presenting the seventh installment of speculation mitigations and
  hardware misfeature workarounds:

   1) TSX Async Abort (TAA) - 'The Annoying Affair'

      TAA is a hardware vulnerability that allows unprivileged
      speculative access to data which is available in various CPU
      internal buffers by using asynchronous aborts within an Intel TSX
      transactional region.

      The mitigation depends on a microcode update providing a new MSR
      which allows to disable TSX in the CPU. CPUs which have no
      microcode update can be mitigated by disabling TSX in the BIOS if
      the BIOS provides a tunable.

      Newer CPUs will have a bit set which indicates that the CPU is not
      vulnerable, but the MSR to disable TSX will be available
      nevertheless as it is an architected MSR. That means the kernel
      provides the ability to disable TSX on the kernel command line,
      which is useful as TSX is a truly useful mechanism to accelerate
      side channel attacks of all sorts.

   2) iITLB Multihit (NX) - 'No eXcuses'

      iTLB Multihit is an erratum where some Intel processors may incur
      a machine check error, possibly resulting in an unrecoverable CPU
      lockup, when an instruction fetch hits multiple entries in the
      instruction TLB. This can occur when the page size is changed
      along with either the physical address or cache type. A malicious
      guest running on a virtualized system can exploit this erratum to
      perform a denial of service attack.

      The workaround is that KVM marks huge pages in the extended page
      tables as not executable (NX). If the guest attempts to execute in
      such a page, the page is broken down into 4k pages which are
      marked executable. The workaround comes with a mechanism to
      recover these shattered huge pages over time.

  Both issues come with full documentation in the hardware
  vulnerabilities section of the Linux kernel user's and administrator's
  guide.

  Thanks to all patch authors and reviewers who had the extraordinary
  priviledge to be exposed to this nuisance.

  Special thanks to Borislav Petkov for polishing the final TAA patch
  set and to Paolo Bonzini for shepherding the KVM iTLB workarounds and
  providing also the backports to stable kernels for those!"

* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/speculation/taa: Fix printing of TAA_MSG_SMT on IBRS_ALL CPUs
  Documentation: Add ITLB_MULTIHIT documentation
  kvm: x86: mmu: Recovery of shattered NX large pages
  kvm: Add helper function for creating VM worker threads
  kvm: mmu: ITLB_MULTIHIT mitigation
  cpu/speculation: Uninline and export CPU mitigations helpers
  x86/cpu: Add Tremont to the cpu vulnerability whitelist
  x86/bugs: Add ITLB_MULTIHIT bug infrastructure
  x86/tsx: Add config options to set tsx=on|off|auto
  x86/speculation/taa: Add documentation for TSX Async Abort
  x86/tsx: Add "auto" option to the tsx= cmdline parameter
  kvm/x86: Export MDS_NO=0 to guests when TSX is enabled
  x86/speculation/taa: Add sysfs reporting for TSX Async Abort
  x86/speculation/taa: Add mitigation for TSX Async Abort
  x86/cpu: Add a "tsx=" cmdline option with TSX disabled by default
  x86/cpu: Add a helper function x86_read_arch_cap_msr()
  x86/msr: Add the IA32_TSX_CTRL MSR
2019-11-12 10:53:24 -08:00
Srinivas Pandruvada
f6656208f0 x86/mce/therm_throt: Optimize notifications of thermal throttle
Some modern systems have very tight thermal tolerances. Because of this
they may cross thermal thresholds when running normal workloads (even
during boot). The CPU hardware will react by limiting power/frequency
and using duty cycles to bring the temperature back into normal range.

Thus users may see a "critical" message about the "temperature above
threshold" which is soon followed by "temperature/speed normal". These
messages are rate-limited, but still may repeat every few minutes.

This issue became worse starting with the Ivy Bridge generation of
CPUs because they include a TCC activation offset in the MSR
IA32_TEMPERATURE_TARGET. OEMs use this to provide alerts long before
critical temperatures are reached.

A test run on a laptop with Intel 8th Gen i5 core for two hours with a
workload resulted in 20K+ thermal interrupts per CPU for core level and
another 20K+ interrupts at package level. The kernel logs were full of
throttling messages.

The real value of these threshold interrupts, is to debug problems with
the external cooling solutions and performance issues due to excessive
throttling.

So the solution here is the following:

  - In the current thermal_throttle folder, show:
    - the maximum time for one throttling event and,
    - the total amount of time the system was in throttling state.

  - Do not log short excursions.

  - Log only when, in spite of thermal throttling, the temperature is rising.
  On the high threshold interrupt trigger a delayed workqueue that
  monitors the threshold violation log bit (THERM_STATUS_PROCHOT_LOG). When
  the log bit is set, this workqueue callback calculates three point moving
  average and logs a warning message when the temperature trend is rising.

  When this log bit is clear and temperature is below threshold
  temperature, then the workqueue callback logs a "Normal" message. Once a
  high threshold event is logged, the logging is rate-limited.

With this patch on the same test laptop, no warnings are printed in the logs
as the max time the processor could bring the temperature under control is
only 280 ms.

This implementation is done with the inputs from Alan Cox and Tony Luck.

 [ bp: Touchups. ]

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: bberg@redhat.com
Cc: ckellner@redhat.com
Cc: hdegoede@redhat.com
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191111214312.81365-1-srinivas.pandruvada@linux.intel.com
2019-11-12 15:56:04 +01:00
Andrea Parri
dce7cd6275 x86/hyperv: Allow guests to enable InvariantTSC
If the hardware supports TSC scaling, Hyper-V will set bit 15 of the
HV_PARTITION_PRIVILEGE_MASK in guest VMs with a compatible Hyper-V
configuration version.  Bit 15 corresponds to the
AccessTscInvariantControls privilege.  If this privilege bit is set,
guests can access the HvSyntheticInvariantTscControl MSR: guests can
set bit 0 of this synthetic MSR to enable the InvariantTSC feature.
After setting the synthetic MSR, CPUID will enumerate support for
InvariantTSC.

Signed-off-by: Andrea Parri <parri.andrea@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lkml.kernel.org/r/20191003155200.22022-1-parri.andrea@gmail.com
2019-11-12 11:44:21 +01:00
Josh Poimboeuf
012206a822 x86/speculation/taa: Fix printing of TAA_MSG_SMT on IBRS_ALL CPUs
For new IBRS_ALL CPUs, the Enhanced IBRS check at the beginning of
cpu_bugs_smt_update() causes the function to return early, unintentionally
skipping the MDS and TAA logic.

This is not a problem for MDS, because there appears to be no overlap
between IBRS_ALL and MDS-affected CPUs.  So the MDS mitigation would be
disabled and nothing would need to be done in this function anyway.

But for TAA, the TAA_MSG_SMT string will never get printed on Cascade
Lake and newer.

The check is superfluous anyway: when 'spectre_v2_enabled' is
SPECTRE_V2_IBRS_ENHANCED, 'spectre_v2_user' is always
SPECTRE_V2_USER_NONE, and so the 'spectre_v2_user' switch statement
handles it appropriately by doing nothing.  So just remove the check.

Fixes: 1b42f01741 ("x86/speculation/taa: Add mitigation for TSX Async Abort")
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
2019-11-07 16:06:27 +01:00
Paolo Bonzini
b8e8c8303f kvm: mmu: ITLB_MULTIHIT mitigation
With some Intel processors, putting the same virtual address in the TLB
as both a 4 KiB and 2 MiB page can confuse the instruction fetch unit
and cause the processor to issue a machine check resulting in a CPU lockup.

Unfortunately when EPT page tables use huge pages, it is possible for a
malicious guest to cause this situation.

Add a knob to mark huge pages as non-executable. When the nx_huge_pages
parameter is enabled (and we are using EPT), all huge pages are marked as
NX. If the guest attempts to execute in one of those pages, the page is
broken down into 4K pages, which are then marked executable.

This is not an issue for shadow paging (except nested EPT), because then
the host is in control of TLB flushes and the problematic situation cannot
happen.  With nested EPT, again the nested guest can cause problems shadow
and direct EPT is treated in the same way.

[ tglx: Fixup default to auto and massage wording a bit ]

Originally-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2019-11-04 12:22:02 +01:00
Pawan Gupta
cad14885a8 x86/cpu: Add Tremont to the cpu vulnerability whitelist
Add the new cpu family ATOM_TREMONT_D to the cpu vunerability
whitelist. ATOM_TREMONT_D is not affected by X86_BUG_ITLB_MULTIHIT.

ATOM_TREMONT_D might have mitigations against other issues as well, but
only the ITLB multihit mitigation is confirmed at this point.

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2019-11-04 12:22:01 +01:00
Vineela Tummalapalli
db4d30fbb7 x86/bugs: Add ITLB_MULTIHIT bug infrastructure
Some processors may incur a machine check error possibly resulting in an
unrecoverable CPU lockup when an instruction fetch encounters a TLB
multi-hit in the instruction TLB. This can occur when the page size is
changed along with either the physical address or cache type. The relevant
erratum can be found here:

   https://bugzilla.kernel.org/show_bug.cgi?id=205195

There are other processors affected for which the erratum does not fully
disclose the impact.

This issue affects both bare-metal x86 page tables and EPT.

It can be mitigated by either eliminating the use of large pages or by
using careful TLB invalidations when changing the page size in the page
tables.

Just like Spectre, Meltdown, L1TF and MDS, a new bit has been allocated in
MSR_IA32_ARCH_CAPABILITIES (PSCHANGE_MC_NO) and will be set on CPUs which
are mitigated against this issue.

Signed-off-by: Vineela Tummalapalli <vineela.tummalapalli@intel.com>
Co-developed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2019-11-04 12:22:01 +01:00