ISA v3.1 does not support the SAO storage control attribute required to
implement PROT_SAO. PROT_SAO was used by specialised system software
(Lx86) that has been discontinued for about 7 years, and is not thought
to be used elsewhere, so removal should not cause problems.
We rather remove it than keep support for older processors, because
live migrating guest partitions to newer processors may not be possible
if SAO is in use (or worse allowed with silent races).
- PROT_SAO stays in the uapi header so code using it would still build.
- arch_validate_prot() is removed, the generic version rejects PROT_SAO
so applications would get a failure at mmap() time.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Drop KVM change for the time being]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200703011958.1166620-3-npiggin@gmail.com
UAMOR values are not application-specific. The kernel initializes
its value based on different reserved keys. Remove the thread-specific
UAMOR value and don't switch the UAMOR on context switch.
Move UAMOR initialization to key initialization code and remove
thread_struct.uamor because it is not used anymore.
Before commit: 4a4a5e5d2a ("powerpc/pkeys: key allocation/deallocation must not change pkey registers")
we used to update uamor based on key allocation and free.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200709032946.881753-20-aneesh.kumar@linux.ibm.com
As we kexec across kernels that use AMR/IAMR for different purposes
we need to ensure that new kernels get kexec'd with a reset value
of AMR/IAMR. For ex: the new kernel can use key 0 for kernel mapping and the old
AMR value prevents access to key 0.
This patch also removes reset if IAMR and AMOR in kexec_sequence. Reset of AMOR
is not needed and the IAMR reset is partial (it doesn't do the reset
on secondary cpus) and is redundant with this patch.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200709032946.881753-19-aneesh.kumar@linux.ibm.com
To enable memory unplug without splitting kernel page table
mapping, we force the max mapping size to the LMB size. LMB
size is the unit in which hypervisor will do memory add/remove
operation.
Pseries systems supports max LMB size of 256MB. Hence on pseries,
we now end up mapping memory with 2M page size instead of 1G. To improve
that we want hypervisor to hint the kernel about the hotplug
memory range. That was added that as part of
commit b6eca183e2 ("powerpc/kernel: Enables memory
hot-remove after reboot on pseries guests")
But PowerVM doesn't provide that hint yet. Once we get PowerVM
updated, we can then force the 2M mapping only to hot-pluggable
memory region using memblock_is_hotpluggable(). Till then
let's depend on LMB size for finding the mapping page size
for linear range.
With this change KVM guest will also be doing linear mapping with
2M page size.
The actual TLB benefit of mapping guest page table entries with
hugepage size can only be materialized if the partition scoped
entries are also using the same or higher page size. A guest using
1G hugetlbfs backing guest memory can have a performance impact with
the above change.
Signed-off-by: Bharata B Rao <bharata@linux.ibm.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
[mpe: Fold in fix from Aneesh spotted by lkp@intel.com]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200709131925.922266-5-aneesh.kumar@linux.ibm.com
We can hit the following BUG_ON during memory unplug:
kernel BUG at arch/powerpc/mm/book3s64/pgtable.c:342!
Oops: Exception in kernel mode, sig: 5 [#1]
LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA pSeries
NIP [c000000000093308] pmd_fragment_free+0x48/0xc0
LR [c00000000147bfec] remove_pagetable+0x578/0x60c
Call Trace:
0xc000008050000000 (unreliable)
remove_pagetable+0x384/0x60c
radix__remove_section_mapping+0x18/0x2c
remove_section_mapping+0x1c/0x3c
arch_remove_memory+0x11c/0x180
try_remove_memory+0x120/0x1b0
__remove_memory+0x20/0x40
dlpar_remove_lmb+0xc0/0x114
dlpar_memory+0x8b0/0xb20
handle_dlpar_errorlog+0xc0/0x190
pseries_hp_work_fn+0x2c/0x60
process_one_work+0x30c/0x810
worker_thread+0x98/0x540
kthread+0x1c4/0x1d0
ret_from_kernel_thread+0x5c/0x74
This occurs when unplug is attempted for such memory which has
been mapped using memblock pages as part of early kernel page
table setup. We wouldn't have initialized the PMD or PTE fragment
count for those PMD or PTE pages.
This can be fixed by allocating memory in PAGE_SIZE granularity
during early page table allocation. This makes sure a specific
page is not shared for another memblock allocation and we can
free them correctly on removing page-table pages.
Since we now do PAGE_SIZE allocations for both PUD table and
PMD table (Note that PTE table allocation is already of PAGE_SIZE),
we end up allocating more memory for the same amount of system RAM.
Here is a comparision of how much more we need for a 64T and 2G
system after this patch:
1. 64T system
-------------
64T RAM would need 64G for vmemmap with struct page size being 64B.
128 PUD tables for 64T memory (1G mappings)
1 PUD table and 64 PMD tables for 64G vmemmap (2M mappings)
With default PUD[PMD]_TABLE_SIZE(4K), (128+1+64)*4K=772K
With PAGE_SIZE(64K) table allocations, (128+1+64)*64K=12352K
2. 2G system
------------
2G RAM would need 2M for vmemmap with struct page size being 64B.
1 PUD table for 2G memory (1G mapping)
1 PUD table and 1 PMD table for 2M vmemmap (2M mappings)
With default PUD[PMD]_TABLE_SIZE(4K), (1+1+1)*4K=12K
With new PAGE_SIZE(64K) table allocations, (1+1+1)*64K=192K
Signed-off-by: Bharata B Rao <bharata@linux.ibm.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200709131925.922266-2-aneesh.kumar@linux.ibm.com
Pull powerpc updates from Michael Ellerman:
- Support for userspace to send requests directly to the on-chip GZIP
accelerator on Power9.
- Rework of our lockless page table walking (__find_linux_pte()) to
make it safe against parallel page table manipulations without
relying on an IPI for serialisation.
- A series of fixes & enhancements to make our machine check handling
more robust.
- Lots of plumbing to add support for "prefixed" (64-bit) instructions
on Power10.
- Support for using huge pages for the linear mapping on 8xx (32-bit).
- Remove obsolete Xilinx PPC405/PPC440 support, and an associated sound
driver.
- Removal of some obsolete 40x platforms and associated cruft.
- Initial support for booting on Power10.
- Lots of other small features, cleanups & fixes.
Thanks to: Alexey Kardashevskiy, Alistair Popple, Andrew Donnellan,
Andrey Abramov, Aneesh Kumar K.V, Balamuruhan S, Bharata B Rao, Bulent
Abali, Cédric Le Goater, Chen Zhou, Christian Zigotzky, Christophe
JAILLET, Christophe Leroy, Dmitry Torokhov, Emmanuel Nicolet, Erhard F.,
Gautham R. Shenoy, Geoff Levand, George Spelvin, Greg Kurz, Gustavo A.
R. Silva, Gustavo Walbon, Haren Myneni, Hari Bathini, Joel Stanley,
Jordan Niethe, Kajol Jain, Kees Cook, Leonardo Bras, Madhavan
Srinivasan., Mahesh Salgaonkar, Markus Elfring, Michael Neuling, Michal
Simek, Nathan Chancellor, Nathan Lynch, Naveen N. Rao, Nicholas Piggin,
Oliver O'Halloran, Paul Mackerras, Pingfan Liu, Qian Cai, Ram Pai,
Raphael Moreira Zinsly, Ravi Bangoria, Sam Bobroff, Sandipan Das, Segher
Boessenkool, Stephen Rothwell, Sukadev Bhattiprolu, Tyrel Datwyler,
Wolfram Sang, Xiongfeng Wang.
* tag 'powerpc-5.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (299 commits)
powerpc/pseries: Make vio and ibmebus initcalls pseries specific
cxl: Remove dead Kconfig options
powerpc: Add POWER10 architected mode
powerpc/dt_cpu_ftrs: Add MMA feature
powerpc/dt_cpu_ftrs: Enable Prefixed Instructions
powerpc/dt_cpu_ftrs: Advertise support for ISA v3.1 if selected
powerpc: Add support for ISA v3.1
powerpc: Add new HWCAP bits
powerpc/64s: Don't set FSCR bits in INIT_THREAD
powerpc/64s: Save FSCR to init_task.thread.fscr after feature init
powerpc/64s: Don't let DT CPU features set FSCR_DSCR
powerpc/64s: Don't init FSCR_DSCR in __init_FSCR()
powerpc/32s: Fix another build failure with CONFIG_PPC_KUAP_DEBUG
powerpc/module_64: Use special stub for _mcount() with -mprofile-kernel
powerpc/module_64: Simplify check for -mprofile-kernel ftrace relocations
powerpc/module_64: Consolidate ftrace code
powerpc/32: Disable KASAN with pages bigger than 16k
powerpc/uaccess: Don't set KUEP by default on book3s/32
powerpc/uaccess: Don't set KUAP by default on book3s/32
powerpc/8xx: Reduce time spent in allow_user_access() and friends
...
Writing the AMR register is documented to require context
synchronizing operations before and after, for it to take effect as
expected. The KUAP restore at interrupt exit time deliberately avoids
the isync after the AMR update because it only needs to take effect
after the context synchronizing RFID that soon follows. Add a comment
for this.
The missing isync before the update doesn't have an obvious
justification, and seems it could theoretically allow a rogue user
access to leak past the AMR update. Add isyncs for these.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200429065654.1677541-3-npiggin@gmail.com
The idea behind this prefetch was to kick off a page table walk before
returning from the fault, getting some pipelining advantage.
But this never showed up any noticable performance advantage, and in
fact with KUAP the prefetches are actually blocked and cause some
kind of micro-architectural fault. Removing this improves page fault
microbenchmark performance by about 9%.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Keep the early return in update_mmu_cache()]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200504122907.49304-1-npiggin@gmail.com
Booting a power9 server with hash MMU could trigger an undefined
behaviour because pud_offset(p4d, 0) will do,
0 >> (PAGE_SHIFT:16 + PTE_INDEX_SIZE:8 + H_PMD_INDEX_SIZE:10)
Fix it by converting pud_index() and friends to static inline
functions.
UBSAN: shift-out-of-bounds in arch/powerpc/mm/ptdump/ptdump.c:282:15
shift exponent 34 is too large for 32-bit type 'int'
CPU: 6 PID: 1 Comm: swapper/0 Not tainted 5.6.0-rc4-next-20200303+ #13
Call Trace:
dump_stack+0xf4/0x164 (unreliable)
ubsan_epilogue+0x18/0x78
__ubsan_handle_shift_out_of_bounds+0x160/0x21c
walk_pagetables+0x2cc/0x700
walk_pud at arch/powerpc/mm/ptdump/ptdump.c:282
(inlined by) walk_pagetables at arch/powerpc/mm/ptdump/ptdump.c:311
ptdump_check_wx+0x8c/0xf0
mark_rodata_ro+0x48/0x80
kernel_init+0x74/0x194
ret_from_kernel_thread+0x5c/0x74
Suggested-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Christophe Leroy <christophe.leroy@c-s.fr>
Link: https://lore.kernel.org/r/20200306044852.3236-1-cai@lca.pw
Christian reports:
MODPOST vmlinux.o
WARNING: modpost: vmlinux.o(.text.unlikely+0x1a0): Section mismatch in
reference from the function .early_init_mmu() to the function
.init.text:.radix__early_init_mmu()
The function .early_init_mmu() references
the function __init .radix__early_init_mmu().
This is often because .early_init_mmu lacks a __init
annotation or the annotation of .radix__early_init_mmu is wrong.
WARNING: modpost: vmlinux.o(.text.unlikely+0x1ac): Section mismatch in
reference from the function .early_init_mmu() to the function
.init.text:.hash__early_init_mmu()
The function .early_init_mmu() references
the function __init .hash__early_init_mmu().
This is often because .early_init_mmu lacks a __init
annotation or the annotation of .hash__early_init_mmu is wrong.
The compiler is uninlining early_init_mmu and not putting it in an init
section because there is no annotation. Add it.
Reported-by: Christian Zigotzky <chzigotzky@xenosoft.de>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Tested-by: Christian Zigotzky <chzigotzky@xenosoft.de>
Link: https://lore.kernel.org/r/20200429070247.1678172-1-npiggin@gmail.com
This merges the lockless page table walk rework series from Aneesh.
Because it touches powerpc KVM code we are sharing it with the kvm-ppc
tree in our topic/ppc-kvm branch.
This is the cover letter from Aneesh:
Avoid IPI while updating page table entries.
Problem Summary:
Slow termination of KVM guest with large guest RAM config due to a
large number of IPIs that were caused by clearing level 1 PTE
entries (THP) entries. This is shown in the stack trace below.
- qemu-system-ppc [kernel.vmlinux] [k] smp_call_function_many
- smp_call_function_many
- 36.09% smp_call_function_many
serialize_against_pte_lookup
radix__pmdp_huge_get_and_clear
zap_huge_pmd
unmap_page_range
unmap_vmas
unmap_region
__do_munmap
__vm_munmap
sys_munmap
system_call
__munmap
qemu_ram_munmap
qemu_anon_ram_free
reclaim_ramblock
call_rcu_thread
qemu_thread_start
start_thread
__clone
Why we need to do IPI when clearing PMD entries:
This was added as part of commit: 13bd817bb8 ("powerpc/thp: Serialize pmd clear against a linux page table walk")
serialize_against_pte_lookup makes sure that all parallel lockless
page table walk completes before we convert a PMD pte entry to regular
pmd entry. We end up doing that conversion in the below scenarios
1) __split_huge_zero_page_pmd
2) do_huge_pmd_wp_page_fallback
3) MADV_DONTNEED running parallel to page faults.
local_irq_disable and lockless page table walk:
The lockless page table walk work with the assumption that we can
dereference the page table contents without holding a lock. For this
to work, we need to make sure we read the page table contents
atomically and page table pages are not going to be freed/released
while we are walking the table pages. We can achieve by using a rcu
based freeing for page table pages or if the architecture implements
broadcast tlbie, we can block the IPI as we walk the page table pages.
To support both the above framework, lockless page table walk is done
with irq disabled instead of rcu_read_lock()
We do have two interface for lockless page table walk, gup fast and
__find_linux_pte. This patch series makes __find_linux_pte table walk
safe against the conversion of PMD PTE to regular PMD.
gup fast:
gup fast is already safe against THP split because kernel now
differentiate between a pmd split and a compound page split. gup fast
can run parallel to a pmd split and we prevent a parallel gup fast to
a hugepage split, by freezing the page refcount and failing the
speculative page ref increment.
Similar to how gup is safe against parallel pmd split, this patch
series updates the __find_linux_pte callers to be safe against a
parallel pmd split. We do that by enforcing the following rules.
1) Don't reload the pte value, because that can be updated in
parallel.
2) Code should be able to work with a stale PTE value and not the
recent one. ie, the pte value that we are looking at may not be the
latest value in the page table.
3) Before looking at pte value check for _PAGE_PTE bit. We now do this
as part of pte_present() check.
Performance:
This speeds up Qemu guest RAM del/unplug time as below
128 core, 496GB guest:
Without patch:
munmap start: timer = 13162 ms, PID=7684
munmap finish: timer = 95312 ms, PID=7684 - delta = 82150 ms
With patch (upto removing IPI)
munmap start: timer = 196449 ms, PID=6681
munmap finish: timer = 196488 ms, PID=6681 - delta = 39ms
With patch (with adding the tlb invalidate in pmdp_huge_get_and_clear_full)
munmap start: timer = 196345 ms, PID=6879
munmap finish: timer = 196714 ms, PID=6879 - delta = 369ms
Link: https://lore.kernel.org/r/20200505071729.54912-1-aneesh.kumar@linux.ibm.com
MADV_DONTNEED holds mmap_sem in read mode and that implies a
parallel page fault is possible and the kernel can end up with a level 1 PTE
entry (THP entry) converted to a level 0 PTE entry without flushing
the THP TLB entry.
Most architectures including POWER have issues with kernel instantiating a level
0 PTE entry while holding level 1 TLB entries.
The code sequence I am looking at is
down_read(mmap_sem) down_read(mmap_sem)
zap_pmd_range()
zap_huge_pmd()
pmd lock held
pmd_cleared
table details added to mmu_gather
pmd_unlock()
insert a level 0 PTE entry()
tlb_finish_mmu().
Fix this by forcing a tlb flush before releasing pmd lock if this is
not a fullmm invalidate. We can safely skip this invalidate for
task exit case (fullmm invalidate) because in that case we are sure
there can be no parallel fault handlers.
This do change the Qemu guest RAM del/unplug time as below
128 core, 496GB guest:
Without patch:
munmap start: timer = 196449 ms, PID=6681
munmap finish: timer = 196488 ms, PID=6681 - delta = 39ms
With patch:
munmap start: timer = 196345 ms, PID=6879
munmap finish: timer = 196714 ms, PID=6879 - delta = 369ms
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200505071729.54912-23-aneesh.kumar@linux.ibm.com
This makes the pte_present check stricter by checking for additional _PAGE_PTE
bit. A level 1 pte pointer (THP pte) can be switched to a pointer to level 0 pte
page table page by following two operations.
1) THP split.
2) madvise(MADV_DONTNEED) in parallel to page fault.
A lockless page table walk need to make sure we can handle such changes
gracefully.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200505071729.54912-4-aneesh.kumar@linux.ibm.com
set_thread_uses_vas() sets used_vas flag for a process that opened VAS
window and issue CP_ABORT during context switch for only that process.
In multi-thread application, windows can be shared. For example Thread
A can open a window and Thread B can run COPY/PASTE instructions to
send NX request which may cause corruption or snooping or a covert
channel Also once this flag is set, continue to run CP_ABORT even the
VAS window is closed.
So define vas-windows counter in process mm_context, increment this
counter for each window open and decrement it for window close. If
vas-windows is set, issue CP_ABORT during context switch. It means
clear the foreign real address mapping only if the process / thread
uses COPY/PASTE. Then disable it for that process if windows are not
open.
Moved set_thread_uses_vas() code to vas_tx_win_open() as this
functionality is needed only for userspace open windows. We are adding
VAS userspace support along with this fix. So no need to include this
fix in stable releases.
Fixes: 9d2a4d7133 ("powerpc: Define set_thread_uses_vas()")
Signed-off-by: Haren Myneni <haren@linux.ibm.com>
Reported-by: Nicholas Piggin <npiggin@gmail.com>
Suggested-by: Milton Miller <miltonm@us.ibm.com>
Suggested-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1587017291.2275.1077.camel@hbabu-laptop
Implement the bulk of interrupt return logic in C. The asm return code
must handle a few cases: restoring full GPRs, and emulating stack
store.
The stack store emulation is significantly simplfied, rather than
creating a new return frame and switching to that before performing
the store, it uses the PACA to keep a scratch register around to
perform the store.
The asm return code is moved into 64e for now. The new logic has made
allowance for 64e, but I don't have a full environment that works well
to test it, and even booting in emulated qemu is not great for stress
testing. 64e shouldn't be too far off working with this, given a bit
more testing and auditing of the logic.
This is slightly faster on a POWER9 (page fault speed increases about
1.1%), probably due to reduced mtmsrd.
mpe: Includes fixes from Nick for _TIF_EMULATE_STACK_STORE
handling (including the fast_interrupt_return path), to remove
trace_hardirqs_on(), and fixes the interrupt-return part of the
MSR_VSX restore bug caught by tm-unavailable selftest.
mpe: Incorporate fix from Nick:
The return-to-kernel path has to replay any soft-pending interrupts if
it is returning to a context that had interrupts soft-enabled. It has
to do this carefully and avoid plain enabling interrupts if this is an
irq context, which can cause multiple nesting of interrupts on the
stack, and other unexpected issues.
The code which avoided this case got the soft-mask state wrong, and
marked interrupts as enabled before going around again to retry. This
seems to be mostly harmless except when PREEMPT=y, this calls
preempt_schedule_irq with irqs apparently enabled and runs into a BUG
in kernel/sched/core.c
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michal Suchanek <msuchanek@suse.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200225173541.1549955-29-npiggin@gmail.com
System call entry and particularly exit code is beyond the limit of
what is reasonable to implement in asm.
This conversion moves all conditional branches out of the asm code,
except for the case that all GPRs should be restored at exit.
Null syscall test is about 5% faster after this patch, because the
exit work is handled under local_irq_disable, and the hard mask and
pending interrupt replay is handled after that, which avoids games
with MSR.
mpe: Includes subsequent fixes from Nick:
This fixes 4 issues caught by TM selftests. First was a tm-syscall bug
that hit due to tabort_syscall being called after interrupts were
reconciled (in a subsequent patch), which led to interrupts being
enabled before tabort_syscall was called. Rather than going through an
un-reconciling interrupts for the return, I just go back to putting
the test early in asm, the C-ification of that wasn't a big win
anyway.
Second is the syscall return _TIF_USER_WORK_MASK check would go into
an infinite loop if _TIF_RESTORE_TM became set. The asm code uses
_TIF_USER_WORK_MASK to brach to slowpath which includes
restore_tm_state.
Third is system call return was not calling restore_tm_state, I missed
this completely (alhtough it's in the return from interrupt C
conversion because when the asm syscall code encountered problems it
would branch to the interrupt return code.
Fourth is MSR_VEC missing from restore_math, which was caught by
tm-unavailable selftest taking an unexpected facility unavailable
interrupt when testing VSX unavailble exception with MSR.FP=1
MSR.VEC=1. Fourth case also has a fixup in a subsequent patch.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michal Suchanek <msuchanek@suse.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200225173541.1549955-26-npiggin@gmail.com
H_PAGE_THP_HUGE is used to differentiate between a THP hugepage and
hugetlb hugepage entries. The difference is WRT how we handle hash
fault on these address. THP address enables MPSS in segments. We want
to manage devmap hugepage entries similar to THP pt entries. Hence use
H_PAGE_THP_HUGE for devmap huge PTE entries.
With current code while handling hash PTE fault, we do set is_thp =
true when finding devmap PTE huge PTE entries.
Current code also does the below sequence we setting up huge devmap
entries.
entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
if (pfn_t_devmap(pfn))
entry = pmd_mkdevmap(entry);
In that case we would find both H_PAGE_THP_HUGE and PAGE_DEVMAP set
for huge devmap PTE entries. This results in false positive error like
below.
kernel BUG at /home/kvaneesh/src/linux/mm/memory.c:4321!
Oops: Exception in kernel mode, sig: 5 [#1]
LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries
Modules linked in:
CPU: 56 PID: 67996 Comm: t_mmap_dio Not tainted 5.6.0-rc4-59640-g371c804dedbc #128
....
NIP [c00000000044c9e4] __follow_pte_pmd+0x264/0x900
LR [c0000000005d45f8] dax_writeback_one+0x1a8/0x740
Call Trace:
str_spec.74809+0x22ffb4/0x2d116c (unreliable)
dax_writeback_one+0x1a8/0x740
dax_writeback_mapping_range+0x26c/0x700
ext4_dax_writepages+0x150/0x5a0
do_writepages+0x68/0x180
__filemap_fdatawrite_range+0x138/0x180
file_write_and_wait_range+0xa4/0x110
ext4_sync_file+0x370/0x6e0
vfs_fsync_range+0x70/0xf0
sys_msync+0x220/0x2e0
system_call+0x5c/0x68
This is because our pmd_trans_huge check doesn't exclude _PAGE_DEVMAP.
To make this all consistent, update pmd_mkdevmap to set
H_PAGE_THP_HUGE and pmd_trans_huge check now excludes _PAGE_DEVMAP
correctly.
Fixes: ebd3119793 ("powerpc/mm: Add devmap support for ppc64")
Cc: stable@vger.kernel.org # v4.13+
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200313094842.351830-1-aneesh.kumar@linux.ibm.com
Pull powerpc updates from Michael Ellerman:
"A pretty small batch for us, and apologies for it being a bit late, I
wanted to sneak Christophe's user_access_begin() series in.
Summary:
- Implement user_access_begin() and friends for our platforms that
support controlling kernel access to userspace.
- Enable CONFIG_VMAP_STACK on 32-bit Book3S and 8xx.
- Some tweaks to our pseries IOMMU code to allow SVMs ("secure"
virtual machines) to use the IOMMU.
- Add support for CLOCK_{REALTIME/MONOTONIC}_COARSE to the 32-bit
VDSO, and some other improvements.
- A series to use the PCI hotplug framework to control opencapi
card's so that they can be reset and re-read after flashing a new
FPGA image.
As well as other minor fixes and improvements as usual.
Thanks to: Alastair D'Silva, Alexandre Ghiti, Alexey Kardashevskiy,
Andrew Donnellan, Aneesh Kumar K.V, Anju T Sudhakar, Bai Yingjie, Chen
Zhou, Christophe Leroy, Frederic Barrat, Greg Kurz, Jason A.
Donenfeld, Joel Stanley, Jordan Niethe, Julia Lawall, Krzysztof
Kozlowski, Laurent Dufour, Laurentiu Tudor, Linus Walleij, Michael
Bringmann, Nathan Chancellor, Nicholas Piggin, Nick Desaulniers,
Oliver O'Halloran, Peter Ujfalusi, Pingfan Liu, Ram Pai, Randy Dunlap,
Russell Currey, Sam Bobroff, Sebastian Andrzej Siewior, Shawn
Anastasio, Stephen Rothwell, Steve Best, Sukadev Bhattiprolu, Thiago
Jung Bauermann, Tyrel Datwyler, Vaibhav Jain"
* tag 'powerpc-5.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (131 commits)
powerpc: configs: Cleanup old Kconfig options
powerpc/configs/skiroot: Enable some more hardening options
powerpc/configs/skiroot: Disable xmon default & enable reboot on panic
powerpc/configs/skiroot: Enable security features
powerpc/configs/skiroot: Update for symbol movement only
powerpc/configs/skiroot: Drop default n CONFIG_CRYPTO_ECHAINIV
powerpc/configs/skiroot: Drop HID_LOGITECH
powerpc/configs: Drop NET_VENDOR_HP which moved to staging
powerpc/configs: NET_CADENCE became NET_VENDOR_CADENCE
powerpc/configs: Drop CONFIG_QLGE which moved to staging
powerpc: Do not consider weak unresolved symbol relocations as bad
powerpc/32s: Fix kasan_early_hash_table() for CONFIG_VMAP_STACK
powerpc: indent to improve Kconfig readability
powerpc: Provide initial documentation for PAPR hcalls
powerpc: Implement user_access_save() and user_access_restore()
powerpc: Implement user_access_begin and friends
powerpc/32s: Prepare prevent_user_access() for user_access_end()
powerpc/32s: Drop NULL addr verification
powerpc/kuap: Fix set direction in allow/prevent_user_access()
powerpc/32s: Fix bad_kuap_fault()
...
Patch series "Fixup page directory freeing", v4.
This is a repost of patch series from Peter with the arch specific changes
except ppc64 dropped. ppc64 changes are added here because we are redoing
the patch series on top of ppc64 changes. This makes it easy to backport
these changes. Only the first 2 patches need to be backported to stable.
The thing is, on anything SMP, freeing page directories should observe the
exact same order as normal page freeing:
1) unhook page/directory
2) TLB invalidate
3) free page/directory
Without this, any concurrent page-table walk could end up with a
Use-after-Free. This is esp. trivial for anything that has software
page-table walkers (HAVE_FAST_GUP / software TLB fill) or the hardware
caches partial page-walks (ie. caches page directories).
Even on UP this might give issues since mmu_gather is preemptible these
days. An interrupt or preempted task accessing user pages might stumble
into the free page if the hardware caches page directories.
This patch series fixes ppc64 and add generic MMU_GATHER changes to
support the conversion of other architectures. I haven't added patches
w.r.t other architecture because they are yet to be acked.
This patch (of 9):
A followup patch is going to make sure we correctly invalidate page walk
cache before we free page table pages. In order to keep things simple
enable RCU_TABLE_FREE even for !SMP so that we don't have to fixup the
!SMP case differently in the followup patch
!SMP case is right now broken for radix translation w.r.t page walk
cache flush. We can get interrupted in between page table free and
that would imply we have page walk cache entries pointing to tables
which got freed already. Michael said "both our platforms that run on
Power9 force SMP on in Kconfig, so the !SMP case is unlikely to be a
problem for anyone in practice, unless they've hacked their kernel to
build it !SMP."
Link: http://lkml.kernel.org/r/20200116064531.483522-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement user_access_save() and user_access_restore()
On 8xx and radix:
- On save, get the value of the associated special register then
prevent user access.
- On restore, set back the saved value to the associated special
register.
On book3s/32:
- On save, get the value stored in current->thread.kuap and prevent
user access.
- On restore, regenerate address range from the stored value and
reopen read/write access for that range.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/54f2f74938006b33c55a416674807b42ef222068.1579866752.git.christophe.leroy@c-s.fr
In preparation of implementing user_access_begin and friends
on powerpc, the book3s/32 version of prevent_user_access() need
to be prepared for user_access_end().
user_access_end() doesn't provide the address and size which
were passed to user_access_begin(), required by prevent_user_access()
to know which segment to modify.
The list of segments which where unprotected by allow_user_access()
are available in current->kuap. But we don't want prevent_user_access()
to read this all the time, especially everytime it is 0 (for instance
because the access was not a write access).
Implement a special direction named KUAP_CURRENT. In this case only,
the addr and end are retrieved from current->kuap.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/55bcc1f25d8200892a31f67a0b024ff3b816c3cc.1579866752.git.christophe.leroy@c-s.fr
At the moment, bad_kuap_fault() reports a fault only if a bad access
to userspace occurred while access to userspace was not granted.
But if a fault occurs for a write outside the allowed userspace
segment(s) that have been unlocked, bad_kuap_fault() fails to
detect it and the kernel loops forever in do_page_fault().
Fix it by checking that the accessed address is within the allowed
range.
Fixes: a68c31fc01 ("powerpc/32s: Implement Kernel Userspace Access Protection")
Cc: stable@vger.kernel.org # v5.2+
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/f48244e9485ada0a304ed33ccbb8da271180c80d.1579866752.git.christophe.leroy@c-s.fr
Commit 0034d395f8 ("powerpc/mm/hash64: Map all the kernel regions in
the same 0xc range") has a bug in the definition of MIN_USER_CONTEXT.
The result is that the context id used for the vmemmap and the lowest
context id handed out to userspace are the same. The context id is
essentially the process identifier as far as the first stage of the
MMU translation is concerned.
This can result in multiple SLB entries with the same VSID (Virtual
Segment ID), accessible to the kernel and some random userspace
process that happens to get the overlapping id, which is not expected
eg:
07 c00c000008000000 40066bdea7000500 1T ESID= c00c00 VSID= 66bdea7 LLP:100
12 0002000008000000 40066bdea7000d80 1T ESID= 200 VSID= 66bdea7 LLP:100
Even though the user process and the kernel use the same VSID, the
permissions in the hash page table prevent the user process from
reading or writing to any kernel mappings.
It can also lead to SLB entries with different base page size
encodings (LLP), eg:
05 c00c000008000000 00006bde0053b500 256M ESID=c00c00000 VSID= 6bde0053b LLP:100
09 0000000008000000 00006bde0053bc80 256M ESID= 0 VSID= 6bde0053b LLP: 0
Such SLB entries can result in machine checks, eg. as seen on a G5:
Oops: Machine check, sig: 7 [#1]
BE PAGE SIZE=64K MU-Hash SMP NR_CPUS=4 NUMA Power Mac
NIP: c00000000026f248 LR: c000000000295e58 CTR: 0000000000000000
REGS: c0000000erfd3d70 TRAP: 0200 Tainted: G M (5.5.0-rcl-gcc-8.2.0-00010-g228b667d8ea1)
MSR: 9000000000109032 <SF,HV,EE,ME,IR,DR,RI> CR: 24282048 XER: 00000000
DAR: c00c000000612c80 DSISR: 00000400 IRQMASK: 0
...
NIP [c00000000026f248] .kmem_cache_free+0x58/0x140
LR [c088000008295e58] .putname 8x88/0xa
Call Trace:
.putname+0xB8/0xa
.filename_lookup.part.76+0xbe/0x160
.do_faccessat+0xe0/0x380
system_call+0x5c/ex68
This happens with 256MB segments and 64K pages, as the duplicate VSID
is hit with the first vmemmap segment and the first user segment, and
older 32-bit userspace maps things in the first user segment.
On other CPUs a machine check is not seen. Instead the userspace
process can get stuck continuously faulting, with the fault never
properly serviced, due to the kernel not understanding that there is
already a HPTE for the address but with inaccessible permissions.
On machines with 1T segments we've not seen the bug hit other than by
deliberately exercising it. That seems to be just a matter of luck
though, due to the typical layout of the user virtual address space
and the ranges of vmemmap that are typically populated.
To fix it we add 2 to MIN_USER_CONTEXT. This ensures the lowest
context given to userspace doesn't overlap with the VMEMMAP context,
or with the context for INVALID_REGION_ID.
Fixes: 0034d395f8 ("powerpc/mm/hash64: Map all the kernel regions in the same 0xc range")
Cc: stable@vger.kernel.org # v5.2+
Reported-by: Christian Marillat <marillat@debian.org>
Reported-by: Romain Dolbeau <romain@dolbeau.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
[mpe: Account for INVALID_REGION_ID, mostly rewrite change log]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200123102547.11623-1-mpe@ellerman.id.au
Merge updates from Andrew Morton:
"Incoming:
- a small number of updates to scripts/, ocfs2 and fs/buffer.c
- most of MM
I still have quite a lot of material (mostly not MM) staged after
linux-next due to -next dependencies. I'll send those across next week
as the preprequisites get merged up"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (135 commits)
mm/page_io.c: annotate refault stalls from swap_readpage
mm/Kconfig: fix trivial help text punctuation
mm/Kconfig: fix indentation
mm/memory_hotplug.c: remove __online_page_set_limits()
mm: fix typos in comments when calling __SetPageUptodate()
mm: fix struct member name in function comments
mm/shmem.c: cast the type of unmap_start to u64
mm: shmem: use proper gfp flags for shmem_writepage()
mm/shmem.c: make array 'values' static const, makes object smaller
userfaultfd: require CAP_SYS_PTRACE for UFFD_FEATURE_EVENT_FORK
fs/userfaultfd.c: wp: clear VM_UFFD_MISSING or VM_UFFD_WP during userfaultfd_register()
userfaultfd: wrap the common dst_vma check into an inlined function
userfaultfd: remove unnecessary WARN_ON() in __mcopy_atomic_hugetlb()
userfaultfd: use vma_pagesize for all huge page size calculation
mm/madvise.c: use PAGE_ALIGN[ED] for range checking
mm/madvise.c: replace with page_size() in madvise_inject_error()
mm/mmap.c: make vma_merge() comment more easy to understand
mm/hwpoison-inject: use DEFINE_DEBUGFS_ATTRIBUTE to define debugfs fops
autonuma: reduce cache footprint when scanning page tables
autonuma: fix watermark checking in migrate_balanced_pgdat()
...
Patch series "hugetlbfs: convert macros to static inline, fix sparse
warning".
The definition for huge_pte_offset() in <linux/hugetlb.h> causes a
sparse warning in the !CONFIG_HUGETLB_PAGE. Fix this as well as
converting all macros in this block of definitions to static inlines for
better type checking.
When making the above changes, build errors were found in powerpc due to
duplicate definitions. A separate powerpc specific patch is included as
a requisite to remove the definitions and get them from
<linux/hugetlb.h>.
This patch (of 2):
This removes the power specific stubs created by commit aad71e3928
("powerpc/mm: Fix build break with RADIX=y & HUGETLBFS=n") used when
!CONFIG_HUGETLB_PAGE. Instead, it addresses the build break by getting
the definitions from <linux/hugetlb.h>. This allows the macros in
<linux/hugetlb.h> to be replaced with static inlines.
Link: http://lkml.kernel.org/r/20191112194558.139389-2-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Ben Dooks <ben.dooks@codethink.co.uk>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After merging the powerpc tree, today's linux-next build (powerpc64
allnoconfig) failed like this:
arch/powerpc/mm/book3s64/pgtable.c:216:3:
error: implicit declaration of function 'radix__flush_all_lpid_guest'
radix__flush_all_lpid_guest() is only declared for
CONFIG_PPC_RADIX_MMU which is not set for this build.
Fix it by adding an empty version for the RADIX_MMU=n case, which
should never be called.
Fixes: 99161de3a2 ("powerpc/64s/radix: tidy up TLB flushing code")
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
[mpe: Munge change log]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190930101342.36c1afa0@canb.auug.org.au
More libnvdimm updates from Dan Williams:
- Complete the reworks to interoperate with powerpc dynamic huge page
sizes
- Fix a crash due to missed accounting for the powerpc 'struct
page'-memmap mapping granularity
- Fix badblock initialization for volatile (DRAM emulated) pmem ranges
- Stop triggering request_key() notifications to userspace when
NVDIMM-security is disabled / not present
- Miscellaneous small fixups
* tag 'libnvdimm-fixes-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
libnvdimm/region: Enable MAP_SYNC for volatile regions
libnvdimm: prevent nvdimm from requesting key when security is disabled
libnvdimm/region: Initialize bad block for volatile namespaces
libnvdimm/nfit_test: Fix acpi_handle redefinition
libnvdimm/altmap: Track namespace boundaries in altmap
libnvdimm: Fix endian conversion issues
libnvdimm/dax: Pick the right alignment default when creating dax devices
powerpc/book3s64: Export has_transparent_hugepage() related functions.
Introduce two options to control the use of the tlbie instruction. A
boot time option which completely disables the kernel using the
instruction, this is currently incompatible with HASH MMU, KVM, and
coherent accelerators.
And a debugfs option can be switched at runtime and avoids using tlbie
for invalidating CPU TLBs for normal process and kernel address
mappings. Coherent accelerators are still managed with tlbie, as will
KVM partition scope translations.
Cross-CPU TLB flushing is implemented with IPIs and tlbiel. This is a
basic implementation which does not attempt to make any optimisation
beyond the tlbie implementation.
This is useful for performance testing among other things. For example
in certain situations on large systems, using IPIs may be faster than
tlbie as they can be directed rather than broadcast. Later we may also
take advantage of the IPIs to do more interesting things such as trim
the mm cpumask more aggressively.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190902152931.17840-7-npiggin@gmail.com
There should be no functional changes.
- Use calls to existing radix_tlb.c functions in flush_partition.
- Rename radix__flush_tlb_lpid to radix__flush_all_lpid and similar,
because they flush everything, matching flush_all_mm rather than
flush_tlb_mm for the lpid.
- Remove some unused radix_tlb.c flush primitives.
Signed-off: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190902152931.17840-3-npiggin@gmail.com
PPC32 and PPC64 are doing the same once SLAB is available.
Create a do_ioremap() function that calls get_vm_area and
do the mapping.
For PPC64, we add the 4K PFN hack sanity check to __ioremap_caller()
in order to avoid using __ioremap_at(). Other checks in __ioremap_at()
are irrelevant for __ioremap_caller().
On PPC64, VM area is allocated in the range [ioremap_bot ; IOREMAP_END]
On PPC32, VM area is allocated in the range [VMALLOC_START ; VMALLOC_END]
Lets define IOREMAP_START is ioremap_bot for PPC64, and alias
IOREMAP_START/END to VMALLOC_START/END on PPC32
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/42e7e36ad32e0fdf76692426cc642799c9f689b8.1566309263.git.christophe.leroy@c-s.fr