->lookup() in an encrypted directory begins as follows:
1. fscrypt_prepare_lookup():
a. Try to load the directory's encryption key.
b. If the key is unavailable, mark the dentry as a ciphertext name
via d_flags.
2. fscrypt_setup_filename():
a. Try to load the directory's encryption key.
b. If the key is available, encrypt the name (treated as a plaintext
name) to get the on-disk name. Otherwise decode the name
(treated as a ciphertext name) to get the on-disk name.
But if the key is concurrently added, it may be found at (2a) but not at
(1a). In this case, the dentry will be wrongly marked as a ciphertext
name even though it was actually treated as plaintext.
This will cause the dentry to be wrongly invalidated on the next lookup,
potentially causing problems. For example, if the racy ->lookup() was
part of sys_mount(), then the new mount will be detached when anything
tries to access it. This is despite the mountpoint having a plaintext
path, which should remain valid now that the key was added.
Of course, this is only possible if there's a userspace race. Still,
the additional kernel-side race is confusing and unexpected.
Close the kernel-side race by changing fscrypt_prepare_lookup() to also
set the on-disk filename (step 2b), consistent with the d_flags update.
Fixes: 28b4c26396 ("ext4 crypto: revalidate dentry after adding or removing the key")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Plaintext dentries are always valid, so only set fscrypt_d_ops on
ciphertext dentries.
Besides marginally improved performance, this allows overlayfs to use an
fscrypt-encrypted upperdir, provided that all the following are true:
(1) The fscrypt encryption key is placed in the keyring before
mounting overlayfs, and remains while the overlayfs is mounted.
(2) The overlayfs workdir uses the same encryption policy.
(3) No dentries for the ciphertext names of subdirectories have been
created in the upperdir or workdir yet. (Since otherwise
d_splice_alias() will reuse the old dentry with ->d_op set.)
One potential use case is using an ephemeral encryption key to encrypt
all files created or changed by a container, so that they can be
securely erased ("crypto-shredded") after the container stops.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Make __d_move() clear DCACHE_ENCRYPTED_NAME on the source dentry. This
is needed for when d_splice_alias() moves a directory's encrypted alias
to its decrypted alias as a result of the encryption key being added.
Otherwise, the decrypted alias will incorrectly be invalidated on the
next lookup, causing problems such as unmounting a mount the user just
mount()ed there.
Note that we don't have to support arbitrary moves of this flag because
fscrypt doesn't allow dentries with DCACHE_ENCRYPTED_NAME to be the
source or target of a rename().
Fixes: 28b4c26396 ("ext4 crypto: revalidate dentry after adding or removing the key")
Reported-by: Sarthak Kukreti <sarthakkukreti@chromium.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Close some race conditions where fscrypt allowed rename() and link() on
ciphertext dentries that had been looked up just prior to the key being
concurrently added. It's better to return -ENOKEY in this case.
This avoids doing the nonsensical thing of encrypting the names a second
time when searching for the actual on-disk dir entries. It also
guarantees that DCACHE_ENCRYPTED_NAME dentries are never rename()d, so
the dcache won't have support all possible combinations of moving
DCACHE_ENCRYPTED_NAME around during __d_move().
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Make various improvements to fscrypt dentry revalidation:
- Don't try to handle the case where the per-directory key is removed,
as this can't happen without the inode (and dentries) being evicted.
- Flag ciphertext dentries rather than plaintext dentries, since it's
ciphertext dentries that need the special handling.
- Avoid doing unnecessary work for non-ciphertext dentries.
- When revalidating ciphertext dentries, try to set up the directory's
i_crypt_info to make sure the key is really still absent, rather than
invalidating all negative dentries as the previous code did. An old
comment suggested we can't do this for locking reasons, but AFAICT
this comment was outdated and it actually works fine.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
In udf_lookup(), the pointer 'fi' is a local variable initialized by the
return value of the function call udf_find_entry(). However, if the macro
'UDF_RECOVERY' is defined, this variable will become uninitialized if the
else branch is not taken, which can potentially cause incorrect results in
the following execution.
To fix this issue, this patch drops the whole code in the ifdef
'UDF_RECOVERY' region, as it is dead code.
Signed-off-by: Wenwen Wang <wang6495@umn.edu>
Signed-off-by: Jan Kara <jack@suse.cz>
->i_crypt_info starts out NULL and may later be locklessly set to a
non-NULL value by the cmpxchg() in fscrypt_get_encryption_info().
But ->i_crypt_info is used directly, which technically is incorrect.
It's a data race, and it doesn't include the data dependency barrier
needed to safely dereference the pointer on at least one architecture.
Fix this by using READ_ONCE() instead. Note: we don't need to use
smp_load_acquire(), since dereferencing the pointer only requires a data
dependency barrier, which is already included in READ_ONCE(). We also
don't need READ_ONCE() in places where ->i_crypt_info is unconditionally
dereferenced, since it must have already been checked.
Also downgrade the cmpxchg() to cmpxchg_release(), since RELEASE
semantics are sufficient on the write side.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
If decrypting a block fails, fscrypt did a WARN_ON_ONCE(). But WARN is
meant for kernel bugs, which this isn't; this could be hit by fuzzers
using fault injection, for example. Also, there is already a proper
warning message logged in fscrypt_do_page_crypto(), so the WARN doesn't
add much.
Just remove the unnessary WARN.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
The only reason the inode is being passed to fscrypt_get_ctx() is to
verify that the encryption key is available. However, all callers
already ensure this because if we get as far as trying to do I/O to an
encrypted file without the key, there's already a bug.
Therefore, remove this unnecessary argument.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
It's possible for pagecache writeback to split up a large amount of work
into smaller pieces for throttling purposes or to reduce the amount of
time a writeback operation is pending. Whatever the reason, XFS can end
up with a bunch of IO completions that call for the same operation to be
performed on a contiguous extent mapping. Since mappings are extent
based in XFS, we'd prefer to run fewer transactions when we can.
When we're processing an ioend on the list of io completions, check to
see if the next items on the list are both adjacent and of the same
type. If so, we can merge the completions to reduce transaction
overhead.
On fast storage this doesn't seem to make much of a difference in
performance, though the number of transactions for an overnight xfstests
run seems to drop by ~5%.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
When scheduling writeback of dirty file data in the page cache, XFS uses
IO completion workqueue items to ensure that filesystem metadata only
updates after the write completes successfully. This is essential for
converting unwritten extents to real extents at the right time and
performing COW remappings.
Unfortunately, XFS queues each IO completion work item to an unbounded
workqueue, which means that the kernel can spawn dozens of threads to
try to handle the items quickly. These threads need to take the ILOCK
to update file metadata, which results in heavy ILOCK contention if a
large number of the work items target a single file, which is
inefficient.
Worse yet, the writeback completion threads get stuck waiting for the
ILOCK while holding transaction reservations, which can use up all
available log reservation space. When that happens, metadata updates to
other parts of the filesystem grind to a halt, even if the filesystem
could otherwise have handled it.
Even worse, if one of the things grinding to a halt happens to be a
thread in the middle of a defer-ops finish holding the same ILOCK and
trying to obtain more log reservation having exhausted the permanent
reservation, we now have an ABBA deadlock - writeback completion has a
transaction reserved and wants the ILOCK, and someone else has the ILOCK
and wants a transaction reservation.
Therefore, we create a per-inode writeback io completion queue + work
item. When writeback finishes, it can add the ioend to the per-inode
queue and let the single worker item process that queue. This
dramatically cuts down on the number of kworkers and ILOCK contention in
the system, and seems to have eliminated an occasional deadlock I was
seeing while running generic/476.
Testing with a program that simulates a heavy random-write workload to a
single file demonstrates that the number of kworkers drops from
approximately 120 threads per file to 1, without dramatically changing
write bandwidth or pagecache access latency.
Note that we leave the xfs-conv workqueue's max_active alone because we
still want to be able to run ioend processing for as many inodes as the
system can handle.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Skip cross-referencing with a btree if the health report tells us that
it's known to be bad. This should reduce the dmesg spew considerably.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Now that we have the ability to track sick metadata in-core, make scrub
and repair update those health assessments after doing work.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Now that we no longer memset the scrub context, we can move the
already_fixed variable into the scrub context's state flags instead of
passing around pointers to separate stack variables.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Combine all the boolean state flags in struct xfs_scrub into a single
unsigned int, because we're going to be adding more state flags soon.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
It's a little silly how the memset in scrub context initialization
forces us to declare stack variables to preserve context variables
across a retry. Since the teardown functions already null out most of
the ephemeral state (buffer pointers, btree cursors, etc.), just skip
the memset and move the initialization as needed.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
In the oplock break handler, writing pending changes from pages puts
the FileInfo handle. If the refcount reaches zero it closes the handle
and waits for any oplock break handler to return, thus causing a deadlock.
To prevent this situation:
* We add a wait flag to cifsFileInfo_put() to decide whether we should
wait for running/pending oplock break handlers
* We keep an additionnal reference of the SMB FileInfo handle so that
for the rest of the handler putting the handle won't close it.
- The ref is bumped everytime we queue the handler via the
cifs_queue_oplock_break() helper.
- The ref is decremented at the end of the handler
This bug was triggered by xfstest 464.
Also important fix to address the various reports of
oops in smb2_push_mandatory_locks
Signed-off-by: Aurelien Aptel <aaptel@suse.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
Reviewed-by: Pavel Shilovsky <pshilov@microsoft.com>
CC: Stable <stable@vger.kernel.org>
If we enter smb2_query_symlink() for something that is not a symlink
and where the SMB2_open() would succeed we would never end up
closing this handle and would thus leak a handle on the server.
Fix this by immediately calling SMB2_close() on successfull open.
Signed-off-by: Ronnie Sahlberg <lsahlber@redhat.com>
CC: Stable <stable@vger.kernel.org>
Signed-off-by: Steve French <stfrench@microsoft.com>
Reviewed-by: Pavel Shilovsky <pshilov@microsoft.com>
There is a KASAN slab-out-of-bounds:
BUG: KASAN: slab-out-of-bounds in _copy_from_iter_full+0x783/0xaa0
Read of size 80 at addr ffff88810c35e180 by task mount.cifs/539
CPU: 1 PID: 539 Comm: mount.cifs Not tainted 4.19 #10
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack+0xdd/0x12a
print_address_description+0xa7/0x540
kasan_report+0x1ff/0x550
check_memory_region+0x2f1/0x310
memcpy+0x2f/0x80
_copy_from_iter_full+0x783/0xaa0
tcp_sendmsg_locked+0x1840/0x4140
tcp_sendmsg+0x37/0x60
inet_sendmsg+0x18c/0x490
sock_sendmsg+0xae/0x130
smb_send_kvec+0x29c/0x520
__smb_send_rqst+0x3ef/0xc60
smb_send_rqst+0x25a/0x2e0
compound_send_recv+0x9e8/0x2af0
cifs_send_recv+0x24/0x30
SMB2_open+0x35e/0x1620
open_shroot+0x27b/0x490
smb2_open_op_close+0x4e1/0x590
smb2_query_path_info+0x2ac/0x650
cifs_get_inode_info+0x1058/0x28f0
cifs_root_iget+0x3bb/0xf80
cifs_smb3_do_mount+0xe00/0x14c0
cifs_do_mount+0x15/0x20
mount_fs+0x5e/0x290
vfs_kern_mount+0x88/0x460
do_mount+0x398/0x31e0
ksys_mount+0xc6/0x150
__x64_sys_mount+0xea/0x190
do_syscall_64+0x122/0x590
entry_SYSCALL_64_after_hwframe+0x44/0xa9
It can be reproduced by the following step:
1. samba configured with: server max protocol = SMB2_10
2. mount -o vers=default
When parse the mount version parameter, the 'ops' and 'vals'
was setted to smb30, if negotiate result is smb21, just
update the 'ops' to smb21, but the 'vals' is still smb30.
When add lease context, the iov_base is allocated with smb21
ops, but the iov_len is initiallited with the smb30. Because
the iov_len is longer than iov_base, when send the message,
copy array out of bounds.
we need to keep the 'ops' and 'vals' consistent.
Fixes: 9764c02fcb ("SMB3: Add support for multidialect negotiate (SMB2.1 and later)")
Fixes: d5c7076b77 ("smb3: add smb3.1.1 to default dialect list")
Signed-off-by: ZhangXiaoxu <zhangxiaoxu5@huawei.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
CC: Stable <stable@vger.kernel.org>
Reviewed-by: Pavel Shilovsky <pshilov@microsoft.com>
There is a KASAN use-after-free:
BUG: KASAN: use-after-free in SMB2_read+0x1136/0x1190
Read of size 8 at addr ffff8880b4e45e50 by task ln/1009
Should not release the 'req' because it will use in the trace.
Fixes: eccb4422cf ("smb3: Add ftrace tracepoints for improved SMB3 debugging")
Signed-off-by: ZhangXiaoxu <zhangxiaoxu5@huawei.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
CC: Stable <stable@vger.kernel.org> 4.18+
Reviewed-by: Pavel Shilovsky <pshilov@microsoft.com>
There is a KASAN use-after-free:
BUG: KASAN: use-after-free in SMB2_write+0x1342/0x1580
Read of size 8 at addr ffff8880b6a8e450 by task ln/4196
Should not release the 'req' because it will use in the trace.
Fixes: eccb4422cf ("smb3: Add ftrace tracepoints for improved SMB3 debugging")
Signed-off-by: ZhangXiaoxu <zhangxiaoxu5@huawei.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
CC: Stable <stable@vger.kernel.org> 4.18+
Reviewed-by: Pavel Shilovsky <pshilov@microsoft.com>
Pull fsdax fix from Dan Williams:
"A single filesystem-dax fix. It has been lingering in -next for a long
while and there are no other fsdax fixes on the horizon:
- Avoid a crash scenario with architectures like powerpc that require
'pgtable_deposit' for the zero page"
* tag 'fsdax-fix-5.1-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
fs/dax: Deposit pagetable even when installing zero page
If we have multiple threads, one doing io_uring_enter() while the other
is doing io_uring_register(), we can run into a deadlock between the
two. io_uring_register() must wait for existing users of the io_uring
instance to exit. But it does so while holding the io_uring mutex.
Callers of io_uring_enter() may need this mutex to make progress (and
eventually exit). If we wait for users to exit in io_uring_register(),
we can't do so with the io_uring mutex held without potentially risking
a deadlock.
Drop the io_uring mutex while waiting for existing callers to exit. This
is safe and guaranteed to make forward progress, since we already killed
the percpu ref before doing so. Hence later callers of io_uring_enter()
will be rejected.
Reported-by: syzbot+16dc03452dee970a0c3e@syzkaller.appspotmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This fixes the -WDecl sparse warning in journal.c. Function was declared
as static void but the definition was void.
Signed-off-by: Bharath Vedartham <linux.bhar@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Use space in the bulkstat ioctl structure to report any problems
observed with the inode.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Use our newly expanded geometry structure to report the overall fs and
realtime health status.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Unfortunately, the V4 XFS_IOC_FSGEOMETRY structure is out of space so we
can't just add a new field to it. Hence we need to bump the definition
to V5 and and treat the V4 ioctl and structure similar to v1 to v3.
While doing this, clean up all the definitions associated with the
XFS_IOC_FSGEOMETRY ioctl.
Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: forward port to 5.1, expand structure size to 256 bytes]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
If we know the filesystem metadata isn't healthy during unmount, we want
to encourage the administrator to run xfs_repair right away. We can't
do this if BAD_SUMMARY will cause an unclean log unmount to force
summary recalculation, so turn it off if the fs is bad.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Replace the BAD_SUMMARY mount flag with calls to the equivalent health
tracking code.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Add the necessary in-core metadata fields to keep track of which parts
of the filesystem have been observed and which parts were observed to be
unhealthy, and print a warning at unmount time if we have unfixed
problems.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
This patch tries to address two problems:
1) return @minlen we used to trim to
user space.
2) return EINVAL if granularity is larger than
avg size, even most of cases, granularity is small(4K),
but if devices return a lager granularity for some reaons
(testing, bugs etc), fstrim should return failure directly.
Signed-off-by: Wang Shilong <wshilong@ddn.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The block allocation AG selection code has parameters that allow a
caller to perform multiple allocations from a single AG and
transaction (under certain conditions). The parameters specify the
total block allocation count required by the transaction and the AG
selection code selects and locks an AG that will be able to satisfy
the overall requirement. If the available block accounting
calculation turns out to be inaccurate and a subsequent allocation
call fails with -ENOSPC, the resulting transaction cancel leads to
filesystem shutdown because the transaction is dirty.
This exact problem can be reproduced with a highly parallel space
consumer and fsstress workload running long enough to a large
filesystem against -ENOSPC conditions. A bmbt block allocation
request made for inode extent to bmap format conversion after an
extent allocation is expected to be satisfied by the same AG and the
same transaction as the extent allocation. The bmbt block allocation
fails, however, because the block availability of the AG has changed
since the AG was selected (outside of the blocks used for the extent
itself).
The inconsistent block availability calculation is caused by the
deferred block freeing behavior of the AGFL. This immediately
removes extra blocks from the AGFL to free up AGFL slots, but rather
than immediately freeing such blocks as was done in the past, the
block free is deferred such that said blocks are not available for
allocation until the current transaction commits. The AG selection
logic currently considers all AGFL blocks as available and executes
shortly before any extra AGFL blocks are freed. This means the block
availability of the current AG can change before the first
allocation even occurs, but in practice a failure is more likely to
manifest via a subsequent allocation because extent allocation
usually has a contiguity requirement larger than a single block that
can't be satisfied from the AGFL.
In general, XFS prefers operational robustness to absolute
allocation efficiency. In other words, we prefer to return -ENOSPC
slightly earlier at the expense of not being able to allocate every
last block in an AG to avoid this kind of problem. As such, update
the AG block availability calculation to consider extra AGFL blocks
as unavailable since they are immediately removed following the
calculation and will not become available until the current
transaction commits.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
If xfs_iflush_cluster() fails due to corruption, the error path
issues a shutdown and simulates an I/O completion to release the
buffer. This code has a couple small problems. First, the shutdown
sequence can issue a synchronous log force, which is unsafe to do
with buffer locks held. Second, the simulated I/O completion does not
guarantee the buffer is async and thus is unlocked and released.
For example, if the last operation on the buffer was a read off disk
prior to the corruption event, XBF_ASYNC is not set and the buffer
is left locked and held upon return. This results in a memory leak
as shown by the following message on module unload:
BUG xfs_buf (...): Objects remaining in xfs_buf on __kmem_cache_shutdown()
Fix both of these problems by setting XBF_ASYNC on the buffer prior
to the simulated I/O error and performing the shutdown immediately
after ioend processing when the buffer has been released.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
XFS shutdown deadlocks have been reproduced by fstest generic/475.
The deadlock signature involves log I/O completion running error
handling to abort logged items and waiting for an inode cluster
buffer lock in the buffer item unpin handler. The buffer lock is
held by xfsaild attempting to flush an inode. The buffer happens to
be pinned and so xfs_iflush() triggers an async log force to begin
work required to get it unpinned. The log force is blocked waiting
on the commit completion, which never occurs and thus leaves the
filesystem deadlocked.
The root problem is that aborted log I/O completion pots commit
completion behind callback completion, which is unexpected for async
log forces. Under normal running conditions, an async log force
returns to the caller once the CIL ctx has been formatted/submitted
and the commit completion event triggered at the tail end of
xlog_cil_push(). If the filesystem has shutdown, however, we rely on
xlog_cil_committed() to trigger the completion event and it happens
to do so after running log item unpin callbacks. This makes it
unsafe to invoke an async log force from contexts that hold locks
that might also be required in log completion processing.
To address this problem, wake commit completion waiters before
aborting log items in the log I/O completion handler. This ensures
that an async log force will not deadlock on held locks if the
filesystem happens to shutdown. Note that it is still unsafe to
issue a sync log force while holding such locks because a sync log
force explicitly waits on the force completion, which occurs after
log I/O completion processing.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The xfs_buf_log_item ->iop_unlock() callback asserts that the buffer
is unlocked when either non-stale or aborted. This assert occurs
after the bli refcount has been dropped and the log item potentially
freed. The aborted check is thus a potential use after free. This
problem has been reproduced with KASAN enabled via generic/475.
Fix up xfs_buf_item_unlock() to query aborted state before the bli
reference is dropped to prevent a potential use after free.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Merge page ref overflow branch.
Jann Horn reported that he can overflow the page ref count with
sufficient memory (and a filesystem that is intentionally extremely
slow).
Admittedly it's not exactly easy. To have more than four billion
references to a page requires a minimum of 32GB of kernel memory just
for the pointers to the pages, much less any metadata to keep track of
those pointers. Jann needed a total of 140GB of memory and a specially
crafted filesystem that leaves all reads pending (in order to not ever
free the page references and just keep adding more).
Still, we have a fairly straightforward way to limit the two obvious
user-controllable sources of page references: direct-IO like page
references gotten through get_user_pages(), and the splice pipe page
duplication. So let's just do that.
* branch page-refs:
fs: prevent page refcount overflow in pipe_buf_get
mm: prevent get_user_pages() from overflowing page refcount
mm: add 'try_get_page()' helper function
mm: make page ref count overflow check tighter and more explicit
Change pipe_buf_get() to return a bool indicating whether it succeeded
in raising the refcount of the page (if the thing in the pipe is a page).
This removes another mechanism for overflowing the page refcount. All
callers converted to handle a failure.
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since the fget/fput handling was reworked in commit 09bb839434, we
never call io_file_put() with state == NULL (and hence file != NULL)
anymore. Remove that case.
Reported-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We currently call cpu_possible() even if we don't use the CPU. Move the
test under the SQ_AFF branch, which is the only place where we'll use
the value. Do the cpu_possible() test AFTER we've limited it to a max
of NR_CPUS. This avoids triggering the following warning:
WARNING: CPU: 1 PID: 7600 at include/linux/cpumask.h:121 cpu_max_bits_warn
if CONFIG_DEBUG_PER_CPU_MAPS is enabled.
While in there, also move the SQ thread idle period assignment inside
SETUP_SQPOLL, as we don't use it otherwise either.
Reported-by: syzbot+cd714a07c6de2bc34293@syzkaller.appspotmail.com
Fixes: 6c271ce2f1 ("io_uring: add submission polling")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Pull block fixes from Jens Axboe:
"Set of fixes that should go into this round. This pull is larger than
I'd like at this time, but there's really no specific reason for that.
Some are fixes for issues that went into this merge window, others are
not. Anyway, this contains:
- Hardware queue limiting for virtio-blk/scsi (Dongli)
- Multi-page bvec fixes for lightnvm pblk
- Multi-bio dio error fix (Jason)
- Remove the cache hint from the io_uring tool side, since we didn't
move forward with that (me)
- Make io_uring SETUP_SQPOLL root restricted (me)
- Fix leak of page in error handling for pc requests (Jérôme)
- Fix BFQ regression introduced in this merge window (Paolo)
- Fix break logic for bio segment iteration (Ming)
- Fix NVMe cancel request error handling (Ming)
- NVMe pull request with two fixes (Christoph):
- fix the initial CSN for nvme-fc (James)
- handle log page offsets properly in the target (Keith)"
* tag 'for-linus-20190412' of git://git.kernel.dk/linux-block:
block: fix the return errno for direct IO
nvmet: fix discover log page when offsets are used
nvme-fc: correct csn initialization and increments on error
block: do not leak memory in bio_copy_user_iov()
lightnvm: pblk: fix crash in pblk_end_partial_read due to multipage bvecs
nvme: cancel request synchronously
blk-mq: introduce blk_mq_complete_request_sync()
scsi: virtio_scsi: limit number of hw queues by nr_cpu_ids
virtio-blk: limit number of hw queues by nr_cpu_ids
block, bfq: fix use after free in bfq_bfqq_expire
io_uring: restrict IORING_SETUP_SQPOLL to root
tools/io_uring: remove IOCQE_FLAG_CACHEHIT
block: don't use for-inside-for in bio_for_each_segment_all
Pull NFS client bugfixes from Trond Myklebust:
"Highlights include:
Stable fix:
- Fix a deadlock in close() due to incorrect draining of RDMA queues
Bugfixes:
- Revert "SUNRPC: Micro-optimise when the task is known not to be
sleeping" as it is causing stack overflows
- Fix a regression where NFSv4 getacl and fs_locations stopped
working
- Forbid setting AF_INET6 to "struct sockaddr_in"->sin_family.
- Fix xfstests failures due to incorrect copy_file_range() return
values"
* tag 'nfs-for-5.1-4' of git://git.linux-nfs.org/projects/trondmy/linux-nfs:
Revert "SUNRPC: Micro-optimise when the task is known not to be sleeping"
NFSv4.1 fix incorrect return value in copy_file_range
xprtrdma: Fix helper that drains the transport
NFS: Fix handling of reply page vector
NFS: Forbid setting AF_INET6 to "struct sockaddr_in"->sin_family.
The in-kernel afs filesystem client counts the number of server-level
callback invalidation events (CB.InitCallBackState* RPC operations) that it
receives from the server. This is stored in cb_s_break in various
structures, including afs_server and afs_vnode.
If an inode is examined by afs_validate(), say, the afs_server copy is
compared, along with other break counters, to those in afs_vnode, and if
one or more of the counters do not match, it is considered that the
server's callback promise is broken. At points where this happens,
AFS_VNODE_CB_PROMISED is cleared to indicate that the status must be
refetched from the server.
afs_validate() issues an FS.FetchStatus operation to get updated metadata -
and based on the updated data_version may invalidate the pagecache too.
However, the break counters are also used to determine whether to note a
new callback in the vnode (which would set the AFS_VNODE_CB_PROMISED flag)
and whether to cache the permit data included in the YFSFetchStatus record
by the server.
The problem comes when the server sends us a CB.InitCallBackState op. The
first such instance doesn't cause cb_s_break to be incremented, but rather
causes AFS_SERVER_FL_NEW to be cleared - but thereafter, say some hours
after last use and all the volumes have been automatically unmounted and
the server has forgotten about the client[*], this *will* likely cause an
increment.
[*] There are other circumstances too, such as the server restarting or
needing to make space in its callback table.
Note that the server won't send us a CB.InitCallBackState op until we talk
to it again.
So what happens is:
(1) A mount for a new volume is attempted, a inode is created for the root
vnode and vnode->cb_s_break and AFS_VNODE_CB_PROMISED aren't set
immediately, as we don't have a nominated server to talk to yet - and
we may iterate through a few to find one.
(2) Before the operation happens, afs_fetch_status(), say, notes in the
cursor (fc.cb_break) the break counter sum from the vnode, volume and
server counters, but the server->cb_s_break is currently 0.
(3) We send FS.FetchStatus to the server. The server sends us back
CB.InitCallBackState. We increment server->cb_s_break.
(4) Our FS.FetchStatus completes. The reply includes a callback record.
(5) xdr_decode_AFSCallBack()/xdr_decode_YFSCallBack() check to see whether
the callback promise was broken by checking the break counter sum from
step (2) against the current sum.
This fails because of step (3), so we don't set the callback record
and, importantly, don't set AFS_VNODE_CB_PROMISED on the vnode.
This does not preclude the syscall from progressing, and we don't loop here
rechecking the status, but rather assume it's good enough for one round
only and will need to be rechecked next time.
(6) afs_validate() it triggered on the vnode, probably called from
d_revalidate() checking the parent directory.
(7) afs_validate() notes that AFS_VNODE_CB_PROMISED isn't set, so doesn't
update vnode->cb_s_break and assumes the vnode to be invalid.
(8) afs_validate() needs to calls afs_fetch_status(). Go back to step (2)
and repeat, every time the vnode is validated.
This primarily affects volume root dir vnodes. Everything subsequent to
those inherit an already incremented cb_s_break upon mounting.
The issue is that we assume that the callback record and the cached permit
information in a reply from the server can't be trusted after getting a
server break - but this is wrong since the server makes sure things are
done in the right order, holding up our ops if necessary[*].
[*] There is an extremely unlikely scenario where a reply from before the
CB.InitCallBackState could get its delivery deferred till after - at
which point we think we have a promise when we don't. This, however,
requires unlucky mass packet loss to one call.
AFS_SERVER_FL_NEW tries to paper over the cracks for the initial mount from
a server we've never contacted before, but this should be unnecessary.
It's also further insulated from the problem on an initial mount by
querying the server first with FS.GetCapabilities, which triggers the
CB.InitCallBackState.
Fix this by
(1) Remove AFS_SERVER_FL_NEW.
(2) In afs_calc_vnode_cb_break(), don't include cb_s_break in the
calculation.
(3) In afs_cb_is_broken(), don't include cb_s_break in the check.
Signed-off-by: David Howells <dhowells@redhat.com>
__pagevec_release() complains loudly if any page in the vector is still
locked. The pages need to be locked for generic_error_remove_page(), but
that function doesn't actually unlock them.
Unlock the pages afterwards.
Signed-off-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Jonathan Billings <jsbillin@umich.edu>