Pull perf fixes from Thomas Gleixner:
"Another pile of fixes for perf:
- Plug overflows and races in the core code
- Sanitize the flow of the perf syscall so we error out before
handling the more complex and hard to undo setups
- Improve and fix Broadwell and Skylake hardware support
- Revert a fix which broke what it tried to fix in perf tools
- A couple of smaller fixes in various places of perf tools"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf tools: Fix copying of /proc/kcore
perf intel-pt: Remove no_force_psb from documentation
perf probe: Use existing routine to look for a kernel module by dso->short_name
perf/x86: Change test_aperfmperf() and test_intel() to static
tools lib traceevent: Fix string handling in heterogeneous arch environments
perf record: Avoid infinite loop at buildid processing with no samples
perf: Fix races in computing the header sizes
perf: Fix u16 overflows
perf: Restructure perf syscall point of no return
perf/x86/intel: Fix Skylake FRONTEND MSR extrareg mask
perf/x86/intel/pebs: Add PEBS frontend profiling for Skylake
perf/x86/intel: Make the CYCLE_ACTIVITY.* constraint on Broadwell more specific
perf tools: Bool functions shouldn't return -1
tools build: Add test for presence of __get_cpuid() gcc builtin
tools build: Add test for presence of numa_num_possible_cpus() in libnuma
Revert "perf symbols: Fix mismatched declarations for elf_getphdrnum"
perf stat: Fix per-pkg event reporting bug
PARAVIRT_ADJUST_EXCEPTION_FRAME generates this code (using nmi as an
example, trimmed for readability):
ff 15 00 00 00 00 callq *0x0(%rip) # 2796 <nmi+0x6>
2792: R_X86_64_PC32 pv_irq_ops+0x2c
That's a call through a function pointer to regular C function that
does nothing on native boots, but that function isn't protected
against kprobes, isn't marked notrace, and is certainly not
guaranteed to preserve any registers if the compiler is feeling
perverse. This is bad news for a CLBR_NONE operation.
Of course, if everything works correctly, once paravirt ops are
patched, it gets nopped out, but what if we hit this code before
paravirt ops are patched in? This can potentially cause breakage
that is very difficult to debug.
A more subtle failure is possible here, too: if _paravirt_nop uses
the stack at all (even just to push RBP), it will overwrite the "NMI
executing" variable if it's called in the NMI prologue.
The Xen case, perhaps surprisingly, is fine, because it's already
written in asm.
Fix all of the cases that default to paravirt_nop (including
adjust_exception_frame) with a big hammer: replace paravirt_nop with
an asm function that is just a ret instruction.
The Xen case may have other problems, so document them.
This is part of a fix for some random crashes that Sasha saw.
Reported-and-tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/8f5d2ba295f9d73751c33d97fda03e0495d9ade0.1442791737.git.luto@kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull irq updates from Thomas Gleixner:
"This is a rather large update post rc1 due to the final steps of
cleanups and API changes which had to wait for the preparatory patches
to hit your tree.
- Regression fixes for ARM GIC irqchips
- Regression fixes and lockdep anotations for renesas irq chips
- The leftovers of the cleanup and preparatory patches which have
been ignored by maintainers
- Final conversions of the newly merged users of obsolete APIs
- Final removal of obsolete APIs
- Final removal of ARM artifacts which had been introduced during the
conversion of ARM to the generic interrupt code.
- Final split of the irq_data into chip specific and common data to
reflect the needs of hierarchical irq domains.
- Treewide removal of the first argument of interrupt flow handlers,
i.e. the irq number, which is not used by the majority of handlers
and simple to retrieve from the other argument the irq descriptor.
- A few comment updates and build warning fixes"
* 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits)
arm64: Remove ununsed set_irq_flags
ARM: Remove ununsed set_irq_flags
sh: Kill off set_irq_flags usage
irqchip: Kill off set_irq_flags usage
gpu/drm: Kill off set_irq_flags usage
genirq: Remove irq argument from irq flow handlers
genirq: Move field 'msi_desc' from irq_data into irq_common_data
genirq: Move field 'affinity' from irq_data into irq_common_data
genirq: Move field 'handler_data' from irq_data into irq_common_data
genirq: Move field 'node' from irq_data into irq_common_data
irqchip/gic-v3: Use IRQD_FORWARDED_TO_VCPU flag
irqchip/gic: Use IRQD_FORWARDED_TO_VCPU flag
genirq: Provide IRQD_FORWARDED_TO_VCPU status flag
genirq: Simplify irq_data_to_desc()
genirq: Remove __irq_set_handler_locked()
pinctrl/pistachio: Use irq_set_handler_locked
gpio: vf610: Use irq_set_handler_locked
powerpc/mpc8xx: Use irq_set_handler_locked()
powerpc/ipic: Use irq_set_handler_locked()
powerpc/cpm2: Use irq_set_handler_locked()
...
Pull x86 fix from Thomas Gleixner:
"A single regression fix for the x86 dma allocator which got wreckaged
in the merge window"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pci/dma: Fix gfp flags for coherent DMA memory allocation
The counter constraint for CYCLE_ACTIVITY.* on Broadwell covered
all CYCLE_ACTIVITY.* sub events, and forced them on counter 2.
But actually only one sub event (umask 8) needs to be on counter 2,
all others do not have any constraint.
Only force that subevent. This fixes groups with multiple
CYCLE_ACTIVITY.* events, for example:
% perf stat -x, -e '{cpu/event=0xa3,umask=0x6,cmask=6/,\
cpu/event=0xa2,umask=0x8/,\
cpu/event=0xa3,umask=0x4,cmask=4/,cpu/event=0xb1,umask=0x1,cmask=1/}' true
122150,,cpu/event=0xa3,umask=0x6,cmask=6/,846486,100.00
16483,,cpu/event=0xa2,umask=0x8/,846486,100.00
252280,,cpu/event=0xa3,umask=0x4,cmask=4/,846486,100.00
233604,,cpu/event=0xb1,umask=0x1,cmask=1/,846486,100.00
%
Without this patch the third result would be <unsupported>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1442267222-16464-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Ingo Molnar:
- misc fixes all around the map
- block non-root vm86(old) if mmap_min_addr != 0
- two small debuggability improvements
- removal of obsolete paravirt op
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/platform: Fix Geode LX timekeeping in the generic x86 build
x86/apic: Serialize LVTT and TSC_DEADLINE writes
x86/ioapic: Force affinity setting in setup_ioapic_dest()
x86/paravirt: Remove the unused pv_time_ops::get_tsc_khz method
x86/ldt: Fix small LDT allocation for Xen
x86/vm86: Fix the misleading CONFIG_VM86 Kconfig help text
x86/cpu: Print family/model/stepping in hex
x86/vm86: Block non-root vm86(old) if mmap_min_addr != 0
x86/alternatives: Make optimize_nops() interrupt safe and synced
x86/mm/srat: Print non-volatile flag in SRAT
x86/cpufeatures: Enable cpuid for Intel SHA extensions
Pull perf fixes from Ingo MOlnar:
"Mostly tooling fixes, but also two x86 PMU driver fixes"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf tests: Fix software clock events test setting maps
perf tests: Fix task exit test setting maps
perf evlist: Fix create_syswide_maps() not propagating maps
perf evlist: Fix add() not propagating maps
perf evlist: Factor out a function to propagate maps for a single evsel
perf evlist: Make create_maps() use set_maps()
perf evlist: Make set_maps() more resilient
perf evsel: Add own_cpus member
perf evlist: Fix missing thread_map__put in propagate_maps()
perf evlist: Fix splice_list_tail() not setting evlist
perf evlist: Add has_user_cpus member
perf evlist: Remove redundant validation from propagate_maps()
perf evlist: Simplify set_maps() logic
perf evlist: Simplify propagate_maps() logic
perf top: Fix segfault pressing -> with no hist entries
perf header: Fixup reading of HEADER_NRCPUS feature
perf/x86/intel: Fix constraint access
perf/x86/intel/bts: Set event->hw.itrace_started in pmu::start to match the new logic
perf tools: Fix use of wrong event when processing exit events
perf tools: Fix parse_events_add_pmu caller
Most interrupt flow handlers do not use the irq argument. Those few
which use it can retrieve the irq number from the irq descriptor.
Remove the argument.
Search and replace was done with coccinelle and some extra helper
scripts around it. Thanks to Julia for her help!
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Julia Lawall <Julia.Lawall@lip6.fr>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
The APIC LVTT register is MMIO mapped but the TSC_DEADLINE register is an
MSR. The write to the TSC_DEADLINE MSR is not serializing, so it's not
guaranteed that the write to LVTT has reached the APIC before the
TSC_DEADLINE MSR is written. In such a case the write to the MSR is
ignored and as a consequence the local timer interrupt never fires.
The SDM decribes this issue for xAPIC and x2APIC modes. The
serialization methods recommended by the SDM differ.
xAPIC:
"1. Memory-mapped write to LVT Timer Register, setting bits 18:17 to 10b.
2. WRMSR to the IA32_TSC_DEADLINE MSR a value much larger than current time-stamp counter.
3. If RDMSR of the IA32_TSC_DEADLINE MSR returns zero, go to step 2.
4. WRMSR to the IA32_TSC_DEADLINE MSR the desired deadline."
x2APIC:
"To allow for efficient access to the APIC registers in x2APIC mode,
the serializing semantics of WRMSR are relaxed when writing to the
APIC registers. Thus, system software should not use 'WRMSR to APIC
registers in x2APIC mode' as a serializing instruction. Read and write
accesses to the APIC registers will occur in program order. A WRMSR to
an APIC register may complete before all preceding stores are globally
visible; software can prevent this by inserting a serializing
instruction, an SFENCE, or an MFENCE before the WRMSR."
The xAPIC method is to just wait for the memory mapped write to hit
the LVTT by checking whether the MSR write has reached the hardware.
There is no reason why a proper MFENCE after the memory mapped write would
not do the same. Andi Kleen confirmed that MFENCE is sufficient for the
xAPIC case as well.
Issue MFENCE before writing to the TSC_DEADLINE MSR. This can be done
unconditionally as all CPUs which have TSC_DEADLINE also have MFENCE
support.
[ tglx: Massaged the changelog ]
Signed-off-by: Shaohua Li <shli@fb.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: <Kernel-team@fb.com>
Cc: <lenb@kernel.org>
Cc: <fenghua.yu@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: stable@vger.kernel.org #v3.7+
Link: http://lkml.kernel.org/r/20150909041352.GA2059853@devbig257.prn2.facebook.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The recent ioapic cleanups changed the affinity setting in
setup_ioapic_dest() from a direct write to the hardware to the delayed
affinity setup via irq_set_affinity().
That results in a warning from chained_irq_exit():
WARNING: CPU: 0 PID: 5 at kernel/irq/migration.c:32 irq_move_masked_irq
[<ffffffff810a0a88>] irq_move_masked_irq+0xb8/0xc0
[<ffffffff8103c161>] ioapic_ack_level+0x111/0x130
[<ffffffff812bbfe8>] intel_gpio_irq_handler+0x148/0x1c0
The reason is that irq_set_affinity() does not write directly to the
hardware. It marks the affinity setting as pending and executes it
from the next interrupt. The chained handler infrastructure does not
take the irq descriptor lock for performance reasons because such a
chained interrupt is not visible to any interfaces. So the delayed
affinity setting triggers the warning in irq_move_masked_irq().
Restore the old behaviour by calling the set_affinity function of the
ioapic chip in setup_ioapic_dest(). This is safe as none of the
interrupts can be on the fly at this point.
Fixes: aa5cb97f14 'x86/irq: Remove x86_io_apic_ops.set_affinity and related interfaces'
Reported-and-tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: jarkko.nikula@linux.intel.com
The xstate CPUID leaves enumerate where each state component is
inside the XSAVE buffer, along with the size of the entire
buffer. Our new XSAVE sanity-checking code extrapolates an
expected _total_ buffer size by looking at the last component
that it encounters.
That method requires that the highest-numbered component also
be the one with the highest offset. This is a pretty safe
assumption, but let's add some code to ensure it stays true.
To make this check work correctly, we also need to ensure we
only consider the offsets from enabled features because the
offset register (ebx) will return 0 on unsupported features.
This also means that we will preserve the -1's that we
initialized xstate_offsets/sizes[] with. That will help
find bugs.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: dave@sr71.net
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20150902233130.0843AB15@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Note: our xsaves support is currently broken and disabled. This
patch does not fix it, but it is an incremental improvement.
This might be useful to someone backporting the entire set of
XSAVES patches at some point, but it should not be backported
alone.
Ingo said he wanted something like this (bullets 2 and 3):
http://lkml.kernel.org/r/20150808091508.GB32641@gmail.com
There are currently two xsave buffer formats: standard and
compacted. The standard format is waht 'XSAVE' and 'XSAVEOPT'
produce while 'XSAVES' and 'XSAVEC' produce a compacted-formet
buffer. (The kernel never uses XSAVEC)
But, the XSAVES buffer *ALSO* contains "system state components"
which are never saved by a plain XSAVE. So, XSAVES has two
things that might make its buffer differently-sized from an
XSAVE-produced one.
The current code assumes that an XSAVES buffer's size is simply
the sum of the sizes of the (user) states which are supported.
This seems to work in most cases, but it is not consistent with
what the SDM says, and it breaks if we 'align' a component in
the buffer. The calculation is also unnecessary work since the
CPU *tells* us the size of the buffer directly.
This patch just reads the size of the buffer right out of the
CPUID leaf instead of trying to derive it.
But, blindly trusting the CPU like this is dangerous. We add
a verification pass in do_extra_xstate_size_checks() to ensure
that the size we calculate matches with what we see from the
hardware. When it comes down to it, we trust but verify the
CPU.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: dave@sr71.net
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20150902233130.234FE1EC@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are two concepts that have some confusing naming:
1. Extended State Component numbers (currently called
XFEATURE_BIT_*)
2. Extended State Component masks (currently called XSTATE_*)
The numbers are (currently) from 0-9. State component 3 is the
bounds registers for MPX, for instance.
But when we want to enable "state component 3", we go set a bit
in XCR0. The bit we set is 1<<3. We can check to see if a
state component feature is enabled by looking at its bit.
The current 'xfeature_bit's are at best xfeature bit _numbers_.
Calling them bits is at best inconsistent with ending the enum
list with 'XFEATURES_NR_MAX'.
This patch renames the enum to be 'xfeature'. These also
happen to be what the Intel documentation calls a "state
component".
We also want to differentiate these from the "XSTATE_*" macros.
The "XSTATE_*" macros are a mask, and we rename them to match.
These macros are reasonably widely used so this patch is a
wee bit big, but this really is just a rename.
The only non-mechanical part of this is the
s/XSTATE_EXTEND_MASK/XFEATURE_MASK_EXTEND/
We need a better name for it, but that's another patch.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: dave@sr71.net
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20150902233126.38653250@viggo.jf.intel.com
[ Ported to v4.3-rc1. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The original purpose of XSTATE_RESERVE was to carve out space
to store all of the possible extended state components that
get saved with the XSAVE instruction(s).
However, we are now almost entirely dynamically allocating
the buffers we use for XSAVE by placing them at the end of
the task_struct and them sizing them at boot. The one
exception for that is the init_task.
The maximum extended state component size that we have today
is on systems with space for AVX-512 and Memory Protection
Keys: 2696 bytes. We have reserved a PAGE_SIZE buffer in
the init_task via fpregs_state->__padding.
This check ensures that even if the component sizes or
layout were changed (which we do not expect), that we will
still not overflow the init_task's buffer.
In the case that we detect we might overflow the buffer,
we completely disable XSAVE support in the kernel and try
to boot as if we had 'legacy x87 FPU' support in place.
This is a crippled state without any of the XSAVE-enabled
features (MPX, AVX, etc...). But, it at least let us
boot safely.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: dave@sr71.net
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20150902233125.D948D475@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, the PMU interface allows reading only one counter at a time.
But some PMUs like the 24x7 counters in Power, support reading several
counters at once. To leveage this functionality, extend the transaction
interface to support a "transaction type".
The first type, PERF_PMU_TXN_ADD, refers to the existing transactions,
i.e. used to _schedule_ all the events on the PMU as a group. A second
transaction type, PERF_PMU_TXN_READ, will be used in a follow-on patch,
by the 24x7 counters to read several counters at once.
Extend the transaction interfaces to the PMU to accept a 'txn_flags'
parameter and use this parameter to ignore any transactions that are
not of type PERF_PMU_TXN_ADD.
Thanks to Peter Zijlstra for his input.
Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
[peterz: s390 compile fix]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1441336073-22750-3-git-send-email-sukadev@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
BTS leaks kernel addresses even in userspace-only mode due to imprecise IP
sampling, so sometimes syscall entry points or page fault handler addresses
end up in a userspace trace.
Since this driver uses a relatively small buffer for BTS records and it has
to iterate through them anyway, it can also take on the additional job of
filtering out the records that contain kernel addresses when kernel space
tracing is not enabled.
This patch changes the bts code to skip the offending records from perf
output. In order to request the exact amount of space on the ring buffer,
we need to do an extra pass through the records to know how many there are
of the valid ones, but considering the small size of the buffer, this extra
pass adds very little overhead to the nmi handler. This way we won't end
up with awkward IP samples with zero IPs in the perf stream.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: hpa@zytor.com
Link: http://lkml.kernel.org/r/1441030168-6853-2-git-send-email-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Almost everyone implements dma_set_mask the same way, although some time
that's hidden in ->set_dma_mask methods.
This patch consolidates those into a common implementation that either
calls ->set_dma_mask if present or otherwise uses the default
implementation. Some architectures used to only call ->set_dma_mask
after the initial checks, and those instance have been fixed to do the
full work. h8300 implemented dma_set_mask bogusly as a no-ops and has
been fixed.
Unfortunately some architectures overload unrelated semantics like changing
the dma_ops into it so we still need to allow for an architecture override
for now.
[jcmvbkbc@gmail.com: fix xtensa]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since 2009 we have a nice asm-generic header implementing lots of DMA API
functions for architectures using struct dma_map_ops, but unfortunately
it's still missing a lot of APIs that all architectures still have to
duplicate.
This series consolidates the remaining functions, although we still need
arch opt outs for two of them as a few architectures have very
non-standard implementations.
This patch (of 5):
The coherent DMA allocator works the same over all architectures supporting
dma_map operations.
This patch consolidates them and converges the minor differences:
- the debug_dma helpers are now called from all architectures, including
those that were previously missing them
- dma_alloc_from_coherent and dma_release_from_coherent are now always
called from the generic alloc/free routines instead of the ops
dma-mapping-common.h always includes dma-coherent.h to get the defintions
for them, or the stubs if the architecture doesn't support this feature
- checks for ->alloc / ->free presence are removed. There is only one
magic instead of dma_map_ops without them (mic_dma_ops) and that one
is x86 only anyway.
Besides that only x86 needs special treatment to replace a default devices
if none is passed and tweak the gfp_flags. An optional arch hook is provided
for that.
[linux@roeck-us.net: fix build]
[jcmvbkbc@gmail.com: fix xtensa]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two kexec load syscalls, kexec_load another and kexec_file_load.
kexec_file_load has been splited as kernel/kexec_file.c. In this patch I
split kexec_load syscall code to kernel/kexec.c.
And add a new kconfig option KEXEC_CORE, so we can disable kexec_load and
use kexec_file_load only, or vice verse.
The original requirement is from Ted Ts'o, he want kexec kernel signature
being checked with CONFIG_KEXEC_VERIFY_SIG enabled. But kexec-tools use
kexec_load syscall can bypass the checking.
Vivek Goyal proposed to create a common kconfig option so user can compile
in only one syscall for loading kexec kernel. KEXEC/KEXEC_FILE selects
KEXEC_CORE so that old config files still work.
Because there's general code need CONFIG_KEXEC_CORE, so I updated all the
architecture Kconfig with a new option KEXEC_CORE, and let KEXEC selects
KEXEC_CORE in arch Kconfig. Also updated general kernel code with to
kexec_load syscall.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Dave Young <dyoung@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Petr Tesarik <ptesarik@suse.cz>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Josh Boyer <jwboyer@fedoraproject.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>