Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have EXPORT_.*_SYMBOL_GPL inside which was used in the
initial scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The struct fpu.initialized member is always set to one for user tasks
and zero for kernel tasks. This avoids saving/restoring the FPU
registers for kernel threads.
The ->initialized = 0 case for user tasks has been removed in previous
changes, for instance, by doing an explicit unconditional init at fork()
time for FPU-less systems which was otherwise delayed until the emulated
opcode.
The context switch code (switch_fpu_prepare() + switch_fpu_finish())
can't unconditionally save/restore registers for kernel threads. Not
only would it slow down the switch but also load a zeroed xcomp_bv for
XSAVES.
For kernel_fpu_begin() (+end) the situation is similar: EFI with runtime
services uses this before alternatives_patched is true. Which means that
this function is used too early and it wasn't the case before.
For those two cases, use current->mm to distinguish between user and
kernel thread. For kernel_fpu_begin() skip save/restore of the FPU
registers.
During the context switch into a kernel thread don't do anything. There
is no reason to save the FPU state of a kernel thread.
The reordering in __switch_to() is important because the current()
pointer needs to be valid before switch_fpu_finish() is invoked so ->mm
is seen of the new task instead the old one.
N.B.: fpu__save() doesn't need to check ->mm because it is called by
user tasks only.
[ bp: Massage. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Babu Moger <Babu.Moger@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dmitry Safonov <dima@arista.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-8-bigeasy@linutronix.de
Pull x86 fpu updates from Ingo Molnar:
"Misc preparatory changes for an upcoming FPU optimization that will
delay the loading of FPU registers to return-to-userspace"
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu: Don't export __kernel_fpu_{begin,end}()
x86/fpu: Update comment for __raw_xsave_addr()
x86/fpu: Add might_fault() to user_insn()
x86/pkeys: Make init_pkru_value static
x86/thread_info: Remove _TIF_ALLWORK_MASK
x86/process/32: Remove asm/math_emu.h include
x86/fpu: Use unsigned long long shift in xfeature_uncompacted_offset()
The comment above __raw_xsave_addr() claims that the function does not
work for compacted buffers and was introduced in:
b8b9b6ba9d ("x86/fpu: Allow setting of XSAVE state")
In this commit, the function was factored out of get_xsave_addr() and
this function claims that it works with "standard format or compacted
format of xsave area". It accesses the "xstate_comp_offsets" variable
for the actual offset and it was introduced in commit
7496d6458f ("Define kernel API to get address of each state in xsave area")
Based on the code (back then and now):
- xstate_offsets holds the standard offset.
- if compacted mode is not supported then xstate_comp_offsets gets the
xstate_offsets copied.
- if compacted mode is supported then xstate_comp_offsets will hold the
offset for the compacted buffer.
Based on that the function works for compacted buffers as long as the
CPU supports it and this what we care about.
Remove the "Note:" which is not accurate.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Rik van Riel <riel@surriel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20181128222035.2996-7-bigeasy@linutronix.de
Clearing a CPU feature with setup_clear_cpu_cap() clears all features
which depend on it. Expressing feature dependencies in one place is
easier to maintain than keeping functions like
fpu__xstate_clear_all_cpu_caps() up to date.
The features which depend on XSAVE have their dependency expressed in the
dependency table, so its sufficient to clear X86_FEATURE_XSAVE.
Remove the explicit clearing of XSAVE dependent features.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20171013215645.23166-6-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The x86 FPU code used to have a complex state machine where both the FPU
registers and the FPU state context could be 'active' (or inactive)
independently of each other - which enabled features like lazy FPU restore.
Much of this complexity is gone in the current code: now we basically can
have FPU-less tasks (kernel threads) that don't use (and save/restore) FPU
state at all, plus full FPU users that save/restore directly with no laziness
whatsoever.
But the fpu::fpstate_active still carries bits of the old complexity - meanwhile
this flag has become a simple flag that shows whether the FPU context saving
area in the thread struct is initialized and used, or not.
Rename it to fpu::initialized to express this simplicity in the name as well.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Eric Biggers <ebiggers3@gmail.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yu-cheng Yu <yu-cheng.yu@intel.com>
Link: http://lkml.kernel.org/r/20170923130016.21448-30-mingo@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Right now there's a confusing mixture of 'offset' and 'size' parameters:
- __copy_xstate_to_*() input parameter 'end_pos' not not really an offset,
but the full size of the copy to be performed.
- input parameter 'count' to copy_xstate_to_*() shadows that of
__copy_xstate_to_*()'s 'count' parameter name - but the roles
are different: the first one is the total number of bytes to
be copied, while the second one is a partial copy size.
To unconfuse all this, use a consistent set of parameter names:
- 'size' is the partial copy size within a single xstate component
- 'size_total' is the total copy requested
- 'offset_start' is the requested starting offset.
- 'offset' is the offset within an xstate component.
No change in functionality.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Eric Biggers <ebiggers3@gmail.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yu-cheng Yu <yu-cheng.yu@intel.com>
Link: http://lkml.kernel.org/r/20170923130016.21448-9-mingo@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 'copyin/copyout' nomenclature needlessly departs from what the modern FPU code
uses, which is:
copy_fpregs_to_fpstate()
copy_fpstate_to_sigframe()
copy_fregs_to_user()
copy_fxregs_to_kernel()
copy_fxregs_to_user()
copy_kernel_to_fpregs()
copy_kernel_to_fregs()
copy_kernel_to_fxregs()
copy_kernel_to_xregs()
copy_user_to_fregs()
copy_user_to_fxregs()
copy_user_to_xregs()
copy_xregs_to_kernel()
copy_xregs_to_user()
I.e. according to this pattern, the following rename should be done:
copyin_to_xsaves() -> copy_user_to_xstate()
copyout_from_xsaves() -> copy_xstate_to_user()
or, if we want to be pedantic, denote that that the user-space format is ptrace:
copyin_to_xsaves() -> copy_user_ptrace_to_xstate()
copyout_from_xsaves() -> copy_xstate_to_user_ptrace()
But I'd suggest the shorter, non-pedantic name.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Eric Biggers <ebiggers3@gmail.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yu-cheng Yu <yu-cheng.yu@intel.com>
Link: http://lkml.kernel.org/r/20170923130016.21448-2-mingo@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fpu updates from Ingo Molnar:
"The main changes relate to fixes between (lack of) CPUID and FPU
detection that should only affect old or weird CPUs, by Andy
Lutomirski"
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu: Fix the "Giving up, no FPU found" test
x86/fpu: Fix CPUID-less FPU detection
x86/fpu: Fix "x86/fpu: Legacy x87 FPU detected" message
x86/cpu: Re-apply forced caps every time CPU caps are re-read
x86/cpu: Factor out application of forced CPU caps
x86/cpu: Add X86_FEATURE_CPUID
x86/fpu/xstate: Move XSAVES state init to a function
The compacted-format XSAVES area is determined at boot time and
never changed after. The field xsave.header.xcomp_bv indicates
which components are in the fixed XSAVES format.
In fpstate_init() we did not set xcomp_bv to reflect the XSAVES
format since at the time there is no valid data.
However, after we do copy_init_fpstate_to_fpregs() in fpu__clear(),
as in commit:
b22cbe404a x86/fpu: Fix invalid FPU ptrace state after execve()
and when __fpu_restore_sig() does fpu__restore() for a COMPAT-mode
app, a #GP occurs. This can be easily triggered by doing valgrind on
a COMPAT-mode "Hello World," as reported by Joakim Tjernlund and
others:
https://bugzilla.kernel.org/show_bug.cgi?id=190061
Fix it by setting xcomp_bv correctly.
This patch also moves the xcomp_bv initialization to the proper
place, which was in copyin_to_xsaves() as of:
4c833368f0 x86/fpu: Set the xcomp_bv when we fake up a XSAVES area
which fixed the bug too, but it's more efficient and cleaner to
initialize things once per boot, not for every signal handling
operation.
Reported-by: Kevin Hao <haokexin@gmail.com>
Reported-by: Joakim Tjernlund <Joakim.Tjernlund@infinera.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi V. Shankar <ravi.v.shankar@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: haokexin@gmail.com
Link: http://lkml.kernel.org/r/1485212084-4418-1-git-send-email-yu-cheng.yu@intel.com
[ Combined it with 4c833368f0. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Vector population count instructions for dwords and qwords are going to be
available in future Intel Xeon & Xeon Phi processors. Bit 14 of
CPUID[level:0x07, ECX] indicates that the instructions are supported by a
processor.
The specification can be found in the Intel Software Developer Manual (SDM)
and in the Instruction Set Extensions Programming Reference (ISE).
Populate the feature bit and clear it when xsave is disabled.
Signed-off-by: Piotr Luc <piotr.luc@intel.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Link: http://lkml.kernel.org/r/20170110173403.6010-2-piotr.luc@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull x86 FPU updates from Ingo Molnar:
"The main changes in this cycle were:
- do a large round of simplifications after all CPUs do 'eager' FPU
context switching in v4.9: remove CR0 twiddling, remove leftover
eager/lazy bts, etc (Andy Lutomirski)
- more FPU code simplifications: remove struct fpu::counter, clarify
nomenclature, remove unnecessary arguments/functions and better
structure the code (Rik van Riel)"
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu: Remove clts()
x86/fpu: Remove stts()
x86/fpu: Handle #NM without FPU emulation as an error
x86/fpu, lguest: Remove CR0.TS support
x86/fpu, kvm: Remove host CR0.TS manipulation
x86/fpu: Remove irq_ts_save() and irq_ts_restore()
x86/fpu: Stop saving and restoring CR0.TS in fpu__init_check_bugs()
x86/fpu: Get rid of two redundant clts() calls
x86/fpu: Finish excising 'eagerfpu'
x86/fpu: Split old_fpu & new_fpu handling into separate functions
x86/fpu: Remove 'cpu' argument from __cpu_invalidate_fpregs_state()
x86/fpu: Split old & new FPU code paths
x86/fpu: Remove __fpregs_(de)activate()
x86/fpu: Rename lazy restore functions to "register state valid"
x86/fpu, kvm: Remove KVM vcpu->fpu_counter
x86/fpu: Remove struct fpu::counter
x86/fpu: Remove use_eager_fpu()
x86/fpu: Remove the XFEATURE_MASK_EAGER/LAZY distinction
x86/fpu: Hard-disable lazy FPU mode
x86/crypto, x86/fpu: Remove X86_FEATURE_EAGER_FPU #ifdef from the crc32c code
AVX512_4VNNIW - Vector instructions for deep learning enhanced word
variable precision.
AVX512_4FMAPS - Vector instructions for deep learning floating-point
single precision.
These new instructions are to be used in future Intel Xeon & Xeon Phi
processors. The bits 2&3 of CPUID[level:0x07, EDX] inform that new
instructions are supported by a processor.
The spec can be found in the Intel Software Developer Manual (SDM) or in
the Instruction Set Extensions Programming Reference (ISE).
Define new feature flags to enumerate the new instructions in /proc/cpuinfo
accordingly to CPUID bits and add the required xsave extensions which are
required for proper operation.
Signed-off-by: Piotr Luc <piotr.luc@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20161018150111.29926-1-piotr.luc@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch adds two new system calls:
int pkey_alloc(unsigned long flags, unsigned long init_access_rights)
int pkey_free(int pkey);
These implement an "allocator" for the protection keys
themselves, which can be thought of as analogous to the allocator
that the kernel has for file descriptors. The kernel tracks
which numbers are in use, and only allows operations on keys that
are valid. A key which was not obtained by pkey_alloc() may not,
for instance, be passed to pkey_mprotect().
These system calls are also very important given the kernel's use
of pkeys to implement execute-only support. These help ensure
that userspace can never assume that it has control of a key
unless it first asks the kernel. The kernel does not promise to
preserve PKRU (right register) contents except for allocated
pkeys.
The 'init_access_rights' argument to pkey_alloc() specifies the
rights that will be established for the returned pkey. For
instance:
pkey = pkey_alloc(flags, PKEY_DENY_WRITE);
will allocate 'pkey', but also sets the bits in PKRU[1] such that
writing to 'pkey' is already denied.
The kernel does not prevent pkey_free() from successfully freeing
in-use pkeys (those still assigned to a memory range by
pkey_mprotect()). It would be expensive to implement the checks
for this, so we instead say, "Just don't do it" since sane
software will never do it anyway.
Any piece of userspace calling pkey_alloc() needs to be prepared
for it to fail. Why? pkey_alloc() returns the same error code
(ENOSPC) when there are no pkeys and when pkeys are unsupported.
They can be unsupported for a whole host of reasons, so apps must
be prepared for this. Also, libraries or LD_PRELOADs might steal
keys before an application gets access to them.
This allocation mechanism could be implemented in userspace.
Even if we did it in userspace, we would still need additional
user/kernel interfaces to tell userspace which keys are being
used by the kernel internally (such as for execute-only
mappings). Having the kernel provide this facility completely
removes the need for these additional interfaces, or having an
implementation of this in userspace at all.
Note that we have to make changes to all of the architectures
that do not use mman-common.h because we use the new
PKEY_DENY_ACCESS/WRITE macros in arch-independent code.
1. PKRU is the Protection Key Rights User register. It is a
usermode-accessible register that controls whether writes
and/or access to each individual pkey is allowed or denied.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: linux-arch@vger.kernel.org
Cc: Dave Hansen <dave@sr71.net>
Cc: arnd@arndb.de
Cc: linux-api@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: luto@kernel.org
Cc: akpm@linux-foundation.org
Cc: torvalds@linux-foundation.org
Link: http://lkml.kernel.org/r/20160729163015.444FE75F@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The Memory Protection Keys "rights register" (PKRU) is
XSAVE-managed, and is saved/restored along with the FPU state.
When kernel code accesses FPU regsisters, it does a delicate
dance with preempt. Otherwise, the context switching code can
get confused as to whether the most up-to-date state is in the
registers themselves or in the XSAVE buffer.
But, PKRU is not a normal FPU register. Using it does not
generate the normal device-not-available (#NM) exceptions which
means we can not manage it lazily, and the kernel completley
disallows using lazy mode when it is enabled.
The dance with preempt *only* occurs when managing the FPU
lazily. Since we never manage PKRU lazily, we do not have to do
the dance with preempt; we can access it directly. Doing it
this way saves a ton of complicated code (and is faster too).
Further, the XSAVES reenabling failed to patch a bit of code
in fpu__xfeature_set_state() the checked for compacted buffers.
That check caused fpu__xfeature_set_state() to silently refuse to
work when the kernel is using compacted XSAVE buffers. This
broke execute-only and future pkey_mprotect() support when using
compact XSAVE buffers.
But, removing fpu__xfeature_set_state() gets rid of this issue,
in addition to the nice cleanup and speedup.
This fixes the same thing as a fix that Sai posted:
https://lkml.org/lkml/2016/7/25/637
The fix that he posted is a much more obviously correct, but I
think we should just do this instead.
Reported-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yu-Cheng Yu <yu-cheng.yu@intel.com>
Link: http://lkml.kernel.org/r/20160727232040.7D060DAD@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
I don't think it is really possible to have a system where CPUID
enumerates support for XSAVE but that it does not have FP/SSE
(they are "legacy" features and always present).
But, I did manage to hit this case in qemu when I enabled its
somewhat shaky XSAVE support. The bummer is that the FPU is set
up before we parse the command-line or have *any* console support
including earlyprintk. That turned what should have been an easy
thing to debug in to a bit more of an odyssey.
So a BUG() here is worthless. All it does it guarantee that
if/when we hit this case we have an empty console. So, remove
the BUG() and try to limp along by disabling XSAVE and trying to
continue. Add a comment on why we are doing this, and also add
a common "out_disable" path for leaving fpu__init_system_xstate().
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160720194551.63BB2B58@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>