Currently, the code scanning the CPU equivalence table read from a
microcode container file assumes that it actually contains a terminating
zero entry.
Check also the size of this table to make sure that no reads past its
end happen, in case there's no terminating zero entry at the end of the
table.
[ bp: Adjust to new changes. ]
Signed-off-by: Maciej S. Szmigiero <mail@maciej.szmigiero.name>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20181107170218.7596-16-bp@alien8.de
Add a verify_patch() function which tries to sanity-check many aspects
of a microcode patch supplied by an outside container before attempting
a load.
Prepend all sub-functions' names which verify an aspect of a microcode
patch with "__".
Call it in verify_and_add_patch() *before* looking at the microcode
header.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20181107170218.7596-7-bp@alien8.de
Rename the variable which contains the patch size read out from the
section header to sh_psize for better differentiation of all the "sizes"
in that function.
Also, improve the comment above it.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20181107170218.7596-6-bp@alien8.de
Add container and patch verification functions to the AMD microcode
update driver.
These functions check whether a passed buffer contains the relevant
structure, whether it isn't truncated and (for actual microcode patches)
whether the size of a patch is not too large for a particular CPU family.
By adding these checks as separate functions the actual microcode loading
code won't get interspersed with a lot of checks and so will be more
readable.
[ bp: Make all pr_err() calls into pr_debug() and drop the
verify_patch() bits. ]
Signed-off-by: Maciej S. Szmigiero <mail@maciej.szmigiero.name>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/3014e96c82cd90761b4601bd2cfe59c4119e46a7.1529424596.git.mail@maciej.szmigiero.name
verify_patch_size() verifies whether the remaining size of the microcode
container file is large enough to contain a patch of the indicated size.
However, the section header length is not included in this indicated
size but it is present in the leftover file length so it should be
subtracted from the leftover file length before passing this value to
verify_patch_size().
[ bp: Split comment. ]
Signed-off-by: Maciej S. Szmigiero <mail@maciej.szmigiero.name>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/6df43f4f6a28186a13a66e8d7e61143c5e1a2324.1529424596.git.mail@maciej.szmigiero.name
Add the proper includes and make smca_get_name() static.
Fix an actual bug too which the warning triggered:
arch/x86/kernel/cpu/mcheck/therm_throt.c:395:39: error: conflicting \
types for ‘smp_thermal_interrupt’
asmlinkage __visible void __irq_entry smp_thermal_interrupt(struct pt_regs *r)
^~~~~~~~~~~~~~~~~~~~~
In file included from arch/x86/kernel/cpu/mcheck/therm_throt.c:29:
./arch/x86/include/asm/traps.h:107:17: note: previous declaration of \
‘smp_thermal_interrupt’ was here
asmlinkage void smp_thermal_interrupt(void);
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Cc: Michael Matz <matz@suse.de>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1811081633160.1549@nanos.tec.linutronix.de
get_scattered_cpuid_leaf() was added[1] to help KVM rebuild hardware-
defined leafs that are rearranged by Linux to avoid bloating the
x86_capability array. Eventually, the last consumer of the function was
removed[2], but the function itself was kept, perhaps even intentionally
as a form of documentation.
Remove get_scattered_cpuid_leaf() as it is currently not used by KVM.
Furthermore, simply rebuilding the "real" leaf does not resolve all of
KVM's woes when it comes to exposing a scattered CPUID feature, i.e.
keeping the function as documentation may be counter-productive in some
scenarios, e.g. when KVM needs to do more than simply expose the leaf.
[1] 47bdf3378d ("x86/cpuid: Provide get_scattered_cpuid_leaf()")
[2] b7b27aa011 ("KVM/x86: Update the reverse_cpuid list to include CPUID_7_EDX")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
CC: "H. Peter Anvin" <hpa@zytor.com>
CC: Ingo Molnar <mingo@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/20181105185725.18679-1-sean.j.christopherson@intel.com
Pull x86 pti updates from Ingo Molnar:
"The main changes:
- Make the IBPB barrier more strict and add STIBP support (Jiri
Kosina)
- Micro-optimize and clean up the entry code (Andy Lutomirski)
- ... plus misc other fixes"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation: Propagate information about RSB filling mitigation to sysfs
x86/speculation: Enable cross-hyperthread spectre v2 STIBP mitigation
x86/speculation: Apply IBPB more strictly to avoid cross-process data leak
x86/speculation: Add RETPOLINE_AMD support to the inline asm CALL_NOSPEC variant
x86/CPU: Fix unused variable warning when !CONFIG_IA32_EMULATION
x86/pti/64: Remove the SYSCALL64 entry trampoline
x86/entry/64: Use the TSS sp2 slot for SYSCALL/SYSRET scratch space
x86/entry/64: Document idtentry
Pull x86 paravirt updates from Ingo Molnar:
"Two main changes:
- Remove no longer used parts of the paravirt infrastructure and put
large quantities of paravirt ops under a new config option
PARAVIRT_XXL=y, which is selected by XEN_PV only. (Joergen Gross)
- Enable PV spinlocks on Hyperv (Yi Sun)"
* 'x86-paravirt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/hyperv: Enable PV qspinlock for Hyper-V
x86/hyperv: Add GUEST_IDLE_MSR support
x86/paravirt: Clean up native_patch()
x86/paravirt: Prevent redefinition of SAVE_FLAGS macro
x86/xen: Make xen_reservation_lock static
x86/paravirt: Remove unneeded mmu related paravirt ops bits
x86/paravirt: Move the Xen-only pv_mmu_ops under the PARAVIRT_XXL umbrella
x86/paravirt: Move the pv_irq_ops under the PARAVIRT_XXL umbrella
x86/paravirt: Move the Xen-only pv_cpu_ops under the PARAVIRT_XXL umbrella
x86/paravirt: Move items in pv_info under PARAVIRT_XXL umbrella
x86/paravirt: Introduce new config option PARAVIRT_XXL
x86/paravirt: Remove unused paravirt bits
x86/paravirt: Use a single ops structure
x86/paravirt: Remove clobbers from struct paravirt_patch_site
x86/paravirt: Remove clobbers parameter from paravirt patch functions
x86/paravirt: Make paravirt_patch_call() and paravirt_patch_jmp() static
x86/xen: Add SPDX identifier in arch/x86/xen files
x86/xen: Link platform-pci-unplug.o only if CONFIG_XEN_PVHVM
x86/xen: Move pv specific parts of arch/x86/xen/mmu.c to mmu_pv.c
x86/xen: Move pv irq related functions under CONFIG_XEN_PV umbrella
Pull x86 cpu updates from Ingo Molnar:
"The main changes in this cycle were:
- Add support for the "Dhyana" x86 CPUs by Hygon: these are licensed
based on the AMD Zen architecture, and are built and sold in China,
for domestic datacenter use. The code is pretty close to AMD
support, mostly with a few quirks and enumeration differences. (Pu
Wen)
- Enable CPUID support on Cyrix 6x86/6x86L processors"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tools/cpupower: Add Hygon Dhyana support
cpufreq: Add Hygon Dhyana support
ACPI: Add Hygon Dhyana support
x86/xen: Add Hygon Dhyana support to Xen
x86/kvm: Add Hygon Dhyana support to KVM
x86/mce: Add Hygon Dhyana support to the MCA infrastructure
x86/bugs: Add Hygon Dhyana to the respective mitigation machinery
x86/apic: Add Hygon Dhyana support
x86/pci, x86/amd_nb: Add Hygon Dhyana support to PCI and northbridge
x86/amd_nb: Check vendor in AMD-only functions
x86/alternative: Init ideal_nops for Hygon Dhyana
x86/events: Add Hygon Dhyana support to PMU infrastructure
x86/smpboot: Do not use BSP INIT delay and MWAIT to idle on Dhyana
x86/cpu/mtrr: Support TOP_MEM2 and get MTRR number
x86/cpu: Get cache info and setup cache cpumap for Hygon Dhyana
x86/cpu: Create Hygon Dhyana architecture support file
x86/CPU: Change query logic so CPUID is enabled before testing
x86/CPU: Use correct macros for Cyrix calls
Pull x86 asm updates from Ingo Molnar:
"The main changes in this cycle were the fsgsbase related preparatory
patches from Chang S. Bae - but there's also an optimized
memcpy_flushcache() and a cleanup for the __cmpxchg_double() assembly
glue"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fsgsbase/64: Clean up various details
x86/segments: Introduce the 'CPUNODE' naming to better document the segment limit CPU/node NR trick
x86/vdso: Initialize the CPU/node NR segment descriptor earlier
x86/vdso: Introduce helper functions for CPU and node number
x86/segments/64: Rename the GDT PER_CPU entry to CPU_NUMBER
x86/fsgsbase/64: Factor out FS/GS segment loading from __switch_to()
x86/fsgsbase/64: Convert the ELF core dump code to the new FSGSBASE helpers
x86/fsgsbase/64: Make ptrace use the new FS/GS base helpers
x86/fsgsbase/64: Introduce FS/GS base helper functions
x86/fsgsbase/64: Fix ptrace() to read the FS/GS base accurately
x86/asm: Use CC_SET()/CC_OUT() in __cmpxchg_double()
x86/asm: Optimize memcpy_flushcache()
Pull RAS updates from Ingo Molnar:
"Misc smaller fixes and cleanups"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mcelog: Remove one mce_helper definition
x86/mce: Add macros for the corrected error count bit field
x86/mce: Use BIT_ULL(x) for bit mask definitions
x86/mce-inject: Reset injection struct after injection
Pull perf updates from Ingo Molnar:
"The main updates in this cycle were:
- Lots of perf tooling changes too voluminous to list (big perf trace
and perf stat improvements, lots of libtraceevent reorganization,
etc.), so I'll list the authors and refer to the changelog for
details:
Benjamin Peterson, Jérémie Galarneau, Kim Phillips, Peter
Zijlstra, Ravi Bangoria, Sangwon Hong, Sean V Kelley, Steven
Rostedt, Thomas Gleixner, Ding Xiang, Eduardo Habkost, Thomas
Richter, Andi Kleen, Sanskriti Sharma, Adrian Hunter, Tzvetomir
Stoyanov, Arnaldo Carvalho de Melo, Jiri Olsa.
... with the bulk of the changes written by Jiri Olsa, Tzvetomir
Stoyanov and Arnaldo Carvalho de Melo.
- Continued intel_rdt work with a focus on playing well with perf
events. This also imported some non-perf RDT work due to
dependencies. (Reinette Chatre)
- Implement counter freezing for Arch Perfmon v4 (Skylake and newer).
This allows to speed up the PMI handler by avoiding unnecessary MSR
writes and make it more accurate. (Andi Kleen)
- kprobes cleanups and simplification (Masami Hiramatsu)
- Intel Goldmont PMU updates (Kan Liang)
- ... plus misc other fixes and updates"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (155 commits)
kprobes/x86: Use preempt_enable() in optimized_callback()
x86/intel_rdt: Prevent pseudo-locking from using stale pointers
kprobes, x86/ptrace.h: Make regs_get_kernel_stack_nth() not fault on bad stack
perf/x86/intel: Export mem events only if there's PEBS support
x86/cpu: Drop pointless static qualifier in punit_dev_state_show()
x86/intel_rdt: Fix initial allocation to consider CDP
x86/intel_rdt: CBM overlap should also check for overlap with CDP peer
x86/intel_rdt: Introduce utility to obtain CDP peer
tools lib traceevent, perf tools: Move struct tep_handler definition in a local header file
tools lib traceevent: Separate out tep_strerror() for strerror_r() issues
perf python: More portable way to make CFLAGS work with clang
perf python: Make clang_has_option() work on Python 3
perf tools: Free temporary 'sys' string in read_event_files()
perf tools: Avoid double free in read_event_file()
perf tools: Free 'printk' string in parse_ftrace_printk()
perf tools: Cleanup trace-event-info 'tdata' leak
perf strbuf: Match va_{add,copy} with va_end
perf test: S390 does not support watchpoints in test 22
perf auxtrace: Include missing asm/bitsperlong.h to get BITS_PER_LONG
tools include: Adopt linux/bits.h
...
Pull locking and misc x86 updates from Ingo Molnar:
"Lots of changes in this cycle - in part because locking/core attracted
a number of related x86 low level work which was easier to handle in a
single tree:
- Linux Kernel Memory Consistency Model updates (Alan Stern, Paul E.
McKenney, Andrea Parri)
- lockdep scalability improvements and micro-optimizations (Waiman
Long)
- rwsem improvements (Waiman Long)
- spinlock micro-optimization (Matthew Wilcox)
- qspinlocks: Provide a liveness guarantee (more fairness) on x86.
(Peter Zijlstra)
- Add support for relative references in jump tables on arm64, x86
and s390 to optimize jump labels (Ard Biesheuvel, Heiko Carstens)
- Be a lot less permissive on weird (kernel address) uaccess faults
on x86: BUG() when uaccess helpers fault on kernel addresses (Jann
Horn)
- macrofy x86 asm statements to un-confuse the GCC inliner. (Nadav
Amit)
- ... and a handful of other smaller changes as well"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (57 commits)
locking/lockdep: Make global debug_locks* variables read-mostly
locking/lockdep: Fix debug_locks off performance problem
locking/pvqspinlock: Extend node size when pvqspinlock is configured
locking/qspinlock_stat: Count instances of nested lock slowpaths
locking/qspinlock, x86: Provide liveness guarantee
x86/asm: 'Simplify' GEN_*_RMWcc() macros
locking/qspinlock: Rework some comments
locking/qspinlock: Re-order code
locking/lockdep: Remove duplicated 'lock_class_ops' percpu array
x86/defconfig: Enable CONFIG_USB_XHCI_HCD=y
futex: Replace spin_is_locked() with lockdep
locking/lockdep: Make class->ops a percpu counter and move it under CONFIG_DEBUG_LOCKDEP=y
x86/jump-labels: Macrofy inline assembly code to work around GCC inlining bugs
x86/cpufeature: Macrofy inline assembly code to work around GCC inlining bugs
x86/extable: Macrofy inline assembly code to work around GCC inlining bugs
x86/paravirt: Work around GCC inlining bugs when compiling paravirt ops
x86/bug: Macrofy the BUG table section handling, to work around GCC inlining bugs
x86/alternatives: Macrofy lock prefixes to work around GCC inlining bugs
x86/refcount: Work around GCC inlining bug
x86/objtool: Use asm macros to work around GCC inlining bugs
...
When the last CPU in an rdt_domain goes offline, its rdt_domain struct gets
freed. Current pseudo-locking code is unaware of this scenario and tries to
dereference the freed structure in a few places.
Add checks to prevent pseudo-locking code from doing this.
While further work is needed to seamlessly restore resource groups (not
just pseudo-locking) to their configuration when the domain is brought back
online, the immediate issue of invalid pointers is addressed here.
Fixes: f4e80d67a5 ("x86/intel_rdt: Resctrl files reflect pseudo-locked information")
Fixes: 443810fe61 ("x86/intel_rdt: Create debugfs files for pseudo-locking testing")
Fixes: 746e08590b ("x86/intel_rdt: Create character device exposing pseudo-locked region")
Fixes: 33dc3e410a ("x86/intel_rdt: Make CPU information accessible for pseudo-locked regions")
Signed-off-by: Jithu Joseph <jithu.joseph@intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: gavin.hindman@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/231f742dbb7b00a31cc104416860e27dba6b072d.1539384145.git.reinette.chatre@intel.com
When a new resource group is created it is initialized with a default
allocation that considers which portions of cache are currently
available for sharing across all resource groups or which portions of
cache are currently unused.
If a CDP allocation forms part of a resource group that is in exclusive
mode then it should be ensured that no new allocation overlaps with any
resource that shares the underlying hardware. The current initial
allocation does not take this sharing of hardware into account and
a new allocation in a resource that shares the same
hardware would affect the exclusive resource group.
Fix this by considering the allocation of a peer RDT domain - a RDT
domain sharing the same hardware - as part of the test to determine
which portion of cache is in use and available for use.
Fixes: 95f0b77efa ("x86/intel_rdt: Initialize new resource group with sane defaults")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: tony.luck@intel.com
Cc: jithu.joseph@intel.com
Cc: gavin.hindman@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/b1f7ec08b1695be067de416a4128466d49684317.1538603665.git.reinette.chatre@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The CBM overlap test is used to manage the allocations of RDT resources
where overlap is possible between resource groups. When a resource group
is in exclusive mode then there should be no overlap between resource
groups.
The current overlap test only considers overlap between the same
resources, for example, that usage of a RDT_RESOURCE_L2DATA resource
in one resource group does not overlap with usage of a RDT_RESOURCE_L2DATA
resource in another resource group. The problem with this is that it
allows overlap between a RDT_RESOURCE_L2DATA resource in one resource
group with a RDT_RESOURCE_L2CODE resource in another resource group -
even if both resource groups are in exclusive mode. This is a problem
because even though these appear to be different resources they end up
sharing the same underlying hardware and thus does not fulfill the
user's request for exclusive use of hardware resources.
Fix this by including the CDP peer (if there is one) in every CBM
overlap test. This does not impact the overlap between resources
within the same exclusive resource group that is allowed.
Fixes: 49f7b4efa1 ("x86/intel_rdt: Enable setting of exclusive mode")
Reported-by: Jithu Joseph <jithu.joseph@intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jithu Joseph <jithu.joseph@intel.com>
Acked-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: tony.luck@intel.com
Cc: gavin.hindman@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/e538b7f56f7ca15963dce2e00ac3be8edb8a68e1.1538603665.git.reinette.chatre@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce a utility that, when provided with a RDT resource and an
instance of this RDT resource (a RDT domain), would return pointers to
the RDT resource and RDT domain that share the same hardware. This is
specific to the CDP resources that share the same hardware.
For example, if a pointer to the RDT_RESOURCE_L2DATA resource (struct
rdt_resource) and a pointer to an instance of this resource (struct
rdt_domain) is provided, then it will return a pointer to the
RDT_RESOURCE_L2CODE resource as well as the specific instance that
shares the same hardware as the provided rdt_domain.
This utility is created in support of the "exclusive" resource group
mode where overlap of resource allocation between resource groups need
to be avoided. The overlap test need to consider not just the matching
resources, but also the resources that share the same hardware.
Temporarily mark it as unused in support of patch testing to avoid
compile warnings until it is used.
Fixes: 49f7b4efa1 ("x86/intel_rdt: Enable setting of exclusive mode")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jithu Joseph <jithu.joseph@intel.com>
Acked-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: tony.luck@intel.com
Cc: gavin.hindman@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/9b4bc4d59ba2e903b6a3eb17e16ef41a8e7b7c3e.1538603665.git.reinette.chatre@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>