Hyper-V 2019 doesn't expose MD_CLEAR CPUID bit to guests when it cannot
guarantee that two virtual processors won't end up running on sibling SMT
threads without knowing about it. This is done as an optimization as in
this case there is nothing the guest can do to protect itself against MDS
and issuing additional flush requests is just pointless. On bare metal the
topology is known, however, when Hyper-V is running nested (e.g. on top of
KVM) it needs an additional piece of information: a confirmation that the
exposed topology (wrt vCPU placement on different SMT threads) is
trustworthy.
NoNonArchitecturalCoreSharing (CPUID 0x40000004 EAX bit 18) is described in
TLFS as follows: "Indicates that a virtual processor will never share a
physical core with another virtual processor, except for virtual processors
that are reported as sibling SMT threads." From KVM we can give such
guarantee in two cases:
- SMT is unsupported or forcefully disabled (just 'disabled' doesn't work
as it can become re-enabled during the lifetime of the guest).
- vCPUs are properly pinned so the scheduler won't put them on sibling
SMT threads (when they're not reported as such).
This patch reports NoNonArchitecturalCoreSharing bit in to userspace in the
first case. The second case is outside of KVM's domain of responsibility
(as vCPU pinning is actually done by someone who manages KVM's userspace -
e.g. libvirt pinning QEMU threads).
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reported by syzkaller:
kasan: GPF could be caused by NULL-ptr deref or user memory access
general protection fault: 0000 [#1] PREEMPT SMP KASAN
RIP: 0010:__apic_accept_irq+0x46/0x740 arch/x86/kvm/lapic.c:1029
Call Trace:
kvm_apic_set_irq+0xb4/0x140 arch/x86/kvm/lapic.c:558
stimer_notify_direct arch/x86/kvm/hyperv.c:648 [inline]
stimer_expiration arch/x86/kvm/hyperv.c:659 [inline]
kvm_hv_process_stimers+0x594/0x1650 arch/x86/kvm/hyperv.c:686
vcpu_enter_guest+0x2b2a/0x54b0 arch/x86/kvm/x86.c:7896
vcpu_run+0x393/0xd40 arch/x86/kvm/x86.c:8152
kvm_arch_vcpu_ioctl_run+0x636/0x900 arch/x86/kvm/x86.c:8360
kvm_vcpu_ioctl+0x6cf/0xaf0 arch/x86/kvm/../../../virt/kvm/kvm_main.c:2765
The testcase programs HV_X64_MSR_STIMERn_CONFIG/HV_X64_MSR_STIMERn_COUNT,
in addition, there is no lapic in the kernel, the counters value are small
enough in order that kvm_hv_process_stimers() inject this already-expired
timer interrupt into the guest through lapic in the kernel which triggers
the NULL deferencing. This patch fixes it by don't advertise direct mode
synthetic timers and discarding the inject when lapic is not in kernel.
syzkaller source: https://syzkaller.appspot.com/x/repro.c?x=1752fe0a600000
Reported-by: syzbot+dff25ee91f0c7d5c1695@syzkaller.appspotmail.com
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Zapping collapsible sptes, a.k.a. 4k sptes that can be promoted into a
large page, is only necessary when changing only the dirty logging flag
of a memory region. If the memslot is also being moved, then all sptes
for the memslot are zapped when it is invalidated. When a memslot is
being created, it is impossible for there to be existing dirty mappings,
e.g. KVM can have MMIO sptes, but not present, and thus dirty, sptes.
Note, the comment and logic are shamelessly borrowed from MIPS's version
of kvm_arch_commit_memory_region().
Fixes: 3ea3b7fa9a ("kvm: mmu: lazy collapse small sptes into large sptes")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It was discovered that after commit 65efa61dc0 ("selftests: kvm: provide
common function to enable eVMCS") hyperv_cpuid selftest is failing on AMD.
The reason is that the commit changed _vcpu_ioctl() to vcpu_ioctl() in the
test and this one can't fail.
Instead of fixing the test is seems to make more sense to not announce
KVM_CAP_HYPERV_ENLIGHTENED_VMCS support if it is definitely missing
(on svm and in case kvm_intel.nested=0).
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since commit 5158917c7b ("KVM: x86: nVMX: Allow nested_enable_evmcs to
be NULL") the code in x86.c is prepared to see nested_enable_evmcs being
NULL and in VMX case it actually is when nesting is disabled. Remove the
unneeded stub from SVM code.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hyper-V provides direct tlb flush function which helps
L1 Hypervisor to handle Hyper-V tlb flush request from
L2 guest. Add the function support for VMX.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hyper-V direct tlb flush function should be enabled for
guest that only uses Hyper-V hypercall. User space
hypervisor(e.g, Qemu) can disable KVM identification in
CPUID and just exposes Hyper-V identification to make
sure the precondition. Add new KVM capability KVM_CAP_
HYPERV_DIRECT_TLBFLUSH for user space to enable Hyper-V
direct tlb function and this function is default to be
disabled in KVM.
Signed-off-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These MSRs should be enumerated by KVM_GET_MSR_INDEX_LIST, so that
userspace knows that these MSRs may be part of the vCPU state.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Eric Hankland <ehankland@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull KVM updates from Paolo Bonzini:
"s390:
- ioctl hardening
- selftests
ARM:
- ITS translation cache
- support for 512 vCPUs
- various cleanups and bugfixes
PPC:
- various minor fixes and preparation
x86:
- bugfixes all over the place (posted interrupts, SVM, emulation
corner cases, blocked INIT)
- some IPI optimizations"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (75 commits)
KVM: X86: Use IPI shorthands in kvm guest when support
KVM: x86: Fix INIT signal handling in various CPU states
KVM: VMX: Introduce exit reason for receiving INIT signal on guest-mode
KVM: VMX: Stop the preemption timer during vCPU reset
KVM: LAPIC: Micro optimize IPI latency
kvm: Nested KVM MMUs need PAE root too
KVM: x86: set ctxt->have_exception in x86_decode_insn()
KVM: x86: always stop emulation on page fault
KVM: nVMX: trace nested VM-Enter failures detected by H/W
KVM: nVMX: add tracepoint for failed nested VM-Enter
x86: KVM: svm: Fix a check in nested_svm_vmrun()
KVM: x86: Return to userspace with internal error on unexpected exit reason
KVM: x86: Add kvm_emulate_{rd,wr}msr() to consolidate VXM/SVM code
KVM: x86: Refactor up kvm_{g,s}et_msr() to simplify callers
doc: kvm: Fix return description of KVM_SET_MSRS
KVM: X86: Tune PLE Window tracepoint
KVM: VMX: Change ple_window type to unsigned int
KVM: X86: Remove tailing newline for tracepoints
KVM: X86: Trace vcpu_id for vmexit
KVM: x86: Manually calculate reserved bits when loading PDPTRS
...
Pull core timer updates from Thomas Gleixner:
"Timers and timekeeping updates:
- A large overhaul of the posix CPU timer code which is a preparation
for moving the CPU timer expiry out into task work so it can be
properly accounted on the task/process.
An update to the bogus permission checks will come later during the
merge window as feedback was not complete before heading of for
travel.
- Switch the timerqueue code to use cached rbtrees and get rid of the
homebrewn caching of the leftmost node.
- Consolidate hrtimer_init() + hrtimer_init_sleeper() calls into a
single function
- Implement the separation of hrtimers to be forced to expire in hard
interrupt context even when PREEMPT_RT is enabled and mark the
affected timers accordingly.
- Implement a mechanism for hrtimers and the timer wheel to protect
RT against priority inversion and live lock issues when a (hr)timer
which should be canceled is currently executing the callback.
Instead of infinitely spinning, the task which tries to cancel the
timer blocks on a per cpu base expiry lock which is held and
released by the (hr)timer expiry code.
- Enable the Hyper-V TSC page based sched_clock for Hyper-V guests
resulting in faster access to timekeeping functions.
- Updates to various clocksource/clockevent drivers and their device
tree bindings.
- The usual small improvements all over the place"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (101 commits)
posix-cpu-timers: Fix permission check regression
posix-cpu-timers: Always clear head pointer on dequeue
hrtimer: Add a missing bracket and hide `migration_base' on !SMP
posix-cpu-timers: Make expiry_active check actually work correctly
posix-timers: Unbreak CONFIG_POSIX_TIMERS=n build
tick: Mark sched_timer to expire in hard interrupt context
hrtimer: Add kernel doc annotation for HRTIMER_MODE_HARD
x86/hyperv: Hide pv_ops access for CONFIG_PARAVIRT=n
posix-cpu-timers: Utilize timerqueue for storage
posix-cpu-timers: Move state tracking to struct posix_cputimers
posix-cpu-timers: Deduplicate rlimit handling
posix-cpu-timers: Remove pointless comparisons
posix-cpu-timers: Get rid of 64bit divisions
posix-cpu-timers: Consolidate timer expiry further
posix-cpu-timers: Get rid of zero checks
rlimit: Rewrite non-sensical RLIMIT_CPU comment
posix-cpu-timers: Respect INFINITY for hard RTTIME limit
posix-cpu-timers: Switch thread group sampling to array
posix-cpu-timers: Restructure expiry array
posix-cpu-timers: Remove cputime_expires
...
James Harvey reported a livelock that was introduced by commit
d012a06ab1 ("Revert "KVM: x86/mmu: Zap only the relevant pages when
removing a memslot"").
The livelock occurs because kvm_mmu_zap_all() as it exists today will
voluntarily reschedule and drop KVM's mmu_lock, which allows other vCPUs
to add shadow pages. With enough vCPUs, kvm_mmu_zap_all() can get stuck
in an infinite loop as it can never zap all pages before observing lock
contention or the need to reschedule. The equivalent of kvm_mmu_zap_all()
that was in use at the time of the reverted commit (4e103134b8, "KVM:
x86/mmu: Zap only the relevant pages when removing a memslot") employed
a fast invalidate mechanism and was not susceptible to the above livelock.
There are three ways to fix the livelock:
- Reverting the revert (commit d012a06ab1) is not a viable option as
the revert is needed to fix a regression that occurs when the guest has
one or more assigned devices. It's unlikely we'll root cause the device
assignment regression soon enough to fix the regression timely.
- Remove the conditional reschedule from kvm_mmu_zap_all(). However, although
removing the reschedule would be a smaller code change, it's less safe
in the sense that the resulting kvm_mmu_zap_all() hasn't been used in
the wild for flushing memslots since the fast invalidate mechanism was
introduced by commit 6ca18b6950 ("KVM: x86: use the fast way to
invalidate all pages"), back in 2013.
- Reintroduce the fast invalidate mechanism and use it when zapping shadow
pages in response to a memslot being deleted/moved, which is what this
patch does.
For all intents and purposes, this is a revert of commit ea145aacf4
("Revert "KVM: MMU: fast invalidate all pages"") and a partial revert of
commit 7390de1e99 ("Revert "KVM: x86: use the fast way to invalidate
all pages""), i.e. restores the behavior of commit 5304b8d37c ("KVM:
MMU: fast invalidate all pages") and commit 6ca18b6950 ("KVM: x86:
use the fast way to invalidate all pages") respectively.
Fixes: d012a06ab1 ("Revert "KVM: x86/mmu: Zap only the relevant pages when removing a memslot"")
Reported-by: James Harvey <jamespharvey20@gmail.com>
Cc: Alex Willamson <alex.williamson@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Emulation of VMPTRST can incorrectly inject a page fault
when passed an operand that points to an MMIO address.
The page fault will use uninitialized kernel stack memory
as the CR2 and error code.
The right behavior would be to abort the VM with a KVM_EXIT_INTERNAL_ERROR
exit to userspace; however, it is not an easy fix, so for now just ensure
that the error code and CR2 are zero.
Signed-off-by: Fuqian Huang <huangfq.daxian@gmail.com>
Cc: stable@vger.kernel.org
[add comment]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The implementation of vmread to memory is still incomplete, as it
lacks the ability to do vmread to I/O memory just like vmptrst.
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit cd7764fe9f ("KVM: x86: latch INITs while in system management mode")
changed code to latch INIT while vCPU is in SMM and process latched INIT
when leaving SMM. It left a subtle remark in commit message that similar
treatment should also be done while vCPU is in VMX non-root-mode.
However, INIT signals should actually be latched in various vCPU states:
(*) For both Intel and AMD, INIT signals should be latched while vCPU
is in SMM.
(*) For Intel, INIT should also be latched while vCPU is in VMX
operation and later processed when vCPU leaves VMX operation by
executing VMXOFF.
(*) For AMD, INIT should also be latched while vCPU runs with GIF=0
or in guest-mode with intercept defined on INIT signal.
To fix this:
1) Add kvm_x86_ops->apic_init_signal_blocked() such that each CPU vendor
can define the various CPU states in which INIT signals should be
blocked and modify kvm_apic_accept_events() to use it.
2) Modify vmx_check_nested_events() to check for pending INIT signal
while vCPU in guest-mode. If so, emualte vmexit on
EXIT_REASON_INIT_SIGNAL. Note that nSVM should have similar behaviour
but is currently left as a TODO comment to implement in the future
because nSVM don't yet implement svm_check_nested_events().
Note: Currently KVM nVMX implementation don't support VMX wait-for-SIPI
activity state as specified in MSR_IA32_VMX_MISC bits 6:8 exposed to
guest (See nested_vmx_setup_ctls_msrs()).
If and when support for this activity state will be implemented,
kvm_check_nested_events() would need to avoid emulating vmexit on
INIT signal in case activity-state is wait-for-SIPI. In addition,
kvm_apic_accept_events() would need to be modified to avoid discarding
SIPI in case VMX activity-state is wait-for-SIPI but instead delay
SIPI processing to vmx_check_nested_events() that would clear
pending APIC events and emulate vmexit on SIPI.
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Co-developed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Signed-off-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On AMD processors, in PAE 32bit mode, nested KVM instances don't
work. The L0 host get a kernel OOPS, which is related to
arch.mmu->pae_root being NULL.
The reason for this is that when setting up nested KVM instance,
arch.mmu is set to &arch.guest_mmu (while normally, it would be
&arch.root_mmu). However, the initialization and allocation of
pae_root only creates it in root_mmu. KVM code (ie. in
mmu_alloc_shadow_roots) then accesses arch.mmu->pae_root, which is the
unallocated arch.guest_mmu->pae_root.
This fix just allocates (and frees) pae_root in both guest_mmu and
root_mmu (and also lm_root if it was allocated). The allocation is
subject to previous restrictions ie. it won't allocate anything on
64-bit and AFAIK not on Intel.
Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=203923
Fixes: 14c07ad89f ("x86/kvm/mmu: introduce guest_mmu")
Signed-off-by: Jiri Palecek <jpalecek@web.de>
Tested-by: Jiri Palecek <jpalecek@web.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
inject_emulated_exception() returns true if and only if nested page
fault happens. However, page fault can come from guest page tables
walk, either nested or not nested. In both cases we should stop an
attempt to read under RIP and give guest to step over its own page
fault handler.
This is also visible when an emulated instruction causes a #GP fault
and the VMware backdoor is enabled. To handle the VMware backdoor,
KVM intercepts #GP faults; with only the next patch applied,
x86_emulate_instruction() injects a #GP but returns EMULATE_FAIL
instead of EMULATE_DONE. EMULATE_FAIL causes handle_exception_nmi()
(or gp_interception() for SVM) to re-inject the original #GP because it
thinks emulation failed due to a non-VMware opcode. This patch prevents
the issue as x86_emulate_instruction() will return EMULATE_DONE after
injecting the #GP.
Fixes: 6ea6e84309 ("KVM: x86: inject exceptions produced by x86_decode_insn")
Cc: stable@vger.kernel.org
Cc: Denis Lunev <den@virtuozzo.com>
Cc: Roman Kagan <rkagan@virtuozzo.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Signed-off-by: Jan Dakinevich <jan.dakinevich@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the recently added tracepoint for logging nested VM-Enter failures
instead of spamming the kernel log when hardware detects a consistency
check failure. Take the opportunity to print the name of the error code
instead of dumping the raw hex number, but limit the symbol table to
error codes that can reasonably be encountered by KVM.
Add an equivalent tracepoint in nested_vmx_check_vmentry_hw(), e.g. so
that tracing of "invalid control field" errors isn't suppressed when
nested early checks are enabled.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Debugging a failed VM-Enter is often like searching for a needle in a
haystack, e.g. there are over 80 consistency checks that funnel into
the "invalid control field" error code. One way to expedite debug is
to run the buggy code as an L1 guest under KVM (and pray that the
failing check is detected by KVM). However, extracting useful debug
information out of L0 KVM requires attaching a debugger to KVM and/or
modifying the source, e.g. to log which check is failing.
Make life a little less painful for VMM developers and add a tracepoint
for failed VM-Enter consistency checks. Ideally the tracepoint would
capture both what check failed and precisely why it failed, but logging
why a checked failed is difficult to do in a generic tracepoint without
resorting to invasive techniques, e.g. generating a custom string on
failure. That being said, for the vast majority of VM-Enter failures
the most difficult step is figuring out exactly what to look at, e.g.
figuring out which bit was incorrectly set in a control field is usually
not too painful once the guilty field as been identified.
To reach a happy medium between precision and ease of use, simply log
the code that detected a failed check, using a macro to execute the
check and log the trace event on failure. This approach enables tracing
arbitrary code, e.g. it's not limited to function calls or specific
formats of checks, and the changes to the existing code are minimally
invasive. A macro with a two-character name is desirable as usage of
the macro doesn't result in overly long lines or confusing alignment,
while still retaining some amount of readability. I.e. a one-character
name is a little too terse, and a three-character name results in the
contents being passed to the macro aligning with an indented line when
the macro is used an in if-statement, e.g.:
if (VCC(nested_vmx_check_long_line_one(...) &&
nested_vmx_check_long_line_two(...)))
return -EINVAL;
And that is the story of how the CC(), a.k.a. Consistency Check, macro
got its name.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Receiving an unexpected exit reason from hardware should be considered
as a severe bug in KVM. Therefore, instead of just injecting #UD to
guest and ignore it, exit to userspace on internal error so that
it could handle it properly (probably by terminating guest).
In addition, prefer to use vcpu_unimpl() instead of WARN_ONCE()
as handling unexpected exit reason should be a rare unexpected
event (that was expected to never happen) and we prefer to print
a message on it every time it occurs to guest.
Furthermore, dump VMCS/VMCB to dmesg to assist diagnosing such cases.
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move RDMSR and WRMSR emulation into common x86 code to consolidate
nearly identical SVM and VMX code.
Note, consolidating RDMSR introduces an extra indirect call, i.e.
retpoline, due to reaching {svm,vmx}_get_msr() via kvm_x86_ops, but a
guest kernel likely has bigger problems if increasing the latency of
RDMSR VM-Exits by ~70 cycles has a measurable impact on overall VM
performance. E.g. the only recurring RDMSR VM-Exits (after booting) on
my system running Linux 5.2 in the guest are for MSR_IA32_TSC_ADJUST via
arch_cpu_idle_enter().
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refactor the top-level MSR accessors to take/return the index and value
directly instead of requiring the caller to dump them into a msr_data
struct.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The PLE window tracepoint triggers even if the window is not changed,
and the wording can be a bit confusing too. One example line:
kvm_ple_window: vcpu 0: ple_window 4096 (shrink 4096)
It easily let people think of "the window now is 4096 which is
shrinked", but the truth is the value actually didn't change (4096).
Let's only dump this message if the value really changed, and we make
the message even simpler like:
kvm_ple_window: vcpu 4 old 4096 new 8192 (growed)
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The VMX ple_window is 32 bits wide, so logically it can overflow with
an int. The module parameter is declared as unsigned int which is
good, however the dynamic variable is not. Switching all the
ple_window references to use unsigned int.
The tracepoint changes will also affect SVM, but SVM is using an even
smaller width (16 bits) so it's always fine.
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Manually generate the PDPTR reserved bit mask when explicitly loading
PDPTRs. The reserved bits that are being tracked by the MMU reflect the
current paging mode, which is unlikely to be PAE paging in the vast
majority of flows that use load_pdptrs(), e.g. CR0 and CR4 emulation,
__set_sregs(), etc... This can cause KVM to incorrectly signal a bad
PDPTR, or more likely, miss a reserved bit check and subsequently fail
a VM-Enter due to a bad VMCS.GUEST_PDPTR.
Add a one off helper to generate the reserved bits instead of sharing
code across the MMU's calculations and the PDPTR emulation. The PDPTR
reserved bits are basically set in stone, and pushing a helper into
the MMU's calculation adds unnecessary complexity without improving
readability.
Oppurtunistically fix/update the comment for load_pdptrs().
Note, the buggy commit also introduced a deliberate functional change,
"Also remove bit 5-6 from rsvd_bits_mask per latest SDM.", which was
effectively (and correctly) reverted by commit cd9ae5fe47 ("KVM: x86:
Fix page-tables reserved bits"). A bit of SDM archaeology shows that
the SDM from late 2008 had a bug (likely a copy+paste error) where it
listed bits 6:5 as AVL and A for PDPTEs used for 4k entries but reserved
for 2mb entries. I.e. the SDM contradicted itself, and bits 6:5 are and
always have been reserved.
Fixes: 20c466b561 ("KVM: Use rsvd_bits_mask in load_pdptrs()")
Cc: stable@vger.kernel.org
Cc: Nadav Amit <nadav.amit@gmail.com>
Reported-by: Doug Reiland <doug.reiland@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We can easily route hardware interrupts directly into VM context when
they target the "Fixed" or "LowPriority" delivery modes.
However, on modes such as "SMI" or "Init", we need to go via KVM code
to actually put the vCPU into a different mode of operation, so we can
not post the interrupt
Add code in the VMX and SVM PI logic to explicitly refuse to establish
posted mappings for advanced IRQ deliver modes. This reflects the logic
in __apic_accept_irq() which also only ever passes Fixed and LowPriority
interrupts as posted interrupts into the guest.
This fixes a bug I have with code which configures real hardware to
inject virtual SMIs into my guest.
Signed-off-by: Alexander Graf <graf@amazon.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Wanpeng Li <wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't advance RIP or inject a single-step #DB if emulation signals a
fault. This logic applies to all state updates that are conditional on
clean retirement of the emulation instruction, e.g. updating RFLAGS was
previously handled by commit 38827dbd3f ("KVM: x86: Do not update
EFLAGS on faulting emulation").
Not advancing RIP is likely a nop, i.e. ctxt->eip isn't updated with
ctxt->_eip until emulation "retires" anyways. Skipping #DB injection
fixes a bug reported by Andy Lutomirski where a #UD on SYSCALL due to
invalid state with EFLAGS.TF=1 would loop indefinitely due to emulation
overwriting the #UD with #DB and thus restarting the bad SYSCALL over
and over.
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: stable@vger.kernel.org
Reported-by: Andy Lutomirski <luto@kernel.org>
Fixes: 663f4c61b8 ("KVM: x86: handle singlestep during emulation")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
If kvm_intel is loaded with nested=0 parameter an attempt to perform
KVM_GET_SUPPORTED_HV_CPUID results in OOPS as nested_get_evmcs_version hook
in kvm_x86_ops is NULL (we assign it in nested_vmx_hardware_setup() and
this only happens in case nested is enabled).
Check that kvm_x86_ops->nested_get_evmcs_version is not NULL before
calling it. With this, we can remove the stub from svm as it is no
longer needed.
Cc: <stable@vger.kernel.org>
Fixes: e2e871ab2f ("x86/kvm/hyper-v: Introduce nested_get_evmcs_version() helper")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Fix an incorrect/stale comment regarding the vmx_vcpu pointer, as guest
registers are now loaded using a direct pointer to the start of the
register array.
Opportunistically add a comment to document why the vmx_vcpu pointer is
needed, its consumption via 'call vmx_update_host_rsp' is rather subtle.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM implementations that wrap struct kvm_vcpu with a vendor specific
struct, e.g. struct vcpu_vmx, must place the vcpu member at offset 0,
otherwise the usercopy region intended to encompass struct kvm_vcpu_arch
will instead overlap random chunks of the vendor specific struct.
E.g. padding a large number of bytes before struct kvm_vcpu triggers
a usercopy warn when running with CONFIG_HARDENED_USERCOPY=y.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove a few stale checks for non-NULL ops now that the ops in question
are implemented by both VMX and SVM.
Note, this is **not** stable material, the Fixes tags are there purely
to show when a particular op was first supported by both VMX and SVM.
Fixes: 74f169090b ("kvm/svm: Setup MCG_CAP on AMD properly")
Fixes: b31c114b82 ("KVM: X86: Provide a capability to disable PAUSE intercepts")
Fixes: 411b44ba80 ("svm: Implements update_pi_irte hook to setup posted interrupt")
Cc: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace the open-coded "is MMIO SPTE" checks in the MMU warnings
related to software-based access/dirty tracking to make the code
slightly more self-documenting.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When shadow paging is enabled, KVM tracks the allowed access type for
MMIO SPTEs so that it can do a permission check on a MMIO GVA cache hit
without having to walk the guest's page tables. The tracking is done
by retaining the WRITE and USER bits of the access when inserting the
MMIO SPTE (read access is implicitly allowed), which allows the MMIO
page fault handler to retrieve and cache the WRITE/USER bits from the
SPTE.
Unfortunately for EPT, the mask used to retain the WRITE/USER bits is
hardcoded using the x86 paging versions of the bits. This funkiness
happens to work because KVM uses a completely different mask/value for
MMIO SPTEs when EPT is enabled, and the EPT mask/value just happens to
overlap exactly with the x86 WRITE/USER bits[*].
Explicitly define the access mask for MMIO SPTEs to accurately reflect
that EPT does not want to incorporate any access bits into the SPTE, and
so that KVM isn't subtly relying on EPT's WX bits always being set in
MMIO SPTEs, e.g. attempting to use other bits for experimentation breaks
horribly.
Note, vcpu_match_mmio_gva() explicits prevents matching GVA==0, and all
TDP flows explicit set mmio_gva to 0, i.e. zeroing vcpu->arch.access for
EPT has no (known) functional impact.
[*] Using WX to generate EPT misconfigurations (equivalent to reserved
bit page fault) ensures KVM can employ its MMIO page fault tricks
even platforms without reserved address bits.
Fixes: ce88decffd ("KVM: MMU: mmio page fault support")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename "access" to "mmio_access" to match the other MMIO cache members
and to make it more obvious that it's tracking the access permissions
for the MMIO cache.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Just like we do with other intercepts, in vmrun_interception() we should be
doing kvm_skip_emulated_instruction() and not just RIP += 3. Also, it is
wrong to increment RIP before nested_svm_vmrun() as it can result in
kvm_inject_gp().
We can't call kvm_skip_emulated_instruction() after nested_svm_vmrun() so
move it inside.
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Regardless of whether or not nested_svm_vmrun_msrpm() fails, we return 1
from vmrun_interception() so there's no point in doing goto. Also,
nested_svm_vmrun_msrpm() call can be made from nested_svm_vmrun() where
other nested launch issues are handled.
nested_svm_vmrun() returns a bool, however, its result is ignored in
vmrun_interception() as we always return '1'. As a preparatory change
to putting kvm_skip_emulated_instruction() inside nested_svm_vmrun()
make nested_svm_vmrun() return an int (always '1' for now).
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Various intercepts hard-code the respective instruction lengths to optimize
skip_emulated_instruction(): when next_rip is pre-set we skip
kvm_emulate_instruction(vcpu, EMULTYPE_SKIP). The optimization is, however,
incorrect: different (redundant) prefixes could be used to enlarge the
instruction. We can't really avoid decoding.
svm->next_rip is not used when CPU supports 'nrips' (X86_FEATURE_NRIPS)
feature: next RIP is provided in VMCB. The feature is not really new
(Opteron G3s had it already) and the change should have zero affect.
Remove manual svm->next_rip setting with hard-coded instruction lengths.
The only case where we now use svm->next_rip is EXIT_IOIO: the instruction
length is provided to us by hardware.
Hardcoded RIP advancement remains in vmrun_interception(), this is going to
be taken care of separately.
Reported-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To avoid hardcoding xsetbv length to '3' we need to support decoding it in
the emulator.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When doing x86_emulate_instruction(EMULTYPE_SKIP) interrupt shadow has to
be cleared if and only if the skipping is successful.
There are two immediate issues:
- In SVM skip_emulated_instruction() we are not zapping interrupt shadow
in case kvm_emulate_instruction(EMULTYPE_SKIP) is used to advance RIP
(!nrpip_save).
- In VMX handle_ept_misconfig() when running as a nested hypervisor we
(static_cpu_has(X86_FEATURE_HYPERVISOR) case) forget to clear interrupt
shadow.
Note that we intentionally don't handle the case when the skipped
instruction is supposed to prolong the interrupt shadow ("MOV/POP SS") as
skip-emulation of those instructions should not happen under normal
circumstances.
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On AMD, kvm_x86_ops->skip_emulated_instruction(vcpu) can, in theory,
fail: in !nrips case we call kvm_emulate_instruction(EMULTYPE_SKIP).
Currently, we only do printk(KERN_DEBUG) when this happens and this
is not ideal. Propagate the error up the stack.
On VMX, skip_emulated_instruction() doesn't fail, we have two call
sites calling it explicitly: handle_exception_nmi() and
handle_task_switch(), we can just ignore the result.
On SVM, we also have two explicit call sites:
svm_queue_exception() and it seems we don't need to do anything there as
we check if RIP was advanced or not. In task_switch_interception(),
however, we are better off not proceeding to kvm_task_switch() in case
skip_emulated_instruction() failed.
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
svm->next_rip is only used by skip_emulated_instruction() and in case
kvm_set_msr() fails we rightfully don't do that. Move svm->next_rip
advancement to 'else' branch to avoid creating false impression that
it's always advanced (and make it look like rdmsr_interception()).
This is a preparatory change to removing hardcoded RIP advancement
from instruction intercepts, no functional change.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Jump to the common error handling in x86_decode_insn() if
__do_insn_fetch_bytes() fails so that its error code is converted to the
appropriate return type. Although the various helpers used by
x86_decode_insn() return X86EMUL_* values, x86_decode_insn() itself
returns EMULATION_FAILED or EMULATION_OK.
This doesn't cause a functional issue as the sole caller,
x86_emulate_instruction(), currently only cares about success vs.
failure, and success is indicated by '0' for both types
(X86EMUL_CONTINUE and EMULATION_OK).
Fixes: 285ca9e948 ("KVM: emulate: speed up do_insn_fetch")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Similar to AMD bits, set the Intel bits from the vendor-independent
feature and bug flags, because KVM_GET_SUPPORTED_CPUID does not care
about the vendor and they should be set on AMD processors as well.
Suggested-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Even though it is preferrable to use SPEC_CTRL (represented by
X86_FEATURE_AMD_SSBD) instead of VIRT_SPEC, VIRT_SPEC is always
supported anyway because otherwise it would be impossible to
migrate from old to new CPUs. Make this apparent in the
result of KVM_GET_SUPPORTED_CPUID as well.
However, we need to hide the bit on Intel processors, so move
the setting to svm_set_supported_cpuid.
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reported-by: Eduardo Habkost <ehabkost@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>