Pull x96 apic updates from Thomas Gleixner:
"Updates for the x86 APIC interrupt handling and APIC timer:
- Fix a long standing issue with spurious interrupts which was caused
by the big vector management rework a few years ago. Robert Hodaszi
provided finally enough debug data and an excellent initial failure
analysis which allowed to understand the underlying issues.
This contains a change to the core interrupt management code which
is required to handle this correctly for the APIC/IO_APIC. The core
changes are NOOPs for most architectures except ARM64. ARM64 is not
impacted by the change as confirmed by Marc Zyngier.
- Newer systems allow to disable the PIT clock for power saving
causing panic in the timer interrupt delivery check of the IO/APIC
when the HPET timer is not enabled either. While the clock could be
turned on this would cause an endless whack a mole game to chase
the proper register in each affected chipset.
These systems provide the relevant frequencies for TSC, CPU and the
local APIC timer via CPUID and/or MSRs, which allows to avoid the
PIT/HPET based calibration. As the calibration code is the only
usage of the legacy timers on modern systems and is skipped anyway
when the frequencies are known already, there is no point in
setting up the PIT and actually checking for the interrupt delivery
via IO/APIC.
To achieve this on a wide variety of platforms, the CPUID/MSR based
frequency readout has been made more robust, which also allowed to
remove quite some workarounds which turned out to be not longer
required. Thanks to Daniel Drake for analysis, patches and
verification"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/irq: Seperate unused system vectors from spurious entry again
x86/irq: Handle spurious interrupt after shutdown gracefully
x86/ioapic: Implement irq_get_irqchip_state() callback
genirq: Add optional hardware synchronization for shutdown
genirq: Fix misleading synchronize_irq() documentation
genirq: Delay deactivation in free_irq()
x86/timer: Skip PIT initialization on modern chipsets
x86/apic: Use non-atomic operations when possible
x86/apic: Make apic_bsp_setup() static
x86/tsc: Set LAPIC timer period to crystal clock frequency
x86/apic: Rename 'lapic_timer_frequency' to 'lapic_timer_period'
x86/tsc: Use CPUID.0x16 to calculate missing crystal frequency
Quite some time ago the interrupt entry stubs for unused vectors in the
system vector range got removed and directly mapped to the spurious
interrupt vector entry point.
Sounds reasonable, but it's subtly broken. The spurious interrupt vector
entry point pushes vector number 0xFF on the stack which makes the whole
logic in __smp_spurious_interrupt() pointless.
As a consequence any spurious interrupt which comes from a vector != 0xFF
is treated as a real spurious interrupt (vector 0xFF) and not
acknowledged. That subsequently stalls all interrupt vectors of equal and
lower priority, which brings the system to a grinding halt.
This can happen because even on 64-bit the system vector space is not
guaranteed to be fully populated. A full compile time handling of the
unused vectors is not possible because quite some of them are conditonally
populated at runtime.
Bring the entry stubs back, which wastes 160 bytes if all stubs are unused,
but gains the proper handling back. There is no point to selectively spare
some of the stubs which are known at compile time as the required code in
the IDT management would be way larger and convoluted.
Do not route the spurious entries through common_interrupt and do_IRQ() as
the original code did. Route it to smp_spurious_interrupt() which evaluates
the vector number and acts accordingly now that the real vector numbers are
handed in.
Fixup the pr_warn so the actual spurious vector (0xff) is clearly
distiguished from the other vectors and also note for the vectored case
whether it was pending in the ISR or not.
"Spurious APIC interrupt (vector 0xFF) on CPU#0, should never happen."
"Spurious interrupt vector 0xed on CPU#1. Acked."
"Spurious interrupt vector 0xee on CPU#1. Not pending!."
Fixes: 2414e021ac ("x86: Avoid building unused IRQ entry stubs")
Reported-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Jan Beulich <jbeulich@suse.com>
Link: https://lkml.kernel.org/r/20190628111440.550568228@linutronix.de
The next patch in this series will have to make the definition of
irq_cpustat_t available to entering_irq().
Inclusion of asm/hardirq.h into asm/apic.h would cause circular header
dependencies like
asm/smp.h
asm/apic.h
asm/hardirq.h
linux/irq.h
linux/topology.h
linux/smp.h
asm/smp.h
or
linux/gfp.h
linux/mmzone.h
asm/mmzone.h
asm/mmzone_64.h
asm/smp.h
asm/apic.h
asm/hardirq.h
linux/irq.h
linux/irqdesc.h
linux/kobject.h
linux/sysfs.h
linux/kernfs.h
linux/idr.h
linux/gfp.h
and others.
This causes compilation errors because of the header guards becoming
effective in the second inclusion: symbols/macros that had been defined
before wouldn't be available to intermediate headers in the #include chain
anymore.
A possible workaround would be to move the definition of irq_cpustat_t
into its own header and include that from both, asm/hardirq.h and
asm/apic.h.
However, this wouldn't solve the real problem, namely asm/harirq.h
unnecessarily pulling in all the linux/irq.h cruft: nothing in
asm/hardirq.h itself requires it. Also, note that there are some other
archs, like e.g. arm64, which don't have that #include in their
asm/hardirq.h.
Remove the linux/irq.h #include from x86' asm/hardirq.h.
Fix resulting compilation errors by adding appropriate #includes to *.c
files as needed.
Note that some of these *.c files could be cleaned up a bit wrt. to their
set of #includes, but that should better be done from separate patches, if
at all.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The idt_setup_apic_and_irq_gates() sets the gates from
FIRST_EXTERNAL_VECTOR up to FIRST_SYSTEM_VECTOR first. then secondly, from
FIRST_SYSTEM_VECTOR to NR_VECTORS, it takes both APIC=y and APIC=n into
account.
But for APIC=n, the FIRST_SYSTEM_VECTOR is equal to NR_VECTORS, all
vectors has been set at the first step.
Simplify the second step, make it just work for APIC=y.
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20180523023555.2933-1-douly.fnst@cn.fujitsu.com
There's nothing IST-worthy about #BP/int3. We don't allow kprobes
in the small handful of places in the kernel that run at CPL0 with
an invalid stack, and 32-bit kernels have used normal interrupt
gates for #BP forever.
Furthermore, we don't allow kprobes in places that have usergs while
in kernel mode, so "paranoid" is also unnecessary.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Pull x86 APIC updates from Thomas Gleixner:
"This update provides a major overhaul of the APIC initialization and
vector allocation code:
- Unification of the APIC and interrupt mode setup which was
scattered all over the place and was hard to follow. This also
distangles the timer setup from the APIC initialization which
brings a clear separation of functionality.
Great detective work from Dou Lyiang!
- Refactoring of the x86 vector allocation mechanism. The existing
code was based on nested loops and rather convoluted APIC callbacks
which had a horrible worst case behaviour and tried to serve all
different use cases in one go. This led to quite odd hacks when
supporting the new managed interupt facility for multiqueue devices
and made it more or less impossible to deal with the vector space
exhaustion which was a major roadblock for server hibernation.
Aside of that the code dealing with cpu hotplug and the system
vectors was disconnected from the actual vector management and
allocation code, which made it hard to follow and maintain.
Utilizing the new bitmap matrix allocator core mechanism, the new
allocator and management code consolidates the handling of system
vectors, legacy vectors, cpu hotplug mechanisms and the actual
allocation which needs to be aware of system and legacy vectors and
hotplug constraints into a single consistent entity.
This has one visible change: The support for multi CPU targets of
interrupts, which is only available on a certain subset of
CPUs/APIC variants has been removed in favour of single interrupt
targets. A proper analysis of the multi CPU target feature revealed
that there is no real advantage as the vast majority of interrupts
end up on the CPU with the lowest APIC id in the set of target CPUs
anyway. That change was agreed on by the relevant folks and allowed
to simplify the implementation significantly and to replace rather
fragile constructs like the vector cleanup IPI with straight
forward and solid code.
Furthermore this allowed to cleanly separate the allocation details
for legacy, normal and managed interrupts:
* Legacy interrupts are not longer wasting 16 vectors
unconditionally
* Managed interrupts have now a guaranteed vector reservation, but
the actual vector assignment happens when the interrupt is
requested. It's guaranteed not to fail.
* Normal interrupts no longer allocate vectors unconditionally
when the interrupt is set up (IO/APIC init or MSI(X) enable).
The mechanism has been switched to a best effort reservation
mode. The actual allocation happens when the interrupt is
requested. Contrary to managed interrupts the request can fail
due to vector space exhaustion, but drivers must handle a fail
of request_irq() anyway. When the interrupt is freed, the vector
is handed back as well.
This solves a long standing problem with large unconditional
vector allocations for a certain class of enterprise devices
which prevented server hibernation due to vector space
exhaustion when the unused allocated vectors had to be migrated
to CPU0 while unplugging all non boot CPUs.
The code has been equipped with trace points and detailed debugfs
information to aid analysis of the vector space"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
x86/vector/msi: Select CONFIG_GENERIC_IRQ_RESERVATION_MODE
PCI/MSI: Set MSI_FLAG_MUST_REACTIVATE in core code
genirq: Add config option for reservation mode
x86/vector: Use correct per cpu variable in free_moved_vector()
x86/apic/vector: Ignore set_affinity call for inactive interrupts
x86/apic: Fix spelling mistake: "symmectic" -> "symmetric"
x86/apic: Use dead_cpu instead of current CPU when cleaning up
ACPI/init: Invoke early ACPI initialization earlier
x86/vector: Respect affinity mask in irq descriptor
x86/irq: Simplify hotplug vector accounting
x86/vector: Switch IOAPIC to global reservation mode
x86/vector/msi: Switch to global reservation mode
x86/vector: Handle managed interrupts proper
x86/io_apic: Reevaluate vector configuration on activate()
iommu/amd: Reevaluate vector configuration on activate()
iommu/vt-d: Reevaluate vector configuration on activate()
x86/apic/msi: Force reactivation of interrupts at startup time
x86/vector: Untangle internal state from irq_cfg
x86/vector: Compile SMP only code conditionally
x86/apic: Remove unused callbacks
...
Commit b70543a0b2b6("x86/idt: Move regular trap init to tables") moves
regular trap init for each trap vector into a table based
initialization. It introduced the initialization for vector X86_TRAP_BP
which was not in the code which it replaced. This breaks uprobe
functionality for x86_32; the probed program segfaults instead of handling
the probe proper.
The reason for this is that TRAP_BP is set up as system interrupt gate
(DPL3) in the early IDT and then replaced by a regular interrupt gate
(DPL0) in idt_setup_traps(). The DPL0 restriction causes the int3 trap
to fail with a #GP resulting in a SIGSEGV of the probed program.
On 64bit this does not cause a problem because the IDT entry is replaced
with a system interrupt gate (DPL3) with interrupt stack afterwards.
Remove X86_TRAP_BP from the def_idts table which is used in
idt_setup_traps(). Remove a redundant entry for X86_TRAP_NMI in def_idts
while at it. Tested on both x86_64 and x86_32.
[ tglx: Amended changelog with a description of the root cause ]
Fixes: b70543a0b2b6("x86/idt: Move regular trap init to tables")
Reported-and-tested-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: a.p.zijlstra@chello.nl
Cc: ast@fb.com
Cc: oleg@redhat.com
Cc: luto@kernel.org
Cc: kernel-team@fb.com
Link: https://lkml.kernel.org/r/20171108192845.552709-1-yhs@fb.com