Many clocks that are used to provide sched_clock will reset during
suspend. If read_sched_clock returns 0 after suspend, sched_clock will
appear to jump forward. This patch resets cd.epoch_cyc to the current
value of read_sched_clock during resume, which causes sched_clock() just
after suspend to return the same value as sched_clock() just before
suspend.
In addition, during the window where epoch_ns has been updated before
suspend, but epoch_cyc has not been updated after suspend, it is unknown
whether the clock has reset or not, and sched_clock() could return a
bogus value. Add a suspended flag, and return the pre-suspend epoch_ns
value during this period.
The new behavior is triggered by calling setup_sched_clock_needs_suspend
instead of setup_sched_clock.
Signed-off-by: Colin Cross <ccross@android.com>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
sched_clock is supposed to be initialized early - in the recently added
init_early platform hook. However, in doing so we end up calling
mod_timer() before the timer lists are initialized, resulting in an
oops.
Split the initialization in two - the part which the platform calls
early which starts things off. The addition of the timer can be
delayed until after we have more of the kernel initialized - when the
normal time sources are initialized.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Provide common sched_clock() infrastructure for platforms to use to
create a 64-bit ns based sched_clock() implementation from a counter
running at a non-variable clock rate.
This implementation is based upon maintaining an epoch for the counter
and an epoch for the nanosecond time. When we desire a sched_clock()
time, we calculate the number of counter ticks since the last epoch
update, convert this to nanoseconds and add to the epoch nanoseconds.
We regularly refresh these epochs within the counter wrap interval.
We perform a similar calculation as above, and store the new epochs.
We read and write the epochs in such a way that sched_clock() can easily
(and locklessly) detect when an update is in progress, and repeat the
loading of these constants when they're known not to be stable. The
one caveat is that sched_clock() is not called in the middle of an
update. We achieve that by disabling IRQs.
Finally, if the clock rate is known at compile time, the counter to ns
conversion factors can be specified, allowing sched_clock() to be tightly
optimized. We ensure that these factors are correct by providing an
initialization function which performs a run-time check.
Acked-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Tested-by: Will Deacon <will.deacon@arm.com>
Tested-by: Mikael Pettersson <mikpe@it.uu.se>
Tested-by: Eric Miao <eric.y.miao@gmail.com>
Tested-by: Olof Johansson <olof@lixom.net>
Tested-by: Jamie Iles <jamie@jamieiles.com>
Reviewed-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>