Commit Graph

150436 Commits

Author SHA1 Message Date
Michael Ellerman
b536da7c2d powerpc/64s: Drop unused loc parameter to MASKABLE_EXCEPTION macros
We pass the "loc" (location) parameter to MASKABLE_EXCEPTION and
friends, but it's not used, so drop it.

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:38 +10:00
Michael Ellerman
0a55c24185 powerpc/64s: Remove PSERIES naming from the MASKABLE macros
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:38 +10:00
Michael Ellerman
6adc6e9c07 powerpc/64s: Drop _MASKABLE_RELON_EXCEPTION_PSERIES()
_MASKABLE_RELON_EXCEPTION_PSERIES() does nothing useful, update all
callers to use __MASKABLE_RELON_EXCEPTION_PSERIES() directly.

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:37 +10:00
Michael Ellerman
9bf2877ac1 powerpc/64s: Drop _MASKABLE_EXCEPTION_PSERIES()
_MASKABLE_EXCEPTION_PSERIES() does nothing useful, update all callers
to use __MASKABLE_EXCEPTION_PSERIES() directly.

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:37 +10:00
Michael Ellerman
bdf08e1da0 powerpc/64s: Rename EXCEPTION_PROLOG_PSERIES to EXCEPTION_PROLOG
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:36 +10:00
Michael Ellerman
270373f14f powerpc/64s: Rename EXCEPTION_RELON_PROLOG_PSERIES
To just EXCEPTION_RELON_PROLOG().

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:36 +10:00
Michael Ellerman
6ebb939740 powerpc/64s: Rename EXCEPTION_RELON_PROLOG_PSERIES_1
The EXCEPTION_RELON_PROLOG_PSERIES_1() macro does the same job as
EXCEPTION_PROLOG_2 (which we just recently created), except for
"RELON" (relocation on) exceptions.

So rename it as such.

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:35 +10:00
Michael Ellerman
94f3cc8e36 powerpc/64s: Remove PSERIES from the NORI macros
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:35 +10:00
Michael Ellerman
cb58a4a4b3 powerpc/64s: Rename EXCEPTION_PROLOG_PSERIES_1 to EXCEPTION_PROLOG_2
As with the other patches in this series, we are removing the
"PSERIES" from the name as it's no longer meaningful.

In this case it's not simply a case of removing the "PSERIES" as that
would result in a clash with the existing EXCEPTION_PROLOG_1.

Instead we name this one EXCEPTION_PROLOG_2, as it's usually used in
sequence after 0 and 1.

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:35 +10:00
Michael Ellerman
b706f42362 powerpc/64s: Rename STD_RELON_EXCEPTION_PSERIES_OOL to STD_RELON_EXCEPTION_OOL
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:34 +10:00
Michael Ellerman
e42389c5f1 powerpc/64s: Rename STD_RELON_EXCEPTION_PSERIES to STD_RELON_EXCEPTION
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:34 +10:00
Michael Ellerman
75e8bef3d6 powerpc/64s: Rename STD_EXCEPTION_PSERIES_OOL to STD_EXCEPTION_OOL
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:33 +10:00
Michael Ellerman
e899fce509 powerpc/64s: Rename STD_EXCEPTION_PSERIES to STD_EXCEPTION
The "PSERIES" in STD_EXCEPTION_PSERIES is to differentiate the macros
from the legacy iSeries versions, which are called
STD_EXCEPTION_ISERIES. It is not anything to do with pseries vs
powernv or powermac etc.

We removed the legacy iSeries code in 2012, in commit 8ee3e0d69623x
("powerpc: Remove the main legacy iSerie platform code").

So remove "PSERIES" from the macros.

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:33 +10:00
Michael Ellerman
92b6d65c07 powerpc/64s: Move SET_SCRATCH0() into EXCEPTION_RELON_PROLOG_PSERIES()
EXCEPTION_RELON_PROLOG_PSERIES() only has two users,
STD_RELON_EXCEPTION_PSERIES() and STD_RELON_EXCEPTION_HV() both of
which "call" SET_SCRATCH0(), so just move SET_SCRATCH0() into
EXCEPTION_RELON_PROLOG_PSERIES().

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:32 +10:00
Michael Ellerman
4a7a0a8444 powerpc/64s: Move SET_SCRATCH0() into EXCEPTION_PROLOG_PSERIES()
EXCEPTION_PROLOG_PSERIES() only has two users, STD_EXCEPTION_PSERIES()
and STD_EXCEPTION_HV() both of which "call" SET_SCRATCH0(), so just
move SET_SCRATCH0() into EXCEPTION_PROLOG_PSERIES().

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:31 +10:00
Darren Stevens
250a93501d powerpc/pasemi: Search for PCI root bus by compatible property
Pasemi arch code finds the root of the PCI-e bus by searching the
device-tree for a node called 'pxp'. But the root bus has a compatible
property of 'pasemi,rootbus' so search for that instead.

Signed-off-by: Darren Stevens <darren@stevens-zone.net>
Acked-by: Olof Johansson <olof@lixom.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:31 +10:00
Christophe Leroy
9412b23450 powerpc/lib: Implement strlen() in assembly for PPC32
The generic implementation of strlen() reads strings byte per byte.

This patch implements strlen() in assembly based on a read of entire
words, in the same spirit as what some other arches and glibc do.

On a 8xx the time spent in strlen is reduced by 3/4 for long strings.

strlen() selftest on an 8xx provides the following values:

Before the patch (ie with the generic strlen() in lib/string.c):

  len 256 : time = 1.195055
  len 016 : time = 0.083745
  len 008 : time = 0.046828
  len 004 : time = 0.028390

After the patch:

  len 256 : time = 0.272185 ==> 78% improvment
  len 016 : time = 0.040632 ==> 51% improvment
  len 008 : time = 0.033060 ==> 29% improvment
  len 004 : time = 0.029149 ==> 2% degradation

On a 832x:

Before the patch:

  len 256 : time = 0.236125
  len 016 : time = 0.018136
  len 008 : time = 0.011000
  len 004 : time = 0.007229

After the patch:

  len 256 : time = 0.094950 ==> 60% improvment
  len 016 : time = 0.013357 ==> 26% improvment
  len 008 : time = 0.010586 ==> 4% improvment
  len 004 : time = 0.008784

Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:30 +10:00
Mahesh Salgaonkar
94675cceac powerpc/pseries: Defer the logging of rtas error to irq work queue.
rtas_log_buf is a buffer to hold RTAS event data that are communicated
to kernel by hypervisor. This buffer is then used to pass RTAS event
data to user through proc fs. This buffer is allocated from
vmalloc (non-linear mapping) area.

On Machine check interrupt, register r3 points to RTAS extended event
log passed by hypervisor that contains the MCE event. The pseries
machine check handler then logs this error into rtas_log_buf. The
rtas_log_buf is a vmalloc-ed (non-linear) buffer we end up taking up a
page fault (vector 0x300) while accessing it. Since machine check
interrupt handler runs in NMI context we can not afford to take any
page fault. Page faults are not honored in NMI context and causes
kernel panic. Apart from that, as Nick pointed out,
pSeries_log_error() also takes a spin_lock while logging error which
is not safe in NMI context. It may endup in deadlock if we get another
MCE before releasing the lock. Fix this by deferring the logging of
rtas error to irq work queue.

Current implementation uses two different buffers to hold rtas error
log depending on whether extended log is provided or not. This makes
bit difficult to identify which buffer has valid data that needs to
logged later in irq work. Simplify this using single buffer, one per
paca, and copy rtas log to it irrespective of whether extended log is
provided or not. Allocate this buffer below RMA region so that it can
be accessed in real mode mce handler.

Fixes: b96672dd84 ("powerpc: Machine check interrupt is a non-maskable interrupt")
Cc: stable@vger.kernel.org # v4.14+
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:29 +10:00
Mahesh Salgaonkar
74e96bf44f powerpc/pseries: Avoid using the size greater than RTAS_ERROR_LOG_MAX.
The global mce data buffer that used to copy rtas error log is of 2048
(RTAS_ERROR_LOG_MAX) bytes in size. Before the copy we read
extended_log_length from rtas error log header, then use max of
extended_log_length and RTAS_ERROR_LOG_MAX as a size of data to be copied.
Ideally the platform (phyp) will never send extended error log with
size > 2048. But if that happens, then we have a risk of buffer overrun
and corruption. Fix this by using min_t instead.

Fixes: d368514c30 ("powerpc: Fix corruption when grabbing FWNMI data")
Reported-by: Michal Suchanek <msuchanek@suse.com>
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:28 +10:00
Benjamin Herrenschmidt
e27e0a9465 powerpc/xive: Remove xive_kexec_teardown_cpu()
It's identical to xive_teardown_cpu() so just use the latter

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:28 +10:00
Benjamin Herrenschmidt
dbc5740247 powerpc/xive: Remove now useless pr_debug statements
Those overly verbose statement in the setup of the pool VP
aren't particularly useful (esp. considering we don't actually
use the pool, we configure it bcs HW requires it only). So
remove them which improves the code readability.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:27 +10:00
Nicholas Piggin
34c604d275 powerpc/64s: free page table caches at exit_mmap time
The kernel page table caches are tied to init_mm, so there is no
more need for them after userspace is finished.

destroy_context() gets called when we drop the last reference for an
mm, which can be much later than the task exit due to other lazy mm
references to it. We can free the page table cache pages on task exit
because they only cache the userspace page tables and kernel threads
should not access user space addresses.

The mapping for kernel threads itself is maintained in init_mm and
page table cache for that is attached to init_mm.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
[mpe: Merge change log additions from Aneesh]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:27 +10:00
Nicholas Piggin
5a6099346c powerpc/64s/radix: tlb do not flush on page size when fullmm
When the mm is being torn down there will be a full PID flush so
there is no need to flush the TLB on page size changes.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:26 +10:00
Michael Ellerman
7cd129b4b5 powerpc: Add a checkpatch wrapper with our preferred settings
This makes it easy to run checkpatch with settings that I like.

Usage is eg:

  $ ./arch/powerpc/tools/checkpatch.sh -g origin/master..

To check all commits since origin/master.

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Russell Currey <ruscur@russell.cc>
2018-08-07 21:49:25 +10:00
Michael Ellerman
4da1f79227 powerpc/64: Disable irq restore warning for now
We recently added a warning in arch_local_irq_restore() to check that
the soft masking state matches reality.

Unfortunately it trips in a few places, which are not entirely trivial
to fix. The key problem is if we're doing function_graph tracing of
restore_math(), the warning pops and then seems to recurse. It's not
entirely clear because the system continuously oopses on all CPUs,
with the output interleaved and unreadable.

It's also been observed on a G5 coming out of idle.

Until we can fix those cases disable the warning for now.

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-07 21:49:24 +10:00
Martin Schwidefsky
26f843848b s390: fix br_r1_trampoline for machines without exrl
For machines without the exrl instruction the BFP jit generates
code that uses an "br %r1" instruction located in the lowcore page.
Unfortunately there is a cut & paste error that puts an additional
"larl %r1,.+14" instruction in the code that clobbers the branch
target address in %r1. Remove the larl instruction.

Cc: <stable@vger.kernel.org> # v4.17+
Fixes: de5cb6eb51 ("s390: use expoline thunks in the BPF JIT")
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2018-08-07 13:38:16 +02:00
Martin Schwidefsky
5eda25b102 s390/lib: use expoline for all bcr instructions
The memove, memset, memcpy, __memset16, __memset32 and __memset64
function have an additional indirect return branch in form of a
"bzr" instruction. These need to use expolines as well.

Cc: <stable@vger.kernel.org> # v4.17+
Fixes: 97489e0663 ("s390/lib: use expoline for indirect branches")
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2018-08-07 13:38:13 +02:00
Thomas Gleixner
bc2d8d262c cpu/hotplug: Fix SMT supported evaluation
Josh reported that the late SMT evaluation in cpu_smt_state_init() sets
cpu_smt_control to CPU_SMT_NOT_SUPPORTED in case that 'nosmt' was supplied
on the kernel command line as it cannot differentiate between SMT disabled
by BIOS and SMT soft disable via 'nosmt'. That wreckages the state and
makes the sysfs interface unusable.

Rework this so that during bringup of the non boot CPUs the availability of
SMT is determined in cpu_smt_allowed(). If a newly booted CPU is not a
'primary' thread then set the local cpu_smt_available marker and evaluate
this explicitely right after the initial SMP bringup has finished.

SMT evaulation on x86 is a trainwreck as the firmware has all the
information _before_ booting the kernel, but there is no interface to query
it.

Fixes: 73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
Reported-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-08-07 12:25:30 +02:00
Ard Biesheuvel
22240df7ac crypto: arm64/ghash-ce - implement 4-way aggregation
Enhance the GHASH implementation that uses 64-bit polynomial
multiplication by adding support for 4-way aggregation. This
more than doubles the performance, from 2.4 cycles per byte
to 1.1 cpb on Cortex-A53.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-08-07 17:51:40 +08:00
Ard Biesheuvel
8e492eff7d crypto: arm64/ghash-ce - replace NEON yield check with block limit
Checking the TIF_NEED_RESCHED flag is disproportionately costly on cores
with fast crypto instructions and comparatively slow memory accesses.

On algorithms such as GHASH, which executes at ~1 cycle per byte on
cores that implement support for 64 bit polynomial multiplication,
there is really no need to check the TIF_NEED_RESCHED particularly
often, and so we can remove the NEON yield check from the assembler
routines.

However, unlike the AEAD or skcipher APIs, the shash/ahash APIs take
arbitrary input lengths, and so there needs to be some sanity check
to ensure that we don't hog the CPU for excessive amounts of time.

So let's simply cap the maximum input size that is processed in one go
to 64 KB.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-08-07 17:51:39 +08:00
Ondrej Mosnacek
877ccce7cb crypto: x86/aegis,morus - Fix and simplify CPUID checks
It turns out I had misunderstood how the x86_match_cpu() function works.
It evaluates a logical OR of the matching conditions, not logical AND.
This caused the CPU feature checks for AEGIS to pass even if only SSE2
(but not AES-NI) was supported (or vice versa), leading to potential
crashes if something tried to use the registered algs.

This patch switches the checks to a simpler method that is used e.g. in
the Camellia x86 code.

The patch also removes the MODULE_DEVICE_TABLE declarations which
actually seem to cause the modules to be auto-loaded at boot, which is
not desired. The crypto API on-demand module loading is sufficient.

Fixes: 1d373d4e8e ("crypto: x86 - Add optimized AEGIS implementations")
Fixes: 6ecc9d9ff9 ("crypto: x86 - Add optimized MORUS implementations")
Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com>
Tested-by: Milan Broz <gmazyland@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-08-07 17:51:15 +08:00
Ard Biesheuvel
30f1a9f53e crypto: arm64/aes-ce-gcm - don't reload key schedule if avoidable
Squeeze out another 5% of performance by minimizing the number
of invocations of kernel_neon_begin()/kernel_neon_end() on the
common path, which also allows some reloads of the key schedule
to be optimized away.

The resulting code runs at 2.3 cycles per byte on a Cortex-A53.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-08-07 17:38:04 +08:00
Ard Biesheuvel
e0bd888dc4 crypto: arm64/aes-ce-gcm - implement 2-way aggregation
Implement a faster version of the GHASH transform which amortizes
the reduction modulo the characteristic polynomial across two
input blocks at a time.

On a Cortex-A53, the gcm(aes) performance increases 24%, from
3.0 cycles per byte to 2.4 cpb for large input sizes.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-08-07 17:38:04 +08:00
Ard Biesheuvel
71e52c278c crypto: arm64/aes-ce-gcm - operate on two input blocks at a time
Update the core AES/GCM transform and the associated plumbing to operate
on 2 AES/GHASH blocks at a time. By itself, this is not expected to
result in a noticeable speedup, but it paves the way for reimplementing
the GHASH component using 2-way aggregation.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-08-07 17:38:04 +08:00
Herbert Xu
3465893d27 Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Merge crypto-2.6 to pick up NEON yield revert.
2018-08-07 17:37:10 +08:00
Ard Biesheuvel
f10dc56c64 crypto: arm64 - revert NEON yield for fast AEAD implementations
As it turns out, checking the TIF_NEED_RESCHED flag after each
iteration results in a significant performance regression (~10%)
when running fast algorithms (i.e., ones that use special instructions
and operate in the < 4 cycles per byte range) on in-order cores with
comparatively slow memory accesses such as the Cortex-A53.

Given the speed of these ciphers, and the fact that the page based
nature of the AEAD scatterwalk API guarantees that the core NEON
transform is never invoked with more than a single page's worth of
input, we can estimate the worst case duration of any resulting
scheduling blackout: on a 1 GHz Cortex-A53 running with 64k pages,
processing a page's worth of input at 4 cycles per byte results in
a delay of ~250 us, which is a reasonable upper bound.

So let's remove the yield checks from the fused AES-CCM and AES-GCM
routines entirely.

This reverts commit 7b67ae4d5c and
partially reverts commit 7c50136a8a.

Fixes: 7c50136a8a ("crypto: arm64/aes-ghash - yield NEON after every ...")
Fixes: 7b67ae4d5c ("crypto: arm64/aes-ccm - yield NEON after every ...")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-08-07 17:26:23 +08:00
Paul Burton
b023a93960 MIPS: Avoid using array as parameter to write_c0_kpgd()
Passing an array (swapper_pg_dir) as the argument to write_c0_kpgd() in
setup_pw() will become problematic if we modify __write_64bit_c0_split()
to cast its val argument to unsigned long long, because for 32-bit
kernel builds the size of a pointer will differ from the size of an
unsigned long long. This would fall foul of gcc's pointer-to-int-cast
diagnostic.

Cast the value to a long, which should be the same width as the pointer
that we ultimately want & will be sign extended if required to the
unsigned long long that __write_64bit_c0_split() ultimately needs.

Signed-off-by: Paul Burton <paul.burton@mips.com>
2018-08-06 18:44:09 -07:00
Paul Burton
ee67855ecd MIPS: vdso: Allow clang's --target flag in VDSO cflags
The MIPS VDSO code filters out a subset of known-good flags from
KBUILD_CFLAGS to use when building VDSO libraries. When we build using
clang we need to allow the --target flag through, otherwise we'll
generally attempt to build the VDSO for the architecture of the build
machine rather than for MIPS.

Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/20154/
Cc: James Hogan <jhogan@kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
2018-08-06 15:53:33 -07:00
Paul Burton
4467f7ad7d MIPS: genvdso: Remove GOT checks
Our genvdso tool performs some rather paranoid checking that the VDSO
library isn't attempting to make use of a GOT by constraining the number
of entries that the GOT is allowed to contain to the minimum 2 entries
that are always generated by binutils.

Unfortunately lld prior to revision 334390 generates a third entry,
which is unused & thus harmless but falls foul of genvdso's checks &
causes the build to fail.

Since we already check that the VDSO contains no relocations it seems
reasonable to presume that it also doesn't contain use of a GOT, which
would involve relocations. Thus rather than attempting to work around
this issue by allowing 3 GOT entries when using lld, simply remove the
GOT checks which seem overly paranoid.

Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/20152/
Cc: James Hogan <jhogan@kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
2018-08-06 15:28:46 -07:00
M. Vefa Bicakci
405c018a25 xen/pv: Call get_cpu_address_sizes to set x86_virt/phys_bits
Commit d94a155c59 ("x86/cpu: Prevent cpuinfo_x86::x86_phys_bits
adjustment corruption") has moved the query and calculation of the
x86_virt_bits and x86_phys_bits fields of the cpuinfo_x86 struct
from the get_cpu_cap function to a new function named
get_cpu_address_sizes.

One of the call sites related to Xen PV VMs was unfortunately missed
in the aforementioned commit. This prevents successful boot-up of
kernel versions 4.17 and up in Xen PV VMs if CONFIG_DEBUG_VIRTUAL
is enabled, due to the following code path:

  enlighten_pv.c::xen_start_kernel
    mmu_pv.c::xen_reserve_special_pages
      page.h::__pa
        physaddr.c::__phys_addr
          physaddr.h::phys_addr_valid

phys_addr_valid uses boot_cpu_data.x86_phys_bits to validate physical
addresses. boot_cpu_data.x86_phys_bits is no longer populated before
the call to xen_reserve_special_pages due to the aforementioned commit
though, so the validation performed by phys_addr_valid fails, which
causes __phys_addr to trigger a BUG, preventing boot-up.

Signed-off-by: M. Vefa Bicakci <m.v.b@runbox.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: xen-devel@lists.xenproject.org
Cc: x86@kernel.org
Cc: stable@vger.kernel.org # for v4.17 and up
Fixes: d94a155c59 ("x86/cpu: Prevent cpuinfo_x86::x86_phys_bits adjustment corruption")
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
2018-08-06 16:27:41 -04:00
Thomas Gleixner
315706049c Merge branch 'x86/pti-urgent' into x86/pti
Integrate the PTI Global bit fixes which conflict with the 32bit PTI
support.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-08-06 20:56:34 +02:00
Dave Hansen
c40a56a781 x86/mm/init: Remove freed kernel image areas from alias mapping
The kernel image is mapped into two places in the virtual address space
(addresses without KASLR, of course):

	1. The kernel direct map (0xffff880000000000)
	2. The "high kernel map" (0xffffffff81000000)

We actually execute out of #2.  If we get the address of a kernel symbol,
it points to #2, but almost all physical-to-virtual translations point to

Parts of the "high kernel map" alias are mapped in the userspace page
tables with the Global bit for performance reasons.  The parts that we map
to userspace do not (er, should not) have secrets. When PTI is enabled then
the global bit is usually not set in the high mapping and just used to
compensate for poor performance on systems which lack PCID.

This is fine, except that some areas in the kernel image that are adjacent
to the non-secret-containing areas are unused holes.  We free these holes
back into the normal page allocator and reuse them as normal kernel memory.
The memory will, of course, get *used* via the normal map, but the alias
mapping is kept.

This otherwise unused alias mapping of the holes will, by default keep the
Global bit, be mapped out to userspace, and be vulnerable to Meltdown.

Remove the alias mapping of these pages entirely.  This is likely to
fracture the 2M page mapping the kernel image near these areas, but this
should affect a minority of the area.

The pageattr code changes *all* aliases mapping the physical pages that it
operates on (by default).  We only want to modify a single alias, so we
need to tweak its behavior.

This unmapping behavior is currently dependent on PTI being in place.
Going forward, we should at least consider doing this for all
configurations.  Having an extra read-write alias for memory is not exactly
ideal for debugging things like random memory corruption and this does
undercut features like DEBUG_PAGEALLOC or future work like eXclusive Page
Frame Ownership (XPFO).

Before this patch:

current_kernel:---[ High Kernel Mapping ]---
current_kernel-0xffffffff80000000-0xffffffff81000000          16M                               pmd
current_kernel-0xffffffff81000000-0xffffffff81e00000          14M     ro         PSE     GLB x  pmd
current_kernel-0xffffffff81e00000-0xffffffff81e11000          68K     ro                 GLB x  pte
current_kernel-0xffffffff81e11000-0xffffffff82000000        1980K     RW                     NX pte
current_kernel-0xffffffff82000000-0xffffffff82600000           6M     ro         PSE     GLB NX pmd
current_kernel-0xffffffff82600000-0xffffffff82c00000           6M     RW         PSE         NX pmd
current_kernel-0xffffffff82c00000-0xffffffff82e00000           2M     RW                     NX pte
current_kernel-0xffffffff82e00000-0xffffffff83200000           4M     RW         PSE         NX pmd
current_kernel-0xffffffff83200000-0xffffffffa0000000         462M                               pmd

  current_user:---[ High Kernel Mapping ]---
  current_user-0xffffffff80000000-0xffffffff81000000          16M                               pmd
  current_user-0xffffffff81000000-0xffffffff81e00000          14M     ro         PSE     GLB x  pmd
  current_user-0xffffffff81e00000-0xffffffff81e11000          68K     ro                 GLB x  pte
  current_user-0xffffffff81e11000-0xffffffff82000000        1980K     RW                     NX pte
  current_user-0xffffffff82000000-0xffffffff82600000           6M     ro         PSE     GLB NX pmd
  current_user-0xffffffff82600000-0xffffffffa0000000         474M                               pmd

After this patch:

current_kernel:---[ High Kernel Mapping ]---
current_kernel-0xffffffff80000000-0xffffffff81000000          16M                               pmd
current_kernel-0xffffffff81000000-0xffffffff81e00000          14M     ro         PSE     GLB x  pmd
current_kernel-0xffffffff81e00000-0xffffffff81e11000          68K     ro                 GLB x  pte
current_kernel-0xffffffff81e11000-0xffffffff82000000        1980K                               pte
current_kernel-0xffffffff82000000-0xffffffff82400000           4M     ro         PSE     GLB NX pmd
current_kernel-0xffffffff82400000-0xffffffff82488000         544K     ro                     NX pte
current_kernel-0xffffffff82488000-0xffffffff82600000        1504K                               pte
current_kernel-0xffffffff82600000-0xffffffff82c00000           6M     RW         PSE         NX pmd
current_kernel-0xffffffff82c00000-0xffffffff82c0d000          52K     RW                     NX pte
current_kernel-0xffffffff82c0d000-0xffffffff82dc0000        1740K                               pte

  current_user:---[ High Kernel Mapping ]---
  current_user-0xffffffff80000000-0xffffffff81000000          16M                               pmd
  current_user-0xffffffff81000000-0xffffffff81e00000          14M     ro         PSE     GLB x  pmd
  current_user-0xffffffff81e00000-0xffffffff81e11000          68K     ro                 GLB x  pte
  current_user-0xffffffff81e11000-0xffffffff82000000        1980K                               pte
  current_user-0xffffffff82000000-0xffffffff82400000           4M     ro         PSE     GLB NX pmd
  current_user-0xffffffff82400000-0xffffffff82488000         544K     ro                     NX pte
  current_user-0xffffffff82488000-0xffffffff82600000        1504K                               pte
  current_user-0xffffffff82600000-0xffffffffa0000000         474M                               pmd

[ tglx: Do not unmap on 32bit as there is only one mapping ]

Fixes: 0f561fce4d ("x86/pti: Enable global pages for shared areas")
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Kees Cook <keescook@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/20180802225831.5F6A2BFC@viggo.jf.intel.com
2018-08-06 20:54:16 +02:00
Robert P. J. Day
7dc084d625 MIPS: Remove obsolete MIPS checks for DST node "chosen@0"
As there is precious little left in any DTS files referring to the
node "/chosen@0" as opposed to "/chosen", remove the two checks for
the former node name.

[paul.burton@mips.com:
  The modified yamon-dt code only operates on
  arch/mips/boot/dts/mti/sead3.dts right now, and that uses chosen
  rather than chosen@0 anyway, so this should have no behavioural
  effect.]

Signed-off-by: Robert P. J. Day <rpjday@crashcourse.ca>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/20131/
Cc: linux-mips@linux-mips.org
2018-08-06 09:50:33 -07:00
Uros Bizjak
fd8ca6dac9 KVM/x86: Use CC_SET()/CC_OUT in arch/x86/kvm/vmx.c
Remove open-coded uses of set instructions to use CC_SET()/CC_OUT() in
arch/x86/kvm/vmx.c.

Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
[Mark error paths as unlikely while touching this. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 18:18:41 +02:00
Wanpeng Li
aaffcfd1e8 KVM: X86: Implement PV IPIs in linux guest
Implement paravirtual apic hooks to enable PV IPIs for KVM if the "send IPI"
hypercall is available.  The hypercall lets a guest send IPIs, with
at most 128 destinations per hypercall in 64-bit mode and 64 vCPUs per
hypercall in 32-bit mode.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:22 +02:00
Wanpeng Li
d63bae079b KVM: X86: Add kvm hypervisor init time platform setup callback
Add kvm hypervisor init time platform setup callback which
will be used to replace native apic hooks by pararvirtual
hooks.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:21 +02:00
Wanpeng Li
4180bf1b65 KVM: X86: Implement "send IPI" hypercall
Using hypercall to send IPIs by one vmexit instead of one by one for
xAPIC/x2APIC physical mode and one vmexit per-cluster for x2APIC cluster
mode. Intel guest can enter x2apic cluster mode when interrupt remmaping
is enabled in qemu, however, latest AMD EPYC still just supports xapic
mode which can get great improvement by Exit-less IPIs. This patchset
lets a guest send multicast IPIs, with at most 128 destinations per
hypercall in 64-bit mode and 64 vCPUs per hypercall in 32-bit mode.

Hardware: Xeon Skylake 2.5GHz, 2 sockets, 40 cores, 80 threads, the VM
is 80 vCPUs, IPI microbenchmark(https://lkml.org/lkml/2017/12/19/141):

x2apic cluster mode, vanilla

 Dry-run:                         0,            2392199 ns
 Self-IPI:                  6907514,           15027589 ns
 Normal IPI:              223910476,          251301666 ns
 Broadcast IPI:                   0,         9282161150 ns
 Broadcast lock:                  0,         8812934104 ns

x2apic cluster mode, pv-ipi

 Dry-run:                         0,            2449341 ns
 Self-IPI:                  6720360,           15028732 ns
 Normal IPI:              228643307,          255708477 ns
 Broadcast IPI:                   0,         7572293590 ns  => 22% performance boost
 Broadcast lock:                  0,         8316124651 ns

x2apic physical mode, vanilla

 Dry-run:                         0,            3135933 ns
 Self-IPI:                  8572670,           17901757 ns
 Normal IPI:              226444334,          255421709 ns
 Broadcast IPI:                   0,        19845070887 ns
 Broadcast lock:                  0,        19827383656 ns

x2apic physical mode, pv-ipi

 Dry-run:                         0,            2446381 ns
 Self-IPI:                  6788217,           15021056 ns
 Normal IPI:              219454441,          249583458 ns
 Broadcast IPI:                   0,         7806540019 ns  => 154% performance boost
 Broadcast lock:                  0,         9143618799 ns

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:20 +02:00
Tianyu Lan
74fec5b9db KVM/x86: Move X86_CR4_OSXSAVE check into kvm_valid_sregs()
X86_CR4_OSXSAVE check belongs to sregs check and so move into
kvm_valid_sregs().

Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:19 +02:00
Liang Chen
ee6268ba3a KVM: x86: Skip pae_root shadow allocation if tdp enabled
Considering the fact that the pae_root shadow is not needed when
tdp is in use, skip the pae_root shadow page allocation to allow
mmu creation even not being able to obtain memory from DMA32
zone when particular cgroup cpuset.mems or mempolicy control is
applied.

Signed-off-by: Liang Chen <liangchen.linux@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:19 +02:00
Tianyu Lan
c2a4eadf77 KVM/MMU: Combine flushing remote tlb in mmu_set_spte()
mmu_set_spte() flushes remote tlbs for drop_parent_pte/drop_spte()
and set_spte() separately. This may introduce redundant flush. This
patch is to combine these flushes and check flush request after
calling set_spte().

Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Reviewed-by: Junaid Shahid <junaids@google.com>
Reviewed-by: Xiao Guangrong <xiaoguangrong@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:18 +02:00