NFS would enjoy the ability to modify the behavior of the NLM client's
unlock RPC task in order to delay the transmission of the unlock until IO
that was submitted under that lock has completed. This ability can ensure
that the NLM client will always complete the transmission of an unlock even
if the waiting caller has been interrupted with fatal signal.
For this purpose, a pointer to a struct nlmclnt_operations can be assigned
in a nfs_module's nfs_rpc_ops that will install those nlmclnt_operations on
the nlm_host. The struct nlmclnt_operations defines three callback
operations that will be used in a following patch:
nlmclnt_alloc_call - used to call back after a successful allocation of
a struct nlm_rqst in nlmclnt_proc().
nlmclnt_unlock_prepare - used to call back during NLM unlock's
rpc_call_prepare. The NLM client defers calling rpc_call_start()
until this callback returns false.
nlmclnt_release_call - used to call back when the NLM client's struct
nlm_rqst is freed.
Signed-off-by: Benjamin Coddington <bcodding@redhat.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
By sleeping on a new NFS Unlock-On-Close waitqueue, rpc tasks may wait for
a lock context's iocounter to reach zero. The rpc waitqueue is only woken
when the open_context has the NFS_CONTEXT_UNLOCK flag set in order to
mitigate spurious wake-ups for any iocounter reaching zero.
Signed-off-by: Benjamin Coddington <bcodding@redhat.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Set FL_CLOSE in fl_flags as in locks_remove_posix() when clearing locks.
NFS will check for this flag to ensure an unlock is sent in a following
patch.
Fuse handles flock and posix locks differently for FL_CLOSE, and so
requires a fixup to retain the existing behavior for flock.
Signed-off-by: Benjamin Coddington <bcodding@redhat.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Acked-by: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
target transport:
----------------------
There are cases when there is a need to abort in-progress target
operations (writedata) so that controller termination or errors can
clean up. That can't happen currently as the abort is another target
op type, so it can't be used till the running one finishes (and it may
not). Solve by removing the abort op type and creating a separate
downcall from the transport to the lldd to request an io to be aborted.
The transport will abort ios on queue teardown or io errors. In general
the transport tries to call the lldd abort only when the io state is
idle. Meaning: ops that transmit data (readdata or rsp) will always
finish their transmit (or the lldd will see a state on the
link or initiator port that fails the transmit) and the done call for
the operation will occur. The transport will wait for the op done
upcall before calling the abort function, and as the io is idle, the
io can be cleaned up immediately after the abort call; Similarly, ios
that are not waiting for data or transmitting data must be in the nvmet
layer being processed. The transport will wait for the nvmet layer
completion before calling the abort function, and as the io is idle,
the io can be cleaned up immediately after the abort call; As for ops
that are waiting for data (writedata), they may be outstanding
indefinitely if the lldd doesn't see a condition where the initiatior
port or link is bad. In those cases, the transport will call the abort
function and wait for the lldd's op done upcall for the operation, where
it will then clean up the io.
Additionally, if a lldd receives an ABTS and matches it to an outstanding
request in the transport, A new new transport upcall was created to abort
the outstanding request in the transport. The transport expects any
outstanding op call (readdata or writedata) will completed by the lldd and
the operation upcall made. The transport doesn't act on the reported
abort (e.g. clean up the io) until an op done upcall occurs, a new op is
attempted, or the nvmet layer completes the io processing.
fcloop:
----------------------
Updated to support the new target apis.
On fcp io aborts from the initiator, the loopback context is updated to
NULL out the half that has completed. The initiator side is immediately
called after the abort request with an io completion (abort status).
On fcp io aborts from the target, the io is stopped and the initiator side
sees it as an aborted io. Target side ops, perhaps in progress while the
initiator side is done, continue but noop the data movement as there's no
structure on the initiator side to reference.
patch also contains:
----------------------
Revised lpfc to support the new abort api
commonized rsp buffer syncing and nulling of private data based on
calling paths.
errors in op done calls don't take action on the fod. They're bad
operations which implies the fod may be bad.
Signed-off-by: James Smart <james.smart@broadcom.com>
Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
With the advent of the opdone calls changing context, the lldd can no
longer assume that once the op->done call returns for RSP operations
that the request struct is no longer being accessed.
As such, revise the lldd api for a req_release callback that the
transport will call when the job is complete. This will also be used
with abort cases.
Fixed text in api header for change in io complete semantics.
Revised lpfc to support the new req_release api.
Signed-off-by: James Smart <james.smart@broadcom.com>
Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
Two new feature flags were added to control whether upcalls to the
transport result in context switches or stay in the calling context.
NVMET_FCTGTFEAT_CMD_IN_ISR:
By default, if the flag is not set, the transport assumes the
lldd is in a non-isr context and in the cpu context it should be
for the io queue. As such, the cmd handler is called directly in the
calling context.
If the flag is set, indicating the upcall is an isr context, the
transport mandates a transition to a workqueue. The workqueue assigned
to the queue is used for the context.
NVMET_FCTGTFEAT_OPDONE_IN_ISR
By default, if the flag is not set, the transport assumes the
lldd is in a non-isr context and in the cpu context it should be
for the io queue. As such, the fcp operation done callback is called
directly in the calling context.
If the flag is set, indicating the upcall is an isr context, the
transport mandates a transition to a workqueue. The workqueue assigned
to the queue is used for the context.
Updated lpfc for flags
Signed-off-by: James Smart <james.smart@broadcom.com>
Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
This change provides a mechanism to reduce the number of MMIO doorbell
writes for the NVMe driver. When running in a virtualized environment
like QEMU, the cost of an MMIO is quite hefy here. The main idea for
the patch is provide the device two memory location locations:
1) to store the doorbell values so they can be lookup without the doorbell
MMIO write
2) to store an event index.
I believe the doorbell value is obvious, the event index not so much.
Similar to the virtio specification, the virtual device can tell the
driver (guest OS) not to write MMIO unless you are writing past this
value.
FYI: doorbell values are written by the nvme driver (guest OS) and the
event index is written by the virtual device (host OS).
The patch implements a new admin command that will communicate where
these two memory locations reside. If the command fails, the nvme
driver will work as before without any optimizations.
Contributions:
Eric Northup <digitaleric@google.com>
Frank Swiderski <fes@google.com>
Ted Tso <tytso@mit.edu>
Keith Busch <keith.busch@intel.com>
Just to give an idea on the performance boost with the vendor
extension: Running fio [1], a stock NVMe driver I get about 200K read
IOPs with my vendor patch I get about 1000K read IOPs. This was
running with a null device i.e. the backing device simply returned
success on every read IO request.
[1] Running on a 4 core machine:
fio --time_based --name=benchmark --runtime=30
--filename=/dev/nvme0n1 --nrfiles=1 --ioengine=libaio --iodepth=32
--direct=1 --invalidate=1 --verify=0 --verify_fatal=0 --numjobs=4
--rw=randread --blocksize=4k --randrepeat=false
Signed-off-by: Rob Nelson <rlnelson@google.com>
[mlin: port for upstream]
Signed-off-by: Ming Lin <mlin@kernel.org>
[koike: updated for upstream]
Signed-off-by: Helen Koike <helen.koike@collabora.co.uk>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Keith Busch <keith.busch@intel.com>
Currently, a call to schedule() acts as a Tasks RCU quiescent state
only if a context switch actually takes place. However, just the
call to schedule() guarantees that the calling task has moved off of
whatever tracing trampoline that it might have been one previously.
This commit therefore plumbs schedule()'s "preempt" parameter into
rcu_note_context_switch(), which then records the Tasks RCU quiescent
state, but only if this call to schedule() was -not- due to a preemption.
To avoid adding overhead to the common-case context-switch path,
this commit hides the rcu_note_context_switch() check under an existing
non-common-case check.
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Peter Zijlstra proposed using SRCU to reduce mmap_sem contention [1,2],
however, there are workloads that could result in a high volume of
concurrent invocations of call_srcu(), which with current SRCU would
result in excessive lock contention on the srcu_struct structure's
->queue_lock, which protects SRCU's callback lists. This commit therefore
moves SRCU to per-CPU callback lists, thus greatly reducing contention.
Because a given SRCU instance no longer has a single centralized callback
list, starting grace periods and invoking callbacks are both more complex
than in the single-list Classic SRCU implementation. Starting grace
periods and handling callbacks are now handled using an srcu_node tree
that is in some ways similar to the rcu_node trees used by RCU-bh,
RCU-preempt, and RCU-sched (for example, the srcu_node tree shape is
controlled by exactly the same Kconfig options and boot parameters that
control the shape of the rcu_node tree).
In addition, the old per-CPU srcu_array structure is now named srcu_data
and contains an rcu_segcblist structure named ->srcu_cblist for its
callbacks (and a spinlock to protect this). The srcu_struct gets
an srcu_gp_seq that is used to associate callback segments with the
corresponding completion-time grace-period number. These completion-time
grace-period numbers are propagated up the srcu_node tree so that the
grace-period workqueue handler can determine whether additional grace
periods are needed on the one hand and where to look for callbacks that
are ready to be invoked.
The srcu_barrier() function must now wait on all instances of the per-CPU
->srcu_cblist. Because each ->srcu_cblist is protected by ->lock,
srcu_barrier() can remotely add the needed callbacks. In theory,
it could also remotely start grace periods, but in practice doing so
is complex and racy. And interestingly enough, it is never necessary
for srcu_barrier() to start a grace period because srcu_barrier() only
enqueues a callback when a callback is already present--and it turns out
that a grace period has to have already been started for this pre-existing
callback. Furthermore, it is only the callback that srcu_barrier()
needs to wait on, not any particular grace period. Therefore, a new
rcu_segcblist_entrain() function enqueues the srcu_barrier() function's
callback into the same segment occupied by the last pre-existing callback
in the list. The special case where all the pre-existing callbacks are
on a different list (because they are in the process of being invoked)
is handled by enqueuing srcu_barrier()'s callback into the RCU_DONE_TAIL
segment, relying on the done-callbacks check that takes place after all
callbacks are inovked.
Note that the readers use the same algorithm as before. Note that there
is a separate srcu_idx that tells the readers what counter to increment.
This unfortunately cannot be combined with srcu_gp_seq because they
need to be incremented at different times.
This commit introduces some ugly #ifdefs in rcutorture. These will go
away when I feel good enough about Tree SRCU to ditch Classic SRCU.
Some crude performance comparisons, courtesy of a quickly hacked rcuperf
asynchronous-grace-period capability:
Callback Queuing Overhead
-------------------------
# CPUS Classic SRCU Tree SRCU
------ ------------ ---------
2 0.349 us 0.342 us
16 31.66 us 0.4 us
41 --------- 0.417 us
The times are the 90th percentiles, a statistic that was chosen to reject
the overheads of the occasional srcu_barrier() call needed to avoid OOMing
the test machine. The rcuperf test hangs when running Classic SRCU at 41
CPUs, hence the line of dashes. Despite the hacks to both the rcuperf code
and that statistics, this is a convincing demonstration of Tree SRCU's
performance and scalability advantages.
[1] https://lwn.net/Articles/309030/
[2] https://patchwork.kernel.org/patch/5108281/
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Fix initialization if synchronize_srcu_expedited() called first. ]
Parallelizing SRCU callback handling will increase the size of
srcu_struct, which will move the kvm structure's kvm_arch field out
of reach of powerpc's current assembly code, which will result in the
following sort of build error:
arch/powerpc/kvm/book3s_hv_rmhandlers.S:617: Error: operand out of range (0x000000000000b328 is not between 0xffffffffffff8000 and 0x0000000000007fff)
This commit moves the srcu_struct fields in the kvm structure to follow
the kvm_arch field, which will allow powerpc's assembly code to continue
to be able to reach the kvm_arch field.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reported-by: Michael Ellerman <michaele@au1.ibm.com>
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
[ paulmck: Moved this commit to precede SRCU callback parallelization,
and reworded the commit log into future tense, all in the name of
bisectability. ]
Few parts of kernel define their own macro for aligning down so provide
a common define for this, with the same usage and assumptions as existing
ALIGN.
Convert also three existing implementations to this one.
Signed-off-by: Krzysztof Kozlowski <krzk@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
drm-misc-next-fixes-2017-04-20
Core changes:
- Maintain sti via drm-misc (Vincent)
- Rename dma_buf_ops->kmap_* to avoid naming collision (Logan)
Driver changes:
- Fix UHD displays on stih407 (Vincent)
- Fix uninitialized var return in atmel-hlcdc (Dan)
* tag 'drm-misc-next-fixes-2017-04-20' of git://anongit.freedesktop.org/git/drm-misc:
dma-buf: Rename dma-ops to prevent conflict with kunmap_atomic macro
drm: atmel-hlcdc: Uninitialized return in atmel_hlcdc_create_outputs()
drm/sti: fix GDP size to support up to UHD resolution
MAINTAINERS: add drm/sti driver into drm-misc
Now that the function probes have their own ftrace_ops, there's no reason to
continue using the ftrace_func_hash to find which probe to call in the
function callback. The ops that is passed in to the function callback is
part of the probe_ops to call.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
As nothing outside the tracing directory uses the function command mechanism,
I'm moving the prototypes out of the include/linux/ftrace.h and into the
local kernel/trace/trace.h header. I plan on making them hook to the
trace_array structure which is local to kernel/trace, and I do not want to
expose it to the rest of the kernel. This requires that the command functions
must also be local to tracing. But luckily nothing else uses them.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Fixes an issue where the size of the poll_stat array in request_queue
does not match the size expected by the new size based bucketing for
IO completion polling.
Fixes: 720b8ccc45 ("blk-mq: Add a polling specific stats function")
Signed-off-by: Stephen Bates <sbates@raithlin.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Allocate a dax_device to represent the capacity of a device-mapper
instance. Provide a ->direct_access() method via the new dax_operations
indirection that mirrors the functionality of the current direct_access
support via block_device_operations. Once fs/dax.c has been converted
to use dax_operations the old dm_blk_direct_access() will be removed.
A new helper dm_dax_get_live_target() is introduced to separate some of
the dm-specifics from the direct_access implementation.
This enabling is only for the top-level dm representation to upper
layers. Converting target direct_access implementations is deferred to a
separate patch.
Cc: Toshi Kani <toshi.kani@hpe.com>
Reviewed-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Replace bdev_direct_access() with dax_direct_access() that uses
dax_device and dax_operations instead of a block_device and
block_device_operations for dax. Once all consumers of the old api have
been converted bdev_direct_access() will be deleted.
Given that block device partitioning decisions can cause dax page
alignment constraints to be violated this also introduces the
bdev_dax_pgoff() helper. It handles calculating a logical pgoff relative
to the dax_device and also checks for page alignment.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
This is for the legacy floppy and ataflop drivers that currently abuse
->errors for this purpose. It's stashed away in a union to not grow
the struct size, the other fields are either used by modern drivers
for different purposes or the I/O scheduler before queing the I/O
to drivers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
Now that all drivers that call blk_mq_complete_requests have a
->complete callback we can remove the direct call to blk_mq_end_request,
as well as the error argument to blk_mq_complete_request.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Bart Van Assche <Bart.VanAssche@sandisk.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
This passes on the scsi_cmnd result field to users of passthrough
requests. Currently we abuse req->errors for this purpose, but that
field will go away in its current form.
Note that the old IDE code abuses the errors field in very creative
ways and stores all kinds of different values in it. I didn't dare
to touch this magic, so the abuses are brought forward 1:1.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Bart Van Assche <Bart.VanAssche@sandisk.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
The function only returns -EIO if rq->errors is non-zero, which is not
very useful and lets a large number of callers ignore the return value.
Just let the callers figure out their error themselves.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Bart Van Assche <Bart.VanAssche@sandisk.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Drop 'parent' argument of bdi_register() and bdi_register_va(). It is
always NULL.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
Now that all backing_dev_info structure are allocated separately, we can
drop some unused functions.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
Now that all bdi structures filesystems use are properly refcounted, we
can remove the SB_I_DYNBDI flag.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
MTD already allocates backing_dev_info dynamically. Convert it to use
generic infrastructure for this including proper refcounting. We drop
mtd->backing_dev_info as its only use was to pass mtd_bdi pointer from
one file into another and if we wanted to keep that in a clean way, we'd
have to make mtd hold and drop bdi reference as needed which seems
pointless for passing one global pointer...
CC: David Woodhouse <dwmw2@infradead.org>
CC: Brian Norris <computersforpeace@gmail.com>
CC: linux-mtd@lists.infradead.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
Add function that registers bdi and takes va_list instead of variable
number of arguments.
Add bdi_alloc() as simple wrapper for NUMA-unaware users allocating BDI.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
Johannes Berg says:
====================
My last pull request has been a while, we now have:
* connection quality monitoring with multiple thresholds
* support for FILS shared key authentication offload
* pre-CAC regulatory compliance - only ETSI allows this
* sanity check for some rate confusion that hit ChromeOS
(but nobody else uses it, evidently)
* some documentation updates
* lots of cleanups
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
When passed GFP flags that allow sleeping (such as
GFP_NOIO), mempool_alloc() will never return NULL, it will
wait until memory is available.
This means that we don't need to handle failure, but that we
do need to ensure one thread doesn't call mempool_alloc()
twice on the one pool without queuing or freeing the first
allocation. If multiple threads did this during times of
high memory pressure, the pool could be exhausted and a
deadlock could result.
pnfs_generic_alloc_ds_commits() attempts to allocate from
the nfs_commit_mempool while already holding an allocation
from that pool. This is not safe. So change
nfs_commitdata_alloc() to take a flag that indicates whether
failure is acceptable.
In pnfs_generic_alloc_ds_commits(), accept failure and
handle it as we currently do. Else where, do not accept
failure, and do not handle it.
Even when failure is acceptable, we want to succeed if
possible. That means both
- using an entry from the pool if there is one
- waiting for direct reclaim is there isn't.
We call mempool_alloc(GFP_NOWAIT) to achieve the first, then
kmem_cache_alloc(GFP_NOIO|__GFP_NORETRY) to achieve the
second. Each of these can fail, but together they do the
best they can without blocking indefinitely.
The objects returned by kmem_cache_alloc() will still be freed
by mempool_free(). This is safe as mempool_alloc() uses
exactly the same function to allocate objects (since the mempool
was created with mempool_create_slab_pool()). The object returned
by mempool_alloc() and kmem_cache_alloc() are indistinguishable
so mempool_free() will handle both identically, either adding to the
pool or calling kmem_cache_free().
Also, don't test for failure when allocating from
nfs_wdata_mempool.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Johan writes:
USB-serial updates for v4.12-rc1
Here are the USB-serial updates for 4.12, including:
- support for devices with up to 16 ports (e.g. some Moxa devices)
- support for endpoint sanity checks in core, which allows for code sharing
and avoids allocating resources for rejected interfaces
- support for endpoint-port remapping, which allows some driver hacks to
be removed as well as omninet to use the generic write implementation
- removal of an obsolete tty open-race workaround which prevented a
port from being opened immediately after having been registered
- generic-driver support for interfaces with just a bulk-in endpoint
- improved ftdi_sio event-char and latency-timer handling
- improved ftdi_sio support for some broken BM chips
Included are also various clean ups and a new ftdi_sio device id.
All have been in linux-next with no reported issues.
Signed-off-by: Johan Hovold <johan@kernel.org>
A function in kernel/bpf/syscall.c which got a bug fix in 'net'
was moved to kernel/bpf/verifier.c in 'net-next'.
Signed-off-by: David S. Miller <davem@davemloft.net>
The internal data-structures are scattered over various
header and C files. Consolidate them in omap-iommu.h.
While at this, add the kerneldoc comment for the missing
iommu domain variable and revise the iommu_arch_data name.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
[s-anna@ti.com: revise kerneldoc comments]
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
All the supported boards that have OMAP IOMMU devices do support
DT boot only now. So, drop the support for the non-DT legacy-style
devices from the OMAP IOMMU driver. Couple of the fields from the
iommu platform data would no longer be required, so they have also
been cleaned up. The IOMMU platform data is still needed though for
performing reset management properly in a multi-arch environment.
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
The IORT linker section introduced by commit 34ceea275f
("ACPI/IORT: Introduce linker section for IORT entries probing")
was needed to make sure SMMU drivers are registered (and therefore
probed) in the kernel before devices using the SMMU have a chance
to probe in turn.
Through the introduction of deferred IOMMU configuration the linker
section based IORT probing infrastructure is not needed any longer, in
that device/SMMU probe dependencies are managed through the probe
deferral mechanism, making the IORT linker section infrastructure
unused, so that it can be removed.
Remove the unused IORT linker section probing infrastructure
from the kernel to complete the ACPI IORT IOMMU configure probe
deferral mechanism implementation.
Tested-by: Hanjun Guo <hanjun.guo@linaro.org>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Sricharan R <sricharan@codeaurora.org>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
This is an equivalent to the DT's handling of the iommu master's probe
with deferred probing when the corrsponding iommu is not probed yet.
The lack of a registered IOMMU can be caused by the lack of a driver for
the IOMMU, the IOMMU device probe not having been performed yet, having
been deferred, or having failed.
The first case occurs when the firmware describes the bus master and
IOMMU topology correctly but no device driver exists for the IOMMU yet
or the device driver has not been compiled in. Return NULL, the caller
will configure the device without an IOMMU.
The second and third cases are handled by deferring the probe of the bus
master device which will eventually get reprobed after the IOMMU.
The last case is currently handled by deferring the probe of the bus
master device as well. A mechanism to either configure the bus master
device without an IOMMU or to fail the bus master device probe depending
on whether the IOMMU is optional or mandatory would be a good
enhancement.
Tested-by: Hanjun Guo <hanjun.guo@linaro.org>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
[Lorenzo: Added fixes for dma_coherent_mask overflow, acpi_dma_configure
called multiple times for same device]
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Sricharan R <sricharan@codeaurora.org>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Failures to look up an IOMMU when parsing the DT iommus property need to
be handled separately from the .of_xlate() failures to support deferred
probing.
The lack of a registered IOMMU can be caused by the lack of a driver for
the IOMMU, the IOMMU device probe not having been performed yet, having
been deferred, or having failed.
The first case occurs when the device tree describes the bus master and
IOMMU topology correctly but no device driver exists for the IOMMU yet
or the device driver has not been compiled in. Return NULL, the caller
will configure the device without an IOMMU.
The second and third cases are handled by deferring the probe of the bus
master device which will eventually get reprobed after the IOMMU.
The last case is currently handled by deferring the probe of the bus
master device as well. A mechanism to either configure the bus master
device without an IOMMU or to fail the bus master device probe depending
on whether the IOMMU is optional or mandatory would be a good
enhancement.
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Laurent Pichart <laurent.pinchart+renesas@ideasonboard.com>
Signed-off-by: Sricharan R <sricharan@codeaurora.org>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Configuring DMA ops at probe time will allow deferring device probe when
the IOMMU isn't available yet. The dma_configure for the device is
now called from the generic device_attach callback just before the
bus/driver probe is called. This way, configuring the DMA ops for the
device would be called at the same place for all bus_types, hence the
deferred probing mechanism should work for all buses as well.
pci_bus_add_devices (platform/amba)(_device_create/driver_register)
| |
pci_bus_add_device (device_add/driver_register)
| |
device_attach device_initial_probe
| |
__device_attach_driver __device_attach_driver
|
driver_probe_device
|
really_probe
|
dma_configure
Similarly on the device/driver_unregister path __device_release_driver is
called which inturn calls dma_deconfigure.
This patch changes the dma ops configuration to probe time for
both OF and ACPI based platform/amba/pci bus devices.
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: Hanjun Guo <hanjun.guo@linaro.org>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Acked-by: Rob Herring <robh@kernel.org>
Acked-by: Bjorn Helgaas <bhelgaas@google.com> (drivers/pci part)
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Sricharan R <sricharan@codeaurora.org>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
As part of moving DMA initializing to probe time the
of_dma_deconfigure() function will need to be called from different
source files. Make it public and move it to drivers/of/device.c where
the of_dma_configure() function is.
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Currently we opencode the FLR sequence in lots of place; export a core
helper instead. We split out the probing for FLR support as all the
non-core callers already know their hardware.
Note that in the new pci_has_flr() function the quirk check has been moved
before the capability check as there is no point in reading the capability
in this case.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
This will need to call into an arch-provided pci_iobar_pfn() function.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Starting to leave behind the legacy of the pci_mmap_page_range() interface
which takes "user-visible" BAR addresses. This takes just the resource and
offset.
For now, both APIs coexist and depending on the platform, one is
implemented as a wrapper around the other.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>