Now we populate each directory with a read/write (mode 0644) file
named "cpus". This is used to over-ride the resources available
to processes in the default resource group when running on specific
CPUs. Each "cpus" file reads as a cpumask showing which CPUs belong
to this resource group. Initially all online CPUs are assigned to
the default group. They can be added to other groups by writing a
cpumask to the "cpus" file in the directory for the resource group
(which will remove them from the previous group to which they were
assigned). CPU online/offline operations will delete CPUs that go
offline from whatever group they are in and add new CPUs to the
default group.
If there are CPUs assigned to a group when the directory is removed,
they are returned to the default group.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Shaohua Li" <shli@fb.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Stephane Eranian" <eranian@google.com>
Cc: "Dave Hansen" <dave.hansen@intel.com>
Cc: "David Carrillo-Cisneros" <davidcc@google.com>
Cc: "Nilay Vaish" <nilayvaish@gmail.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "Ingo Molnar" <mingo@elte.hu>
Cc: "Borislav Petkov" <bp@suse.de>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1477692289-37412-7-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Resource control groups are represented as directories in the resctrl
file system. The root directory describes the default resources available
to tasks that have not been assigned specific resources. Other directories
can be created at the root level to make new resource groups. It is not
permitted to make directories within other directories.
Hardware uses a CLOSID (Class of service ID) to determine which resource
limits are currently in effect. The exact number available is enumerated
by CPUID leaf 0x10, but on current implementations it is a small number.
We implement a simple bitmask allocator for CLOSIDs.
Each resource control group uses one CLOSID, which limits the total number
of directories that can be created.
Resource groups can be removed using rmdir.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Shaohua Li" <shli@fb.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Stephane Eranian" <eranian@google.com>
Cc: "Dave Hansen" <dave.hansen@intel.com>
Cc: "David Carrillo-Cisneros" <davidcc@google.com>
Cc: "Nilay Vaish" <nilayvaish@gmail.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "Ingo Molnar" <mingo@elte.hu>
Cc: "Borislav Petkov" <bp@suse.de>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1477692289-37412-6-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
A recent change to the mm code in:
87744ab383 mm: fix cache mode tracking in vm_insert_mixed()
started enforcing checking the memory type against the registered list for
amixed pfn insertion mappings. It happens that the drm drivers for a number
of gpus relied on this being broken. Currently the driver only inserted
VRAM mappings into the tracking table when they came from the kernel,
and userspace mappings never landed in the table. This led to a regression
where all the mapping end up as UC instead of WC now.
I've considered a number of solutions but since this needs to be fixed
in fixes and not next, and some of the solutions were going to introduce
overhead that hadn't been there before I didn't consider them viable at
this stage. These mainly concerned hooking into the TTM io reserve APIs,
but these API have a bunch of fast paths I didn't want to unwind to add
this to.
The solution I've decided on is to add a new API like the arch_phys_wc
APIs (these would have worked but wc_del didn't take a range), and
use them from the drivers to add a WC compatible mapping to the table
for all VRAM on those GPUs. This means we can then create userspace
mapping that won't get degraded to UC.
v1.1: use CONFIG_X86_PAT + add some comments in io.h
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: x86@kernel.org
Cc: mcgrof@suse.com
Cc: Dan Williams <dan.j.williams@intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Airlie <airlied@redhat.com>
For mostly historical reasons, the x86 oops dump shows the raw stack
values:
...
[registers]
Stack:
ffff880079af7350 ffff880079905400 0000000000000000 ffffc900008f3ae0
ffffffffa0196610 0000000000000001 00010000ffffffff 0000000087654321
0000000000000002 0000000000000000 0000000000000000 0000000000000000
Call Trace:
...
This seems to be an artifact from long ago, and probably isn't needed
anymore. It generally just adds noise to the dump, and it can be
actively harmful because it leaks kernel addresses.
Linus says:
"The stack dump actually goes back to forever, and it used to be
useful back in 1992 or so. But it used to be useful mainly because
stacks were simpler and we didn't have very good call traces anyway. I
definitely remember having used them - I just do not remember having
used them in the last ten+ years.
Of course, it's still true that if you can trigger an oops, you've
likely already lost the security game, but since the stack dump is so
useless, let's aim to just remove it and make games like the above
harder."
This also removes the related 'kstack=' cmdline option and the
'kstack_depth_to_print' sysctl.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/e83bd50df52d8fe88e94d2566426ae40d813bf8f.1477405374.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Printing kernel text addresses in stack dumps is of questionable value,
especially now that address randomization is becoming common.
It can be a security issue because it leaks kernel addresses. It also
affects the usefulness of the stack dump. Linus says:
"I actually spend time cleaning up commit messages in logs, because
useless data that isn't actually information (random hex numbers) is
actively detrimental.
It makes commit logs less legible.
It also makes it harder to parse dumps.
It's not useful. That makes it actively bad.
I probably look at more oops reports than most people. I have not
found the hex numbers useful for the last five years, because they are
just randomized crap.
The stack content thing just makes code scroll off the screen etc, for
example."
The only real downside to removing these addresses is that they can be
used to disambiguate duplicate symbol names. However such cases are
rare, and the context of the stack dump should be enough to be able to
figure it out.
There's now a 'faddr2line' script which can be used to convert a
function address to a file name and line:
$ ./scripts/faddr2line ~/k/vmlinux write_sysrq_trigger+0x51/0x60
write_sysrq_trigger+0x51/0x60:
write_sysrq_trigger at drivers/tty/sysrq.c:1098
Or gdb can be used:
$ echo "list *write_sysrq_trigger+0x51" |gdb ~/k/vmlinux |grep "is in"
(gdb) 0xffffffff815b5d83 is in driver_probe_device (/home/jpoimboe/git/linux/drivers/base/dd.c:378).
(But note that when there are duplicate symbol names, gdb will only show
the first symbol it finds. faddr2line is recommended over gdb because
it handles duplicates and it also does function size checking.)
Here's an example of what a stack dump looks like after this change:
BUG: unable to handle kernel NULL pointer dereference at (null)
IP: sysrq_handle_crash+0x45/0x80
PGD 36bfa067 [ 29.650644] PUD 7aca3067
Oops: 0002 [#1] PREEMPT SMP
Modules linked in: ...
CPU: 1 PID: 786 Comm: bash Tainted: G E 4.9.0-rc1+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.9.1-1.fc24 04/01/2014
task: ffff880078582a40 task.stack: ffffc90000ba8000
RIP: 0010:sysrq_handle_crash+0x45/0x80
RSP: 0018:ffffc90000babdc8 EFLAGS: 00010296
RAX: ffff880078582a40 RBX: 0000000000000063 RCX: 0000000000000001
RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000000000000292
RBP: ffffc90000babdc8 R08: 0000000b31866061 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000007 R14: ffffffff81ee8680 R15: 0000000000000000
FS: 00007ffb43869700(0000) GS:ffff88007d400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 000000007a3e9000 CR4: 00000000001406e0
Stack:
ffffc90000babe00 ffffffff81572d08 ffffffff81572bd5 0000000000000002
0000000000000000 ffff880079606600 00007ffb4386e000 ffffc90000babe20
ffffffff81573201 ffff880036a3fd00 fffffffffffffffb ffffc90000babe40
Call Trace:
__handle_sysrq+0x138/0x220
? __handle_sysrq+0x5/0x220
write_sysrq_trigger+0x51/0x60
proc_reg_write+0x42/0x70
__vfs_write+0x37/0x140
? preempt_count_sub+0xa1/0x100
? __sb_start_write+0xf5/0x210
? vfs_write+0x183/0x1a0
vfs_write+0xb8/0x1a0
SyS_write+0x58/0xc0
entry_SYSCALL_64_fastpath+0x1f/0xc2
RIP: 0033:0x7ffb42f55940
RSP: 002b:00007ffd33bb6b18 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000046 RCX: 00007ffb42f55940
RDX: 0000000000000002 RSI: 00007ffb4386e000 RDI: 0000000000000001
RBP: 0000000000000011 R08: 00007ffb4321ea40 R09: 00007ffb43869700
R10: 00007ffb43869700 R11: 0000000000000246 R12: 0000000000778a10
R13: 00007ffd33bb5c00 R14: 0000000000000007 R15: 0000000000000010
Code: 34 e8 d0 34 bc ff 48 c7 c2 3b 2b 57 81 be 01 00 00 00 48 c7 c7 e0 dd e5 81 e8 a8 55 ba ff c7 05 0e 3f de 00 01 00 00 00 0f ae f8 <c6> 04 25 00 00 00 00 01 5d c3 e8 4c 49 bc ff 84 c0 75 c3 48 c7
RIP: sysrq_handle_crash+0x45/0x80 RSP: ffffc90000babdc8
CR2: 0000000000000000
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/69329cb29b8f324bb5fcea14d61d224807fb6488.1477405374.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Yeah, I know, I know, this is a huuge patch and reviewing it is hard.
Sorry but this is the only way I could think of in which I can rewrite
the microcode patches loading procedure without breaking (knowingly) the
driver.
So maybe this patch is easier to review if one looks at the files after
the patch has been applied instead at the diff. Because then it becomes
pretty obvious:
* The BSP-loading path - load_ucode_bsp() is working independently from
the AP path now and it doesn't save any pointers or patches anymore -
it solely parses the builtin or initrd microcode and applies the patch.
That's it.
This fixes the CONFIG_RANDOMIZE_MEMORY offset fun more solidly.
* The AP-loading path - load_ucode_ap() then goes and scans
builtin/initrd *again* for the microcode patches but it caches them this
time so that we don't have to do that scan on each AP but only once.
This simplifies the code considerably.
Then, when we save the microcode from the initrd/builtin, we go and
add the relevant patches to our own cache. The AMD side did do that
and now the Intel side does it too. So no more pointer copying and
blabla, we save the microcode patches ourselves and are independent from
initrd/builtin.
This whole conversion gives us other benefits like unifying the
initrd parsing into a single function: find_microcode_in_initrd() is
used by both.
The diffstat speaks for itself: 456 insertions(+), 695 deletions(-)
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161025095522.11964-12-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With frame pointers, when a task is interrupted, its stack is no longer
completely reliable because the function could have been interrupted
before it had a chance to save the previous frame pointer on the stack.
So the caller of the interrupted function could get skipped by a stack
trace.
This is problematic for live patching, which needs to know whether a
stack trace of a sleeping task can be relied upon. There's currently no
way to detect if a sleeping task was interrupted by a page fault
exception or preemption before it went to sleep.
Another issue is that when dumping the stack of an interrupted task, the
unwinder has no way of knowing where the saved pt_regs registers are, so
it can't print them.
This solves those issues by encoding the pt_regs pointer in the frame
pointer on entry from an interrupt or an exception.
This patch also updates the unwinder to be able to decode it, because
otherwise the unwinder would be broken by this change.
Note that this causes a change in the behavior of the unwinder: each
instance of a pt_regs on the stack is now considered a "frame". So
callers of unwind_get_return_address() will now get an occasional
'regs->ip' address that would have previously been skipped over.
Suggested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/8b9f84a21e39d249049e0547b559ff8da0df0988.1476973742.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following commit:
c65eacbe29 ("sched/core: Allow putting thread_info into task_struct")
... made 'struct thread_info' a generic struct with only a
single ::flags member, if CONFIG_THREAD_INFO_IN_TASK_STRUCT=y is
selected.
This change however seems to be quite x86 centric, since at least the
generic preemption code (asm-generic/preempt.h) assumes that struct
thread_info also has a preempt_count member, which apparently was not
true for x86.
We could add a bit more #ifdefs to solve this problem too, but it seems
to be much simpler to make struct thread_info arch specific
again. This also makes the conversion to THREAD_INFO_IN_TASK_STRUCT a
bit easier for architectures that have a couple of arch specific stuff
in their thread_info definition.
The arch specific stuff _could_ be moved to thread_struct. However
keeping them in thread_info makes it easier: accessing thread_info
members is simple, since it is at the beginning of the task_struct,
while the thread_struct is at the end. At least on s390 the offsets
needed to access members of the thread_struct (with task_struct as
base) are too large for various asm instructions. This is not a
problem when keeping these members within thread_info.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: keescook@chromium.org
Cc: linux-arch@vger.kernel.org
Link: http://lkml.kernel.org/r/1476901693-8492-2-git-send-email-mark.rutland@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
AVX512_4VNNIW - Vector instructions for deep learning enhanced word
variable precision.
AVX512_4FMAPS - Vector instructions for deep learning floating-point
single precision.
These new instructions are to be used in future Intel Xeon & Xeon Phi
processors. The bits 2&3 of CPUID[level:0x07, EDX] inform that new
instructions are supported by a processor.
The spec can be found in the Intel Software Developer Manual (SDM) or in
the Instruction Set Extensions Programming Reference (ISE).
Define new feature flags to enumerate the new instructions in /proc/cpuinfo
accordingly to CPUID bits and add the required xsave extensions which are
required for proper operation.
Signed-off-by: Piotr Luc <piotr.luc@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20161018150111.29926-1-piotr.luc@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Arnd reported the following objtool warning:
kernel/locking/rwsem.o: warning: objtool: down_write_killable()+0x16: call without frame pointer save/setup
The warning means gcc placed the ____down_write() inline asm (and its
call instruction) before the frame pointer setup in
down_write_killable(), which breaks frame pointer convention and can
result in incorrect stack traces.
Force the stack frame to be created before the call instruction by
listing the stack pointer as an output operand in the inline asm
statement.
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1188b7015f04baf361e59de499ee2d7272c59dce.1476393828.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull kbuild updates from Michal Marek:
- EXPORT_SYMBOL for asm source by Al Viro.
This does bring a regression, because genksyms no longer generates
checksums for these symbols (CONFIG_MODVERSIONS). Nick Piggin is
working on a patch to fix this.
Plus, we are talking about functions like strcpy(), which rarely
change prototypes.
- Fixes for PPC fallout of the above by Stephen Rothwell and Nick
Piggin
- fixdep speedup by Alexey Dobriyan.
- preparatory work by Nick Piggin to allow architectures to build with
-ffunction-sections, -fdata-sections and --gc-sections
- CONFIG_THIN_ARCHIVES support by Stephen Rothwell
- fix for filenames with colons in the initramfs source by me.
* 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild: (22 commits)
initramfs: Escape colons in depfile
ppc: there is no clear_pages to export
powerpc/64: whitelist unresolved modversions CRCs
kbuild: -ffunction-sections fix for archs with conflicting sections
kbuild: add arch specific post-link Makefile
kbuild: allow archs to select link dead code/data elimination
kbuild: allow architectures to use thin archives instead of ld -r
kbuild: Regenerate genksyms lexer
kbuild: genksyms fix for typeof handling
fixdep: faster CONFIG_ search
ia64: move exports to definitions
sparc32: debride memcpy.S a bit
[sparc] unify 32bit and 64bit string.h
sparc: move exports to definitions
ppc: move exports to definitions
arm: move exports to definitions
s390: move exports to definitions
m68k: move exports to definitions
alpha: move exports to actual definitions
x86: move exports to actual definitions
...
Pull percpu updates from Tejun Heo:
- Nick improved generic implementations of percpu operations which
modify the variable and return so that they calculate the physical
address only once.
- percpu_ref percpu <-> atomic mode switching improvements. The
patchset was originally posted about a year ago but fell through the
crack.
- misc non-critical fixes.
* 'for-4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
mm/percpu.c: fix potential memory leakage for pcpu_embed_first_chunk()
mm/percpu.c: correct max_distance calculation for pcpu_embed_first_chunk()
percpu: eliminate two sparse warnings
percpu: improve generic percpu modify-return implementation
percpu-refcount: init ->confirm_switch member properly
percpu_ref: allow operation mode switching operations to be called concurrently
percpu_ref: restructure operation mode switching
percpu_ref: unify staggered atomic switching wait behavior
percpu_ref: reorganize __percpu_ref_switch_to_atomic() and relocate percpu_ref_switch_to_atomic()
percpu_ref: remove unnecessary RCU grace period for staggered atomic switching confirmation
Pull uaccess.h prepwork from Al Viro:
"Preparations to tree-wide switch to use of linux/uaccess.h (which,
obviously, will allow to start unifying stuff for real). The last step
there, ie
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
`git grep -l "$PATT"|grep -v ^include/linux/uaccess.h`
is not taken here - I would prefer to do it once just before or just
after -rc1. However, everything should be ready for it"
* 'work.uaccess2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
remove a stray reference to asm/uaccess.h in docs
sparc64: separate extable_64.h, switch elf_64.h to it
score: separate extable.h, switch module.h to it
mips: separate extable.h, switch module.h to it
x86: separate extable.h, switch sections.h to it
remove stray include of asm/uaccess.h from cacheflush.h
mn10300: remove a bogus processor.h->uaccess.h include
xtensa: split uaccess.h into C and asm sides
bonding: quit messing with IOCTL
kill __kernel_ds_p off
mn10300: finish verify_area() off
frv: move HAVE_ARCH_UNMAPPED_AREA to pgtable.h
exceptions: detritus removal
Daniel Walker reported problems which happens when
crash_kexec_post_notifiers kernel option is enabled
(https://lkml.org/lkml/2015/6/24/44).
In that case, smp_send_stop() is called before entering kdump routines
which assume other CPUs are still online. As the result, for x86, kdump
routines fail to save other CPUs' registers and disable virtualization
extensions.
To fix this problem, call a new kdump friendly function,
crash_smp_send_stop(), instead of the smp_send_stop() when
crash_kexec_post_notifiers is enabled. crash_smp_send_stop() is a weak
function, and it just call smp_send_stop(). Architecture codes should
override it so that kdump can work appropriately. This patch only
provides x86-specific version.
For Xen's PV kernel, just keep the current behavior.
NOTES:
- Right solution would be to place crash_smp_send_stop() before
__crash_kexec() invocation in all cases and remove smp_send_stop(), but
we can't do that until all architectures implement own
crash_smp_send_stop()
- crash_smp_send_stop()-like work is still needed by
machine_crash_shutdown() because crash_kexec() can be called without
entering panic()
Fixes: f06e5153f4 (kernel/panic.c: add "crash_kexec_post_notifiers" option)
Link: http://lkml.kernel.org/r/20160810080948.11028.15344.stgit@sysi4-13.yrl.intra.hitachi.co.jp
Signed-off-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
Reported-by: Daniel Walker <dwalker@fifo99.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Daniel Walker <dwalker@fifo99.com>
Cc: Xunlei Pang <xpang@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Daney <david.daney@cavium.com>
Cc: Aaro Koskinen <aaro.koskinen@iki.fi>
Cc: "Steven J. Hill" <steven.hill@cavium.com>
Cc: Corey Minyard <cminyard@mvista.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull protection keys syscall interface from Thomas Gleixner:
"This is the final step of Protection Keys support which adds the
syscalls so user space can actually allocate keys and protect memory
areas with them. Details and usage examples can be found in the
documentation.
The mm side of this has been acked by Mel"
* 'mm-pkeys-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pkeys: Update documentation
x86/mm/pkeys: Do not skip PKRU register if debug registers are not used
x86/pkeys: Fix pkeys build breakage for some non-x86 arches
x86/pkeys: Add self-tests
x86/pkeys: Allow configuration of init_pkru
x86/pkeys: Default to a restrictive init PKRU
pkeys: Add details of system call use to Documentation/
generic syscalls: Wire up memory protection keys syscalls
x86: Wire up protection keys system calls
x86/pkeys: Allocation/free syscalls
x86/pkeys: Make mprotect_key() mask off additional vm_flags
mm: Implement new pkey_mprotect() system call
x86/pkeys: Add fault handling for PF_PK page fault bit
Pull x86 updates from Thomas Gleixner:
"A pile of regression fixes and updates:
- address the fallout of the patches which made the cpuid - nodeid
relation permanent: Handling of invalid APIC ids and preventing
pointless warning messages.
- force eager FPU when protection keys are enabled. Protection keys
are not generating FPU exceptions so they cannot work with the lazy
FPU mechanism.
- prevent force migration of interrupts which are not part of the CPU
vector domain.
- handle the fact that APIC ids are not updated in the ACPI/MADT
tables on physical CPU hotplug
- remove bash-isms from syscall table generator script
- use the hypervisor supplied APIC frequency when running on VMware"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pkeys: Make protection keys an "eager" feature
x86/apic: Prevent pointless warning messages
x86/acpi: Prevent LAPIC id 0xff from being accounted
arch/x86: Handle non enumerated CPU after physical hotplug
x86/unwind: Fix oprofile module link error
x86/vmware: Skip lapic calibration on VMware
x86/syscalls: Remove bash-isms in syscall table generator
x86/irq: Prevent force migration of irqs which are not in the vector domain
Our XSAVE features are divided into two categories: those that
generate FPU exceptions, and those that do not. MPX and pkeys do
not generate FPU exceptions and thus can not be used lazily. We
disable them when lazy mode is forced on.
We have a pair of masks to collect these two sets of features, but
XFEATURE_MASK_PKRU was added to the wrong mask: XFEATURE_MASK_LAZY.
Fix it by moving the feature to XFEATURE_MASK_EAGER.
Note: this only causes problem if you boot with lazy FPU mode
(eagerfpu=off) which is *not* the default. It also only affects
hardware which is not currently publicly available. It looks like
eager mode is going away, but we still need this patch applied
to any kernel that has protection keys and lazy mode, which is 4.6
through 4.8 at this point, and 4.9 if the lazy removal isn't sent
to Linus for 4.9.
Fixes: c8df400984 ("x86/fpu, x86/mm/pkeys: Add PKRU xsave fields and data structures")
Signed-off-by: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20161007162342.28A49813@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Patch series "improvements to the nmi_backtrace code" v9.
This patch series modifies the trigger_xxx_backtrace() NMI-based remote
backtracing code to make it more flexible, and makes a few small
improvements along the way.
The motivation comes from the task isolation code, where there are
scenarios where we want to be able to diagnose a case where some cpu is
about to interrupt a task-isolated cpu. It can be helpful to see both
where the interrupting cpu is, and also an approximation of where the
cpu that is being interrupted is. The nmi_backtrace framework allows us
to discover the stack of the interrupted cpu.
I've tested that the change works as desired on tile, and build-tested
x86, arm, mips, and sparc64. For x86 I confirmed that the generic
cpuidle stuff as well as the architecture-specific routines are in the
new cpuidle section. For arm, mips, and sparc I just build-tested it
and made sure the generic cpuidle routines were in the new cpuidle
section, but I didn't attempt to figure out which the platform-specific
idle routines might be. That might be more usefully done by someone
with platform experience in follow-up patches.
This patch (of 4):
Currently you can only request a backtrace of either all cpus, or all
cpus but yourself. It can also be helpful to request a remote backtrace
of a single cpu, and since we want that, the logical extension is to
support a cpumask as the underlying primitive.
This change modifies the existing lib/nmi_backtrace.c code to take a
cpumask as its basic primitive, and modifies the linux/nmi.h code to use
the new "cpumask" method instead.
The existing clients of nmi_backtrace (arm and x86) are converted to
using the new cpumask approach in this change.
The other users of the backtracing API (sparc64 and mips) are converted
to use the cpumask approach rather than the all/allbutself approach.
The mips code ignored the "include_self" boolean but with this change it
will now also dump a local backtrace if requested.
Link: http://lkml.kernel.org/r/1472487169-14923-2-git-send-email-cmetcalf@mellanox.com
Signed-off-by: Chris Metcalf <cmetcalf@mellanox.com>
Tested-by: Daniel Thompson <daniel.thompson@linaro.org> [arm]
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We get 1 warning when building kernel with W=1:
drivers/char/mem.c:220:12: warning: no previous prototype for 'phys_mem_access_prot_allowed' [-Wmissing-prototypes]
int __weak phys_mem_access_prot_allowed(struct file *file,
In fact, its declaration is spreading to several header files in
different architecture, but need to be declare in common header file.
So this patch moves phys_mem_access_prot_allowed() to pgtable.h.
Link: http://lkml.kernel.org/r/1473751597-12139-1-git-send-email-baoyou.xie@linaro.org
Signed-off-by: Baoyou Xie <baoyou.xie@linaro.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>