On Pseries LPARs, to calculate utilization, we need to know the
[S]PURR ticks when the CPUs were busy or idle.
The total PURR and SPURR ticks are already exposed via the per-cpu
sysfs files "purr" and "spurr". This patch adds support for exposing
the idle PURR and SPURR ticks via new per-cpu sysfs files named
"idle_purr" and "idle_spurr".
This patch also adds helper functions to accurately read the values of
idle_purr and idle_spurr especially from an interrupt context between
when the interrupt has occurred between the pseries_idle_prolog() and
pseries_idle_epilog(). This will ensure that the idle purr/spurr
values corresponding to the latest idle period is accounted for before
these values are read.
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1586249263-14048-5-git-send-email-ego@linux.vnet.ibm.com
On Pseries LPARs, to calculate utilization, we need to know the
[S]PURR ticks when the CPUs were busy or idle.
Via pseries_idle_prolog(), pseries_idle_epilog(), we track the idle
PURR ticks in the VPA variable "wait_state_cycles". This patch extends
the support to account for the idle SPURR ticks.
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1586249263-14048-4-git-send-email-ego@linux.vnet.ibm.com
Currently when CPU goes idle, we take a snapshot of PURR via
pseries_idle_prolog() which is used at the CPU idle exit to compute
the idle PURR cycles via the function pseries_idle_epilog(). Thus,
the value of idle PURR cycle thus read before pseries_idle_prolog() and
after pseries_idle_epilog() is always correct.
However, if we were to read the idle PURR cycles from an interrupt
context between pseries_idle_prolog() and pseries_idle_epilog() (this
will be done in a future patch), then, the value of the idle PURR thus
read will not include the cycles spent in the most recent idle period.
Thus, in that interrupt context, we will need access to the snapshot
of the PURR before going idle, in order to compute the idle PURR
cycles for the latest idle duration.
In this patch, we save the snapshot of PURR in pseries_idle_prolog()
in a per-cpu variable, instead of on the stack, so that it can be
accessed from an interrupt context.
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1586249263-14048-3-git-send-email-ego@linux.vnet.ibm.com
Currently prior to entering an idle state on a Linux Guest, the
pseries cpuidle driver implement an idle_loop_prolog() and
idle_loop_epilog() functions which ensure that idle_purr is correctly
computed, and the hypervisor is informed that the CPU cycles have been
donated.
These prolog and epilog functions are also required in the default
idle call, i.e pseries_lpar_idle(). Hence move these accessor
functions to a common header file and call them from
pseries_lpar_idle(). Since the existing header files such as
asm/processor.h have enough clutter, create a new header file
asm/idle.h. Finally rename idle_loop_prolog() and idle_loop_epilog()
to pseries_idle_prolog() and pseries_idle_epilog() as they are only
relavent for on pseries guests.
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1586249263-14048-2-git-send-email-ego@linux.vnet.ibm.com
As the bug report [1] pointed out, <linux/vermagic.h> must be included
after <linux/module.h>.
I believe we should not impose any include order restriction. We often
sort include directives alphabetically, but it is just coding style
convention. Technically, we can include header files in any order by
making every header self-contained.
Currently, arch-specific MODULE_ARCH_VERMAGIC is defined in
<asm/module.h>, which is not included from <linux/vermagic.h>.
Hence, the straight-forward fix-up would be as follows:
|--- a/include/linux/vermagic.h
|+++ b/include/linux/vermagic.h
|@@ -1,5 +1,6 @@
| /* SPDX-License-Identifier: GPL-2.0 */
| #include <generated/utsrelease.h>
|+#include <linux/module.h>
|
| /* Simply sanity version stamp for modules. */
| #ifdef CONFIG_SMP
This works enough, but for further cleanups, I split MODULE_ARCH_VERMAGIC
definitions into <asm/vermagic.h>.
With this, <linux/module.h> and <linux/vermagic.h> will be orthogonal,
and the location of MODULE_ARCH_VERMAGIC definitions will be consistent.
For arc and ia64, MODULE_PROC_FAMILY is only used for defining
MODULE_ARCH_VERMAGIC. I squashed it.
For hexagon, nds32, and xtensa, I removed <asm/modules.h> entirely
because they contained nothing but MODULE_ARCH_VERMAGIC definition.
Kbuild will automatically generate <asm/modules.h> at build-time,
wrapping <asm-generic/module.h>.
[1] https://lore.kernel.org/lkml/20200411155623.GA22175@zn.tnic
Reported-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
On power9, userspace can send GZIP compression requests directly to NX
once kernel establishes NX channel / window with VAS. This patch provides
user space API which allows user space to establish channel using open
VAS_TX_WIN_OPEN ioctl, mmap and close operations.
Each window corresponds to file descriptor and application can open
multiple windows. After the window is opened, VAS_TX_WIN_OPEN icoctl to
open a window on specific VAS instance, mmap() system call to map
the hardware address of engine's request queue into the application's
virtual address space.
Then the application can then submit one or more requests to the the
engine by using the copy/paste instructions and pasting the CRBs to
the virtual address (aka paste_address) returned by mmap().
Only NX GZIP coprocessor type is supported right now and allow GZIP
engine access via /dev/crypto/nx-gzip device node.
Thanks to Michael Ellerman for his changes and suggestions to make the
ioctl generic to support any coprocessor type.
Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
Signed-off-by: Haren Myneni <haren@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1587114121.2275.1109.camel@hbabu-laptop
set_thread_uses_vas() sets used_vas flag for a process that opened VAS
window and issue CP_ABORT during context switch for only that process.
In multi-thread application, windows can be shared. For example Thread
A can open a window and Thread B can run COPY/PASTE instructions to
send NX request which may cause corruption or snooping or a covert
channel Also once this flag is set, continue to run CP_ABORT even the
VAS window is closed.
So define vas-windows counter in process mm_context, increment this
counter for each window open and decrement it for window close. If
vas-windows is set, issue CP_ABORT during context switch. It means
clear the foreign real address mapping only if the process / thread
uses COPY/PASTE. Then disable it for that process if windows are not
open.
Moved set_thread_uses_vas() code to vas_tx_win_open() as this
functionality is needed only for userspace open windows. We are adding
VAS userspace support along with this fix. So no need to include this
fix in stable releases.
Fixes: 9d2a4d7133 ("powerpc: Define set_thread_uses_vas()")
Signed-off-by: Haren Myneni <haren@linux.ibm.com>
Reported-by: Nicholas Piggin <npiggin@gmail.com>
Suggested-by: Milton Miller <miltonm@us.ibm.com>
Suggested-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1587017291.2275.1077.camel@hbabu-laptop
Pull more powerpc updates from Michael Ellerman:
"The bulk of this is the series to make CONFIG_COMPAT user-selectable,
it's been around for a long time but was blocked behind the
syscall-in-C series.
Plus there's also a few fixes and other minor things.
Summary:
- A fix for a crash in machine check handling on pseries (ie. guests)
- A small series to make it possible to disable CONFIG_COMPAT, and
turn it off by default for ppc64le where it's not used.
- A few other miscellaneous fixes and small improvements.
Thanks to: Alexey Kardashevskiy, Anju T Sudhakar, Arnd Bergmann,
Christophe Leroy, Dan Carpenter, Ganesh Goudar, Geert Uytterhoeven,
Geoff Levand, Mahesh Salgaonkar, Markus Elfring, Michal Suchanek,
Nicholas Piggin, Stephen Boyd, Wen Xiong"
* tag 'powerpc-5.7-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
selftests/powerpc: Always build the tm-poison test 64-bit
powerpc: Improve ppc_save_regs()
Revert "powerpc/64: irq_work avoid interrupt when called with hardware irqs enabled"
powerpc/time: Replace <linux/clk-provider.h> by <linux/of_clk.h>
powerpc/pseries/ddw: Extend upper limit for huge DMA window for persistent memory
powerpc/perf: split callchain.c by bitness
powerpc/64: Make COMPAT user-selectable disabled on littleendian by default.
powerpc/64: make buildable without CONFIG_COMPAT
powerpc/perf: consolidate valid_user_sp -> invalid_user_sp
powerpc/perf: consolidate read_user_stack_32
powerpc: move common register copy functions from signal_32.c to signal.c
powerpc: Add back __ARCH_WANT_SYS_LLSEEK macro
powerpc/ps3: Set CONFIG_UEVENT_HELPER=y in ps3_defconfig
powerpc/ps3: Remove an unneeded NULL check
powerpc/ps3: Remove duplicate error message
powerpc/powernv: Re-enable imc trace-mode in kernel
powerpc/perf: Implement a global lock to avoid races between trace, core and thread imc events.
powerpc/pseries: Fix MCE handling on pseries
selftests/eeh: Skip ahci adapters
powerpc/64s: Fix doorbell wakeup msgclr optimisation
Pull powerpc updates from Michael Ellerman:
"Slightly late as I had to rebase mid-week to insert a bug fix:
- A large series from Nick for 64-bit to further rework our exception
vectors, and rewrite portions of the syscall entry/exit and
interrupt return in C. The result is much easier to follow code
that is also faster in general.
- Cleanup of our ptrace code to split various parts out that had
become badly intertwined with #ifdefs over the years.
- Changes to our NUMA setup under the PowerVM hypervisor which should
hopefully avoid non-sensical topologies which can lead to warnings
from the workqueue code and other problems.
- MAINTAINERS updates to remove some of our old orphan entries and
update the status of others.
- Quite a few other small changes and fixes all over the map.
Thanks to: Abdul Haleem, afzal mohammed, Alexey Kardashevskiy, Andrew
Donnellan, Aneesh Kumar K.V, Balamuruhan S, Cédric Le Goater, Chen
Zhou, Christophe JAILLET, Christophe Leroy, Christoph Hellwig, Clement
Courbet, Daniel Axtens, David Gibson, Douglas Miller, Fabiano Rosas,
Fangrui Song, Ganesh Goudar, Gautham R. Shenoy, Greg Kroah-Hartman,
Greg Kurz, Gustavo Luiz Duarte, Hari Bathini, Ilie Halip, Jan Kara,
Joe Lawrence, Joe Perches, Kajol Jain, Larry Finger, Laurentiu Tudor,
Leonardo Bras, Libor Pechacek, Madhavan Srinivasan, Mahesh Salgaonkar,
Masahiro Yamada, Masami Hiramatsu, Mauricio Faria de Oliveira, Michael
Neuling, Michal Suchanek, Mike Rapoport, Nageswara R Sastry, Nathan
Chancellor, Nathan Lynch, Naveen N. Rao, Nicholas Piggin, Nick
Desaulniers, Oliver O'Halloran, Po-Hsu Lin, Pratik Rajesh Sampat,
Rasmus Villemoes, Ravi Bangoria, Roman Bolshakov, Sam Bobroff,
Sandipan Das, Santosh S, Sedat Dilek, Segher Boessenkool, Shilpasri G
Bhat, Sourabh Jain, Srikar Dronamraju, Stephen Rothwell, Tyrel
Datwyler, Vaibhav Jain, YueHaibing"
* tag 'powerpc-5.7-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (158 commits)
powerpc: Make setjmp/longjmp signature standard
powerpc/cputable: Remove unnecessary copy of cpu_spec->oprofile_type
powerpc: Suppress .eh_frame generation
powerpc: Drop -fno-dwarf2-cfi-asm
powerpc/32: drop unused ISA_DMA_THRESHOLD
powerpc/powernv: Add documentation for the opal sensor_groups sysfs interfaces
selftests/powerpc: Fix try-run when source tree is not writable
powerpc/vmlinux.lds: Explicitly retain .gnu.hash
powerpc/ptrace: move ptrace_triggered() into hw_breakpoint.c
powerpc/ptrace: create ppc_gethwdinfo()
powerpc/ptrace: create ptrace_get_debugreg()
powerpc/ptrace: split out ADV_DEBUG_REGS related functions.
powerpc/ptrace: move register viewing functions out of ptrace.c
powerpc/ptrace: split out TRANSACTIONAL_MEM related functions.
powerpc/ptrace: split out SPE related functions.
powerpc/ptrace: split out ALTIVEC related functions.
powerpc/ptrace: split out VSX related functions.
powerpc/ptrace: drop PARAMETER_SAVE_AREA_OFFSET
powerpc/ptrace: drop unnecessary #ifdefs CONFIG_PPC64
powerpc/ptrace: remove unused header includes
...
Pull kvm updates from Paolo Bonzini:
"ARM:
- GICv4.1 support
- 32bit host removal
PPC:
- secure (encrypted) using under the Protected Execution Framework
ultravisor
s390:
- allow disabling GISA (hardware interrupt injection) and protected
VMs/ultravisor support.
x86:
- New dirty bitmap flag that sets all bits in the bitmap when dirty
page logging is enabled; this is faster because it doesn't require
bulk modification of the page tables.
- Initial work on making nested SVM event injection more similar to
VMX, and less buggy.
- Various cleanups to MMU code (though the big ones and related
optimizations were delayed to 5.8). Instead of using cr3 in
function names which occasionally means eptp, KVM too has
standardized on "pgd".
- A large refactoring of CPUID features, which now use an array that
parallels the core x86_features.
- Some removal of pointer chasing from kvm_x86_ops, which will also
be switched to static calls as soon as they are available.
- New Tigerlake CPUID features.
- More bugfixes, optimizations and cleanups.
Generic:
- selftests: cleanups, new MMU notifier stress test, steal-time test
- CSV output for kvm_stat"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (277 commits)
x86/kvm: fix a missing-prototypes "vmread_error"
KVM: x86: Fix BUILD_BUG() in __cpuid_entry_get_reg() w/ CONFIG_UBSAN=y
KVM: VMX: Add a trampoline to fix VMREAD error handling
KVM: SVM: Annotate svm_x86_ops as __initdata
KVM: VMX: Annotate vmx_x86_ops as __initdata
KVM: x86: Drop __exit from kvm_x86_ops' hardware_unsetup()
KVM: x86: Copy kvm_x86_ops by value to eliminate layer of indirection
KVM: x86: Set kvm_x86_ops only after ->hardware_setup() completes
KVM: VMX: Configure runtime hooks using vmx_x86_ops
KVM: VMX: Move hardware_setup() definition below vmx_x86_ops
KVM: x86: Move init-only kvm_x86_ops to separate struct
KVM: Pass kvm_init()'s opaque param to additional arch funcs
s390/gmap: return proper error code on ksm unsharing
KVM: selftests: Fix cosmetic copy-paste error in vm_mem_region_move()
KVM: Fix out of range accesses to memslots
KVM: X86: Micro-optimize IPI fastpath delay
KVM: X86: Delay read msr data iff writes ICR MSR
KVM: PPC: Book3S HV: Add a capability for enabling secure guests
KVM: arm64: GICv4.1: Expose HW-based SGIs in debugfs
KVM: arm64: GICv4.1: Allow non-trapping WFI when using HW SGIs
...
Change a header to mandatory-y if both of the following are met:
[1] At least one architecture (except um) specifies it as generic-y in
arch/*/include/asm/Kbuild
[2] Every architecture (except um) either has its own implementation
(arch/*/include/asm/*.h) or specifies it as generic-y in
arch/*/include/asm/Kbuild
This commit was generated by the following shell script.
----------------------------------->8-----------------------------------
arches=$(cd arch; ls -1 | sed -e '/Kconfig/d' -e '/um/d')
tmpfile=$(mktemp)
grep "^mandatory-y +=" include/asm-generic/Kbuild > $tmpfile
find arch -path 'arch/*/include/asm/Kbuild' |
xargs sed -n 's/^generic-y += \(.*\)/\1/p' | sort -u |
while read header
do
mandatory=yes
for arch in $arches
do
if ! grep -q "generic-y += $header" arch/$arch/include/asm/Kbuild &&
! [ -f arch/$arch/include/asm/$header ]; then
mandatory=no
break
fi
done
if [ "$mandatory" = yes ]; then
echo "mandatory-y += $header" >> $tmpfile
for arch in $arches
do
sed -i "/generic-y += $header/d" arch/$arch/include/asm/Kbuild
done
fi
done
sed -i '/^mandatory-y +=/d' include/asm-generic/Kbuild
LANG=C sort $tmpfile >> include/asm-generic/Kbuild
----------------------------------->8-----------------------------------
One obvious benefit is the diff stat:
25 files changed, 52 insertions(+), 557 deletions(-)
It is tedious to list generic-y for each arch that needs it.
So, mandatory-y works like a fallback default (by just wrapping
asm-generic one) when arch does not have a specific header
implementation.
See the following commits:
def3f7cefea1b39bae16
It is tedious to convert headers one by one, so I processed by a shell
script.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Simek <michal.simek@xilinx.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Link: http://lkml.kernel.org/r/20200210175452.5030-1-masahiroy@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Declaring setjmp()/longjmp() as taking longs makes the signature
non-standard, and makes clang complain. In the past, this has been
worked around by adding -ffreestanding to the compile flags.
The implementation looks like it only ever propagates the value
(in longjmp) or sets it to 1 (in setjmp), and we only call longjmp
with integer parameters.
This allows removing -ffreestanding from the compilation flags.
Fixes: c9029ef9c9 ("powerpc: Avoid clang warnings around setjmp and longjmp")
Cc: stable@vger.kernel.org # v4.14+
Signed-off-by: Clement Courbet <courbet@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200330080400.124803-1-courbet@google.com
Implement the bulk of interrupt return logic in C. The asm return code
must handle a few cases: restoring full GPRs, and emulating stack
store.
The stack store emulation is significantly simplfied, rather than
creating a new return frame and switching to that before performing
the store, it uses the PACA to keep a scratch register around to
perform the store.
The asm return code is moved into 64e for now. The new logic has made
allowance for 64e, but I don't have a full environment that works well
to test it, and even booting in emulated qemu is not great for stress
testing. 64e shouldn't be too far off working with this, given a bit
more testing and auditing of the logic.
This is slightly faster on a POWER9 (page fault speed increases about
1.1%), probably due to reduced mtmsrd.
mpe: Includes fixes from Nick for _TIF_EMULATE_STACK_STORE
handling (including the fast_interrupt_return path), to remove
trace_hardirqs_on(), and fixes the interrupt-return part of the
MSR_VSX restore bug caught by tm-unavailable selftest.
mpe: Incorporate fix from Nick:
The return-to-kernel path has to replay any soft-pending interrupts if
it is returning to a context that had interrupts soft-enabled. It has
to do this carefully and avoid plain enabling interrupts if this is an
irq context, which can cause multiple nesting of interrupts on the
stack, and other unexpected issues.
The code which avoided this case got the soft-mask state wrong, and
marked interrupts as enabled before going around again to retry. This
seems to be mostly harmless except when PREEMPT=y, this calls
preempt_schedule_irq with irqs apparently enabled and runs into a BUG
in kernel/sched/core.c
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michal Suchanek <msuchanek@suse.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200225173541.1549955-29-npiggin@gmail.com
When local_irq_enable() finds a pending soft-masked interrupt, it
"replays" it by setting up registers like the initial interrupt entry,
then calls into the low level handler to set up an interrupt stack
frame and process the interrupt.
This is not necessary, and uses more stack than needed. The high level
interrupt handler can be called directly from C, with just pt_regs set
up on stack. This should be faster and use less stack.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200225173541.1549955-28-npiggin@gmail.com
System call entry and particularly exit code is beyond the limit of
what is reasonable to implement in asm.
This conversion moves all conditional branches out of the asm code,
except for the case that all GPRs should be restored at exit.
Null syscall test is about 5% faster after this patch, because the
exit work is handled under local_irq_disable, and the hard mask and
pending interrupt replay is handled after that, which avoids games
with MSR.
mpe: Includes subsequent fixes from Nick:
This fixes 4 issues caught by TM selftests. First was a tm-syscall bug
that hit due to tabort_syscall being called after interrupts were
reconciled (in a subsequent patch), which led to interrupts being
enabled before tabort_syscall was called. Rather than going through an
un-reconciling interrupts for the return, I just go back to putting
the test early in asm, the C-ification of that wasn't a big win
anyway.
Second is the syscall return _TIF_USER_WORK_MASK check would go into
an infinite loop if _TIF_RESTORE_TM became set. The asm code uses
_TIF_USER_WORK_MASK to brach to slowpath which includes
restore_tm_state.
Third is system call return was not calling restore_tm_state, I missed
this completely (alhtough it's in the return from interrupt C
conversion because when the asm syscall code encountered problems it
would branch to the interrupt return code.
Fourth is MSR_VEC missing from restore_math, which was caught by
tm-unavailable selftest taking an unexpected facility unavailable
interrupt when testing VSX unavailble exception with MSR.FP=1
MSR.VEC=1. Fourth case also has a fixup in a subsequent patch.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michal Suchanek <msuchanek@suse.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200225173541.1549955-26-npiggin@gmail.com
The hdec interrupt handler is reported to sometimes fire in Linux if
KVM leaves it pending after a guest exists. This is harmless, so there
is a no-op handler for it.
The interrupt handler currently uses the regular kernel stack. Change
this to avoid touching the stack entirely.
This should be the last place where the regular Linux stack can be
accessed with asynchronous interrupts (including PMI) soft-masked.
It might be possible to take advantage of this invariant, e.g., to
context switch the kernel stack SLB entry without clearing MSR[EE].
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200225173541.1549955-17-npiggin@gmail.com
The real mode interrupt entry points currently use rfid to branch to
the common handler in virtual mode. This is a significant amount of
code, and forces other code (notably the KVM test) to live in the
real mode handler.
In the interest of minimising the amount of code that runs unrelocated
move the switch to virt mode into the common code, and do it with
mtmsrd, which avoids clobbering SRRs (although the post-KVMTEST
performance of real-mode interrupt handlers is not a big concern these
days).
This requires CTR to always be saved (real-mode needs to reach 0xc...)
but that's not a huge impact these days. It could be optimized away in
future.
mpe: Incorporate fix from Nick:
It's possible for interrupts to be replayed when TM is enabled and
suspended, for example rt_sigreturn, where the mtmsrd MSR_KERNEL in
the real-mode entry point to the common handler causes a TM Bad Thing
exception (due to attempting to clear suspended).
The fix for this is to have replay interrupts go to the _virt entry
point and skip the mtmsrd, which matches what happens before this
patch.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200225173541.1549955-11-npiggin@gmail.com
KVM PPC update for 5.7
* Add a capability for enabling secure guests under the Protected
Execution Framework ultravisor
* Various bug fixes and cleanups.
Move access_ok() in and pagefault_enable()/pagefault_disable() out.
Mechanical conversion only - some instances don't really need
a separate access_ok() at all (e.g. the ones only using
get_user()/put_user(), or architectures where access_ok()
is always true); we'll deal with that in followups.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
memcpy_mcsafe has been implemented for power machines which is used
by pmem infrastructure, so that an UE encountered during memcpy from
pmem devices would not result in panic instead a right error code
is returned. The implementation expects machine check handler to ignore
the event and set nip to continue the execution from fixup code.
Appropriate changes are already made to powernv machine check handler,
make similar changes to pseries machine check handler to ignore the
the event and set nip to continue execution at the fixup entry if we
hit UE at an instruction with a fixup entry.
while we are at it, have a common function which searches the exception
table entry and updates nip with fixup address, and any future common
changes can be made in this function that are valid for both architectures.
powernv changes are made by
commit 895e3dceeb ("powerpc/mce: Handle UE event for memcpy_mcsafe")
Reviewed-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Reviewed-by: Santosh S <santosh@fossix.org>
Signed-off-by: Ganesh Goudar <ganeshgr@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200326184916.31172-1-ganeshgr@linux.ibm.com
At present, on Power systems with Protected Execution Facility
hardware and an ultravisor, a KVM guest can transition to being a
secure guest at will. Userspace (QEMU) has no way of knowing
whether a host system is capable of running secure guests. This
will present a problem in future when the ultravisor is capable of
migrating secure guests from one host to another, because
virtualization management software will have no way to ensure that
secure guests only run in domains where all of the hosts can
support secure guests.
This adds a VM capability which has two functions: (a) userspace
can query it to find out whether the host can support secure guests,
and (b) userspace can enable it for a guest, which allows that
guest to become a secure guest. If userspace does not enable it,
KVM will return an error when the ultravisor does the hypercall
that indicates that the guest is starting to transition to a
secure guest. The ultravisor will then abort the transition and
the guest will terminate.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Ram Pai <linuxram@us.ibm.com>
With the EEH early probe now being pseries specific there's no need for
eeh_ops->probe() to take a pci_dn. Instead, we can make it take a pci_dev
and use the probe function to map a pci_dev to an eeh_dev. This allows
the platform to implement it's own method for finding (or creating) an
eeh_dev for a given pci_dev which also removes a use of pci_dn in
generic EEH code.
This patch also renames eeh_device_add_late() to eeh_device_probe(). This
better reflects what it does does and removes the last vestiges of the
early/late EEH probe split.
Reviewed-by: Sam Bobroff <sbobroff@linux.ibm.com>
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200306073904.4737-6-oohall@gmail.com
The eeh_ops->probe() function is called from two different contexts:
1. On pseries, where we set EEH_PROBE_MODE_DEVTREE, it's called in
eeh_add_device_early() which is supposed to run before we create
a pci_dev.
2. On PowerNV, where we set EEH_PROBE_MODE_DEV, it's called in
eeh_device_add_late() which is supposed to run *after* the
pci_dev is created.
The "early" probe is required because PAPR requires that we perform an RTAS
call to enable EEH support on a device before we start interacting with it
via config space or MMIO. This requirement doesn't exist on PowerNV and
shoehorning two completely separate initialisation paths into a common
interface just results in a convoluted code everywhere.
Additionally the early probe requires the probe function to take an pci_dn
rather than a pci_dev argument. We'd like to make pci_dn a pseries specific
data structure since there's no real requirement for them on PowerNV. To
help both goals move the early probe into the pseries containment zone
so the platform depedence is more explicit.
Reviewed-by: Sam Bobroff <sbobroff@linux.ibm.com>
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200306073904.4737-5-oohall@gmail.com
Move creating the EEH specific sysfs files into eeh_add_device_late()
rather than being open-coded all over the place. Calling the function is
generally done immediately after calling eeh_add_device_late() anyway. This
is also a correctness fix since currently the sysfs files will be added
even if the EEH probe happens to fail.
Similarly, on pseries we currently add the sysfs files before calling
eeh_add_device_late(). This is flat-out broken since the sysfs files
require the pci_dev->dev.archdata.edev pointer to be set, and that is done
in eeh_add_device_late().
Reviewed-by: Sam Bobroff <sbobroff@linux.ibm.com>
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200306073904.4737-1-oohall@gmail.com
H_PAGE_THP_HUGE is used to differentiate between a THP hugepage and
hugetlb hugepage entries. The difference is WRT how we handle hash
fault on these address. THP address enables MPSS in segments. We want
to manage devmap hugepage entries similar to THP pt entries. Hence use
H_PAGE_THP_HUGE for devmap huge PTE entries.
With current code while handling hash PTE fault, we do set is_thp =
true when finding devmap PTE huge PTE entries.
Current code also does the below sequence we setting up huge devmap
entries.
entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
if (pfn_t_devmap(pfn))
entry = pmd_mkdevmap(entry);
In that case we would find both H_PAGE_THP_HUGE and PAGE_DEVMAP set
for huge devmap PTE entries. This results in false positive error like
below.
kernel BUG at /home/kvaneesh/src/linux/mm/memory.c:4321!
Oops: Exception in kernel mode, sig: 5 [#1]
LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries
Modules linked in:
CPU: 56 PID: 67996 Comm: t_mmap_dio Not tainted 5.6.0-rc4-59640-g371c804dedbc #128
....
NIP [c00000000044c9e4] __follow_pte_pmd+0x264/0x900
LR [c0000000005d45f8] dax_writeback_one+0x1a8/0x740
Call Trace:
str_spec.74809+0x22ffb4/0x2d116c (unreliable)
dax_writeback_one+0x1a8/0x740
dax_writeback_mapping_range+0x26c/0x700
ext4_dax_writepages+0x150/0x5a0
do_writepages+0x68/0x180
__filemap_fdatawrite_range+0x138/0x180
file_write_and_wait_range+0xa4/0x110
ext4_sync_file+0x370/0x6e0
vfs_fsync_range+0x70/0xf0
sys_msync+0x220/0x2e0
system_call+0x5c/0x68
This is because our pmd_trans_huge check doesn't exclude _PAGE_DEVMAP.
To make this all consistent, update pmd_mkdevmap to set
H_PAGE_THP_HUGE and pmd_trans_huge check now excludes _PAGE_DEVMAP
correctly.
Fixes: ebd3119793 ("powerpc/mm: Add devmap support for ppc64")
Cc: stable@vger.kernel.org # v4.13+
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200313094842.351830-1-aneesh.kumar@linux.ibm.com
Reorder Linux PTE bits to (almost) match Hash PTE bits.
RW Kernel : PP = 00
RO Kernel : PP = 00
RW User : PP = 01
RO User : PP = 11
So naturally, we should have
_PAGE_USER = 0x001
_PAGE_RW = 0x002
Today 0x001 and 0x002 and _PAGE_PRESENT and _PAGE_HASHPTE which
both are software only bits.
Switch _PAGE_USER and _PAGE_PRESET
Switch _PAGE_RW and _PAGE_HASHPTE
This allows to remove a few insns.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/c4d6c18a7f8d9d3b899bc492f55fbc40ef38896a.1583861325.git.christophe.leroy@c-s.fr
These are only used by HV KVM and BookE, and in both cases they are
nops.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This is only relevant to PR KVM. Make it obvious by moving the
function declaration to the Book3s header and rename it with
a _pr suffix.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
On P9 DD2.2 due to a CPU defect some TM instructions need to be emulated by
KVM. This is handled at first by the hardware raising a softpatch interrupt
when certain TM instructions that need KVM assistance are executed in the
guest. Althought some TM instructions per Power ISA are invalid forms they
can raise a softpatch interrupt too. For instance, 'tresume.' instruction
as defined in the ISA must have bit 31 set (1), but an instruction that
matches 'tresume.' PO and XO opcode fields but has bit 31 not set (0), like
0x7cfe9ddc, also raises a softpatch interrupt. Similarly for 'treclaim.'
and 'trechkpt.' instructions with bit 31 = 0, i.e. 0x7c00075c and
0x7c0007dc, respectively. Hence, if a code like the following is executed
in the guest it will raise a softpatch interrupt just like a 'tresume.'
when the TM facility is enabled ('tabort. 0' in the example is used only
to enable the TM facility):
int main() { asm("tabort. 0; .long 0x7cfe9ddc;"); }
Currently in such a case KVM throws a complete trace like:
[345523.705984] WARNING: CPU: 24 PID: 64413 at arch/powerpc/kvm/book3s_hv_tm.c:211 kvmhv_p9_tm_emulation+0x68/0x620 [kvm_hv]
[345523.705985] Modules linked in: kvm_hv(E) xt_conntrack ipt_REJECT nf_reject_ipv4 xt_tcpudp ip6table_mangle ip6table_nat
iptable_mangle iptable_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ebtable_filter ebtables ip6table_filter
ip6_tables iptable_filter bridge stp llc sch_fq_codel ipmi_powernv at24 vmx_crypto ipmi_devintf ipmi_msghandler
ibmpowernv uio_pdrv_genirq kvm opal_prd uio leds_powernv ib_iser rdma_cm iw_cm ib_cm ib_core iscsi_tcp libiscsi_tcp
libiscsi scsi_transport_iscsi ip_tables x_tables autofs4 btrfs blake2b_generic zstd_compress raid10 raid456
async_raid6_recov async_memcpy async_pq async_xor async_tx libcrc32c xor raid6_pq raid1 raid0 multipath linear tg3
crct10dif_vpmsum crc32c_vpmsum ipr [last unloaded: kvm_hv]
[345523.706030] CPU: 24 PID: 64413 Comm: CPU 0/KVM Tainted: G W E 5.5.0+ #1
[345523.706031] NIP: c0080000072cb9c0 LR: c0080000072b5e80 CTR: c0080000085c7850
[345523.706034] REGS: c000000399467680 TRAP: 0700 Tainted: G W E (5.5.0+)
[345523.706034] MSR: 900000010282b033 <SF,HV,VEC,VSX,EE,FP,ME,IR,DR,RI,LE,TM[E]> CR: 24022428 XER: 00000000
[345523.706042] CFAR: c0080000072b5e7c IRQMASK: 0
GPR00: c0080000072b5e80 c000000399467910 c0080000072db500 c000000375ccc720
GPR04: c000000375ccc720 00000003fbec0000 0000a10395dda5a6 0000000000000000
GPR08: 000000007cfe9ddc 7cfe9ddc000005dc 7cfe9ddc7c0005dc c0080000072cd530
GPR12: c0080000085c7850 c0000003fffeb800 0000000000000001 00007dfb737f0000
GPR16: c0002001edcca558 0000000000000000 0000000000000000 0000000000000001
GPR20: c000000001b21258 c0002001edcca558 0000000000000018 0000000000000000
GPR24: 0000000001000000 ffffffffffffffff 0000000000000001 0000000000001500
GPR28: c0002001edcc4278 c00000037dd80000 800000050280f033 c000000375ccc720
[345523.706062] NIP [c0080000072cb9c0] kvmhv_p9_tm_emulation+0x68/0x620 [kvm_hv]
[345523.706065] LR [c0080000072b5e80] kvmppc_handle_exit_hv.isra.53+0x3e8/0x798 [kvm_hv]
[345523.706066] Call Trace:
[345523.706069] [c000000399467910] [c000000399467940] 0xc000000399467940 (unreliable)
[345523.706071] [c000000399467950] [c000000399467980] 0xc000000399467980
[345523.706075] [c0000003994679f0] [c0080000072bd1c4] kvmhv_run_single_vcpu+0xa1c/0xb80 [kvm_hv]
[345523.706079] [c000000399467ac0] [c0080000072bd8e0] kvmppc_vcpu_run_hv+0x5b8/0xb00 [kvm_hv]
[345523.706087] [c000000399467b90] [c0080000085c93cc] kvmppc_vcpu_run+0x34/0x48 [kvm]
[345523.706095] [c000000399467bb0] [c0080000085c582c] kvm_arch_vcpu_ioctl_run+0x244/0x420 [kvm]
[345523.706101] [c000000399467c40] [c0080000085b7498] kvm_vcpu_ioctl+0x3d0/0x7b0 [kvm]
[345523.706105] [c000000399467db0] [c0000000004adf9c] ksys_ioctl+0x13c/0x170
[345523.706107] [c000000399467e00] [c0000000004adff8] sys_ioctl+0x28/0x80
[345523.706111] [c000000399467e20] [c00000000000b278] system_call+0x5c/0x68
[345523.706112] Instruction dump:
[345523.706114] 419e0390 7f8a4840 409d0048 6d497c00 2f89075d 419e021c 6d497c00 2f8907dd
[345523.706119] 419e01c0 6d497c00 2f8905dd 419e00a4 <0fe00000> 38210040 38600000 ebc1fff0
and then treats the executed instruction as a 'nop'.
However the POWER9 User's Manual, in section "4.6.10 Book II Invalid
Forms", informs that for TM instructions bit 31 is in fact ignored, thus
for the TM-related invalid forms ignoring bit 31 and handling them like the
valid forms is an acceptable way to handle them. POWER8 behaves the same
way too.
This commit changes the handling of the cases here described by treating
the TM-related invalid forms that can generate a softpatch interrupt
just like their valid forms (w/ bit 31 = 1) instead of as a 'nop' and by
gently reporting any other unrecognized case to the host and treating it as
illegal instruction instead of throwing a trace and treating it as a 'nop'.
Signed-off-by: Gustavo Romero <gromero@linux.ibm.com>
Reviewed-by: Segher Boessenkool <segher@kernel.crashing.org>
Acked-By: Michael Neuling <mikey@neuling.org>
Reviewed-by: Leonardo Bras <leonardo@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Now that all callers of kvm_free_memslot() pass NULL for @dont, remove
the param from the top-level routine and all arch's implementations.
No functional change intended.
Tested-by: Christoffer Dall <christoffer.dall@arm.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allocate the rmap array during kvm_arch_prepare_memory_region() to pave
the way for removing kvm_arch_create_memslot() altogether. Moving PPC's
memory allocation only changes the order of kernel memory allocations
between PPC and common KVM code.
No functional change intended.
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The original 2005 patch that introduced the powerpc vdso, pre-git
("ppc64: Implement a vDSO and use it for signal trampoline") notes that:
... symbols exposed by the vDSO aren't "normal" function symbols, apps
can't be expected to link against them directly, the vDSO's are both
seen as if they were linked at 0 and the symbols just contain offsets
to the various functions. This is done on purpose to avoid a
relocation step (ppc64 functions normally have descriptors with abs
addresses in them). When glibc uses those functions, it's expected to
use it's own trampolines that know how to reach them.
Despite that explanation, there remains dead #ifdef
VDS64_HAS_DESCRIPTORS code-blocks that provide alternate function
definitions that setup function descriptors.
Since VDS64_HAS_DESCRIPTORS has been unused for all these years, we
might as well finally remove it from the codebase.
Signed-off-by: Joe Lawrence <joe.lawrence@redhat.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200224211848.26087-1-joe.lawrence@redhat.com
package_id is to match cores that are part of the same chip. On
PowerNV machines, package_id defaults to chip_id. However ibm,chip_id
property is not present in device-tree of PowerVM LPARs. Hence lscpu
output shows one core per socket and multiple cores.
To overcome this, use nid as the package_id on PowerVM LPARs.
Before the patch:
Architecture: ppc64le
Byte Order: Little Endian
CPU(s): 128
On-line CPU(s) list: 0-127
Thread(s) per core: 8
Core(s) per socket: 1 <----------------------
Socket(s): 16 <----------------------
NUMA node(s): 2
Model: 2.2 (pvr 004e 0202)
Model name: POWER9 (architected), altivec supported
Hypervisor vendor: pHyp
Virtualization type: para
L1d cache: 32K
L1i cache: 32K
L2 cache: 512K
L3 cache: 10240K
NUMA node0 CPU(s): 0-63
NUMA node1 CPU(s): 64-127
#
# cat /sys/devices/system/cpu/cpu0/topology/physical_package_id
-1
After the patch:
Architecture: ppc64le
Byte Order: Little Endian
CPU(s): 128
On-line CPU(s) list: 0-127
Thread(s) per core: 8 <---------------------
Core(s) per socket: 8 <---------------------
Socket(s): 2
NUMA node(s): 2
Model: 2.2 (pvr 004e 0202)
Model name: POWER9 (architected), altivec supported
Hypervisor vendor: pHyp
Virtualization type: para
L1d cache: 32K
L1i cache: 32K
L2 cache: 512K
L3 cache: 10240K
NUMA node0 CPU(s): 0-63
NUMA node1 CPU(s): 64-127
#
# cat /sys/devices/system/cpu/cpu0/topology/physical_package_id
0
Now lscpu output is more in line with the system configuration.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
[mpe: Use pkg_id instead of ppid, tweak change log and comment]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200129135121.24617-1-srikar@linux.vnet.ibm.com