The XSAVE feature mask is a 64-bit number; keep it that way, in order
to avoid the mistake done with rdmsr/wrmsr. Use the xsetbv() function
provided in the previous patch.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
FP/SSE bits may be zero in the xsave header(representing the init state).
Update these bits during the ptrace fpregs set operation, to indicate the
non-init state.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On cpu's supporting xsave/xrstor, fpstate pointer in the sigcontext, will
include the extended state information along with fpstate information. Presence
of extended state information is indicated by the presence
of FP_XSTATE_MAGIC1 at fpstate.sw_reserved.magic1 and FP_XSTATE_MAGIC2
at fpstate + (fpstate.sw_reserved.extended_size - FP_XSTATE_MAGIC2_SIZE).
Extended feature bit mask that is saved in the memory layout is represented
by the fpstate.sw_reserved.xstate_bv
For RT signal frames, UC_FP_XSTATE in the uc_flags also indicate the
presence of extended state information in the sigcontext's fpstate
pointer.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
move 64bit routines that saves/restores fpstate in/from user stack from
signal_64.c to xsave.c
restore_i387_xstate() now handles the condition when user passes
NULL fpstate.
Other misc changes for prepartion of xsave/xrstor sigcontext support.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
dynamically allocate fpstate on the stack, instead of static allocation
in the current sigframe layout on the user stack. This will allow the
fpstate structure to grow in the future, which includes extended state
information supporting xsave/xrstor.
signal handlers will be able to access the fpstate pointer from the
sigcontext structure asusual, with no change. For the non RT sigframe's
(which are supported only for 32bit apps), current static fpstate layout
in the sigframe will be unused(so that we don't change the extramask[]
offset in the sigframe and thus prevent breaking app's which modify
extramask[]).
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Uses xsave/xrstor (instead of traditional fxsave/fxrstor) in context switch
when available.
Introduces TS_XSAVE flag, which determine the need to use xsave/xrstor
instructions during context switch instead of the legacy fxsave/fxrstor
instructions. Thread-synchronous status word is already in L1 cache during
this code patch and thus minimizes the performance penality compared to
(cpu_has_xsave) checks.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Enables xsave/xrstor by turning on cr4.osxsave on cpu's which have
the xsave support. For now, features that OS supports/enabled are
FP and SSE.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
fix tons of build errors:
arch/x86/kernel/built-in.o: In function `microcode_fini_cpu':
microcode_intel.c:(.text+0x11598): undefined reference to `microcode_mutex'
microcode_intel.c:(.text+0x115a4): undefined reference to `ucode_cpu_info'
microcode_intel.c:(.text+0x115ae): undefined reference to `ucode_cpu_info'
microcode_intel.c:(.text+0x115bc): undefined reference to `microcode_mutex'
[...]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
fix:
arch/x86/kernel/microcode.c:412: error: static declaration of ‘microcode_init’ follows non-static declaration
include/asm/microcode.h:1: error: previous declaration of ‘microcode_init’ was here
arch/x86/kernel/microcode.c:454: error: static declaration of ‘microcode_exit’ follows non-static declaration
include/asm/microcode.h:2: error: previous declaration of ‘microcode_exit’ was here
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes/pci-2.6: (21 commits)
x86/PCI: use dev_printk when possible
PCI: add D3 power state avoidance quirk
PCI: fix bogus "'device' may be used uninitialized" warning in pci_slot
PCI: add an option to allow ASPM enabled forcibly
PCI: disable ASPM on pre-1.1 PCIe devices
PCI: disable ASPM per ACPI FADT setting
PCI MSI: Don't disable MSIs if the mask bit isn't supported
PCI: handle 64-bit resources better on 32-bit machines
PCI: rewrite PCI BAR reading code
PCI: document pci_target_state
PCI hotplug: fix typo in pcie hotplug output
x86 gart: replace to_pages macro with iommu_num_pages
x86, AMD IOMMU: replace to_pages macro with iommu_num_pages
iommu: add iommu_num_pages helper function
dma-coherent: add documentation to new interfaces
Cris: convert to using generic dma-coherent mem allocator
Sh: use generic per-device coherent dma allocator
ARM: support generic per-device coherent dma mem
Generic dma-coherent: fix DMA_MEMORY_EXCLUSIVE
x86: use generic per-device dma coherent allocator
...
Clean up and optimize cpumask_of_cpu(), by sharing all the zero words.
Instead of stupidly generating all possible i=0...NR_CPUS 2^i patterns
creating a huge array of constant bitmasks, realize that the zero words
can be shared.
In other words, on a 64-bit architecture, we only ever need 64 of these
arrays - with a different bit set in one single world (with enough zero
words around it so that we can create any bitmask by just offsetting in
that big array). And then we just put enough zeroes around it that we
can point every single cpumask to be one of those things.
So when we have 4k CPU's, instead of having 4k arrays (of 4k bits each,
with one bit set in each array - 2MB memory total), we have exactly 64
arrays instead, each 8k bits in size (64kB total).
And then we just point cpumask(n) to the right position (which we can
calculate dynamically). Once we have the right arrays, getting
"cpumask(n)" ends up being:
static inline const cpumask_t *get_cpu_mask(unsigned int cpu)
{
const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG];
p -= cpu / BITS_PER_LONG;
return (const cpumask_t *)p;
}
This brings other advantages and simplifications as well:
- we are not wasting memory that is just filled with a single bit in
various different places
- we don't need all those games to re-create the arrays in some dense
format, because they're already going to be dense enough.
if we compile a kernel for up to 4k CPU's, "wasting" that 64kB of memory
is a non-issue (especially since by doing this "overlapping" trick we
probably get better cache behaviour anyway).
[ mingo@elte.hu:
Converted Linus's mails into a commit. See:
http://lkml.org/lkml/2008/7/27/156http://lkml.org/lkml/2008/7/28/320
Also applied a family filter - which also has the side-effect of leaving
out the bits where Linus calls me an idio... Oh, never mind ;-)
]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch introduces microcode patch loading for AMD
processors. It is based on previous corresponding work
for Intel processors.
It hooks into the general patch loading module. Main
difference is that a container file format is used to hold
all patch data for multiple processors as well as an
equivalent CPU table, which comes seperately, as opposed
to Intel's microcode patching solution.
Kconfig and Makefile have been changed provice config
and build option for new source file.
Signed-off-by: Peter Oruba <peter.oruba@amd.com>
Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Refactored code by introducing a two-module solution.
There is one general module in which vendor specific modules can hook into.
However, that is exclusive, there is only one vendor specific module
allowed at a time. A CPU vendor check makes sure only the correct
module for the underlying system gets called.
Functinally in terms of patch loading itself there are no changes. This
refactoring provides a basis for future implementations of other vendors'
patch loaders.
Signed-off-by: Peter Oruba <peter.oruba@amd.com>
Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Renamed common structures to vendor specific naming scheme
so other vendors will be able to use the same naming
convention.
Signed-off-by: Peter Oruba <peter.oruba@amd.com>
Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Split off existing code into two seperate files. One file holds general
code, the other file vendor specific parts.
No functional changes, only refactoring.
Temporarily Introduced a new module name 'ucode' for result,
due to already taken name 'microcode'.
Signed-off-by: Peter Oruba <peter.oruba@amd.com>
Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This structure will be later used by other modules as well and
needs therfore to be moved out to a header file.
Signed-off-by: Peter Oruba <peter.oruba@amd.com>
Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Intel specific microcode declarations have been moved to a seperate header file.
There are no code changes to the code itself and no side effects to other parts.
Signed-off-by: Peter Oruba <peter.oruba@amd.com>
Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
fix !PCI build failure:
arch/x86/kernel/cpu/intel_cacheinfo.c: In function 'get_k8_northbridge':
arch/x86/kernel/cpu/intel_cacheinfo.c:675: error: implicit declaration of function 'pci_match_id'
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On Monday 21 July 2008, Ingo Molnar wrote:
> > applied to tip/x86/cpu, thanks Mark.
> >
> > I've done some coding style fixes for the new functions you've
> > introduced, see that commit below.
>
> -tip testing found the following build failure:
>
> arch/x86/kernel/built-in.o: In function `show_cache_disable':
> intel_cacheinfo.c:(.text+0xbbf2): undefined reference to `k8_northbridges'
> arch/x86/kernel/built-in.o: In function `store_cache_disable':
> intel_cacheinfo.c:(.text+0xbd91): undefined reference to `k8_northbridges'
>
> please send a delta fix patch against the tip/x86/cpu branch:
>
> http://people.redhat.com/mingo/tip.git/README
>
> which has your patch plus the cleanup applied.
delta fix patch follows. It removes the dependency on k8_northbridges.
-Mark Langsdorf
Operating System Research Center
AMD
Signed-off-by: Mark Langsdorf <mark.langsdorf@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
New versions of AMD processors have support to disable parts
of their L3 caches if too many MCEs are generated by the
L3 cache.
This patch provides a /sysfs interface under the cache
hierarchy to display which caches indices are disabled
(if any) and to monitoring applications to disable a
cache index.
This patch does not set an automatic policy to disable
the L3 cache. Policy decisions would need to be made
by a RAS handler. This patch merely makes it easier to
see what indices are currently disabled.
Signed-off-by: Mark Langsdorf <mark.langsdorf@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
commit 3e9704739d ("x86: boot secondary
cpus through initial_code") causes the kernel to crash when a CPU is
brought online after the read only sections have been write
protected. The write to initial_code in do_boot_cpu() fails.
Move inital_code to .cpuinit.data section.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: H. Peter Anvin <hpa@zytor.com>
This adds TIF_NOTIFY_RESUME support for x86, both 64-bit and 32-bit.
When set, we call tracehook_notify_resume() on the way to user mode.
Signed-off-by: Roland McGrath <roland@redhat.com>
This changes x86 syscall tracing to use the new tracehook.h entry points.
There is no change, only cleanup.
Signed-off-by: Roland McGrath <roland@redhat.com>
This makes the x86 signal handling code use tracehook_signal_handler() in
place of calling into ptrace guts. The call is moved after the sa_mask
processing, but there is no other change. This cleanup doesn't matter to
existing debuggers, but is the sensible thing: have all facets of the
handler setup complete before the debugger inspects the task again.
Signed-off-by: Roland McGrath <roland@redhat.com>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, AMD IOMMU: include amd_iommu_last_bdf in device initialization
x86: fix IBM Summit based systems' phys_cpu_present_map on 32-bit kernels
x86, RDC321x: remove gpio.h complications
x86, RDC321x: add to mach-default
crashdump: fix undefined reference to `elfcorehdr_addr'
flag parameters: fix compile error of sys_epoll_create1