Introduce the kernel_fpu_begin() and kernel_fpu_end() function
to enclose any in-kernel use of FPU instructions and registers.
In enclosed sections, you can perform floating-point or vector
(SIMD) computations. The functions take care of saving and
restoring FPU register contents and controls.
For usage details, see the guidelines in arch/s390/include/asm/fpu/api.h
Signed-off-by: Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The usual problem for code that is ifdef'ed out is that it doesn't
compile after a while. That's also the case for the storage key
initialisation code, if it would be used (set PAGE_DEFAULT_KEY to
something not zero):
./arch/s390/include/asm/page.h: In function 'storage_key_init_range':
./arch/s390/include/asm/page.h:36:2: error: implicit declaration of function '__storage_key_init_range'
Since the code itself has been useful for debugging purposes several
times, remove the ifdefs and make sure the code gets compiler
coverage. The cost for this is eight bytes.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The z13 machine added a fourth level to the cpu topology
information. The new top level is called drawer.
A drawer contains two books, which used to be the top level.
Adding this additional scheduling domain did show performance
improvements for some workloads of up to 8%, while there don't
seem to be any workloads impacted in a negative way.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
We have some inline assemblies where the extable entry points to a
label at the end of an inline assembly which is not followed by an
instruction.
On the other hand we have also inline assemblies where the extable
entry points to the first instruction of an inline assembly.
If a first type inline asm (extable point to empty label at the end)
would be directly followed by a second type inline asm (extable points
to first instruction) then we would have two different extable entries
that point to the same instruction but would have a different target
address.
This can lead to quite random behaviour, depending on sorting order.
I verified that we currently do not have such collisions within the
kernel. However to avoid such subtle bugs add a couple of nop
instructions to those inline assemblies which contain an extable that
points to an empty label.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
We always expect that get_user and put_user return with zero. Give the
compiler a hint so it can slightly optimize the code and avoid
branches.
This is the same what x86 got with commit a76cf66e94 ("x86/uaccess:
Tell the compiler that uaccess is unlikely to fault").
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Use dynamically allocated irq descriptors on s390 which allows
us to get rid of the s390 specific config option PCI_NR_MSI and
exploit more MSI interrupts. Also the size of the kernel image
is reduced by 131K (using performance_defconfig).
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
On s390 __ro_after_init is currently mapped to __read_mostly which
means that data marked as __ro_after_init will not be protected.
Reason for this is that the common code __ro_after_init implementation
is x86 centric: the ro_after_init data section was added to rodata,
since x86 enables write protection to kernel text and rodata very
late. On s390 we have write protection for these sections enabled with
the initial page tables. So adding the ro_after_init data section to
rodata does not work on s390.
In order to make __ro_after_init work properly on s390 move the
ro_after_init data, right behind rodata. Unlike the rodata section it
will be marked read-only later after all init calls happened.
This s390 specific implementation adds new __start_ro_after_init and
__end_ro_after_init labels. Everything in between will be marked
read-only after the init calls happened. In addition to the
__ro_after_init data move also the exception table there, since from a
practical point of view it fits the __ro_after_init requirements.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
ptep_flush_lazy and pmdp_flush_lazy use mm->context.attach_count to
decide between a lazy TLB flush vs an immediate TLB flush. The field
contains two 16-bit counters, the number of CPUs that have the mm
attached and can create TLB entries for it and the number of CPUs in
the middle of a page table update.
The __tlb_flush_asce, ptep_flush_direct and pmdp_flush_direct functions
use the attach counter and a mask check with mm_cpumask(mm) to decide
between a local flush local of the current CPU and a global flush.
For all these functions the decision between lazy vs immediate and
local vs global TLB flush can be based on CPU masks. There are two
masks: the mm->context.cpu_attach_mask with the CPUs that are actively
using the mm, and the mm_cpumask(mm) with the CPUs that have used the
mm since the last full flush. The decision between lazy vs immediate
flush is based on the mm->context.cpu_attach_mask, to decide between
local vs global flush the mm_cpumask(mm) is used.
With this patch all checks will use the CPU masks, the old counter
mm->context.attach_count with its two 16-bit values is turned into a
single counter mm->context.flush_count that keeps track of the number
of CPUs with incomplete page table updates. The sole user of this
counter is finish_arch_post_lock_switch() which waits for the end of
all page table updates.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The External-Time-Reference (ETR) clock synchronization interface has
been superseded by Server-Time-Protocol (STP). Remove the outdated
ETR interface.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The PTFF instruction can be used to retrieve information about UTC
including the current number of leap seconds. Use this value to
convert the coordinated server time value of the TOD clock to a
proper UTC timestamp to initialize the system time. Without this
correction the system time will be off by the number of leap seonds
until it has been corrected via NTP.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
It is possible to specify a user offset for the TOD clock, e.g. +2 hours.
The TOD clock will carry this offset even if the clock is synchronized
with STP. This makes the time stamps acquired with get_sync_clock()
useless as another LPAR migth use a different TOD offset.
Use the PTFF instrution to get the TOD epoch difference and subtract
it from the TOD clock value to get a physical timestamp. As the epoch
difference contains the sync check delta as well the LPAR offset value
to the physical clock needs to be refreshed after each clock
synchronization.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The PTFF instruction is not a function of ETR, rename and move the
PTFF definitions from etr.h to timex.h.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The sync clock operation of the channel subsystem call for STP delivers
the TOD clock difference as a result. Use this TOD clock difference
instead of the difference between the TOD timestamps before and after
the sync clock operation.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The segment/region table that is part of the kernel image must be
properly aligned to 16k in order to make the crdte inline assembly
work.
Otherwise it will calculate a wrong segment/region table start address
and access incorrect memory locations if the swapper_pg_dir is not
aligned to 16k.
Therefore define BSS_FIRST_SECTIONS in order to put the swapper_pg_dir
at the beginning of the bss section and also align the bss section to
16k just like other architectures did.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Show the dynamic and static cpu mhz of each cpu. Since these values
are per cpu this requires a fundamental extension of the format of
/proc/cpuinfo.
Historically we had only a single line per cpu and a summary at the
top of the file. This format is hardly extendible if we want to add
more per cpu information.
Therefore this patch adds per cpu blocks at the end of /proc/cpuinfo:
cpu : 0
cpu Mhz dynamic : 5504
cpu Mhz static : 5504
cpu : 1
cpu Mhz dynamic : 5504
cpu Mhz static : 5504
cpu : 2
cpu Mhz dynamic : 5504
cpu Mhz static : 5504
cpu : 3
cpu Mhz dynamic : 5504
cpu Mhz static : 5504
Right now each block contains only the dynamic and static cpu mhz,
but it can be easily extended like on every other architecture.
This extension is supposed to be compatible with the old format.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Sascha Silbe <silbe@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Add statistics that show how memory is mapped within the kernel
identity mapping. This is more or less the same like git
commit ce0c0e50f9 ("x86, generic: CPA add statistics about state
of direct mapping v4") for x86.
I also intentionally copied the lower case "k" within DirectMap4k vs
the upper case "M" and "G" within the two other lines. Let's have
consistent inconsistencies across architectures.
The output of /proc/meminfo now contains these additional lines:
DirectMap4k: 2048 kB
DirectMap1M: 3991552 kB
DirectMap2G: 4194304 kB
The implementation on s390 is lockless unlike the x86 version, since I
assume changes to the kernel mapping are a very rare event. Therefore
it really doesn't matter if these statistics could potentially be
inconsistent if read while kernel pages tables are being changed.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
set_memory_ro() and set_memory_rw() currently only work on 4k
mappings, which is good enough for module code aka the vmalloc area.
However we stumbled already twice into the need to make this also work
on larger mappings:
- the ro after init patch set
- the crash kernel resize code
Therefore this patch implements automatic kernel page table splitting
if e.g. set_memory_ro() would be called on parts of a 2G mapping.
This works quite the same as the x86 code, but is much simpler.
In order to make this work and to be architecturally compliant we now
always use the csp, cspg or crdte instructions to replace valid page
table entries. This means that set_memory_ro() and set_memory_rw()
will be much more expensive than before. In order to avoid huge
latencies the code contains a couple of cond_resched() calls.
The current code only splits page tables, but does not merge them if
it would be possible. The reason for this is that currently there is
no real life scenarion where this would really happen. All current use
cases that I know of only change access rights once during the life
time. If that should change we can still implement kernel page table
merging at a later time.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Make pmd_wrprotect() and pmd_mkwrite() available independently from
CONFIG_TRANSPARENT_HUGEPAGE and CONFIG_HUGETLB_PAGE so these can be
used on the kernel mapping.
Also introduce a couple of pud helper functions, namely pud_pfn(),
pud_wrprotect(), pud_mkwrite(), pud_mkdirty() and pud_mkclean()
which only work on the kernel mapping.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Instead of open-coded SEGMENT_KERNEL and REGION3_KERNEL assignments use
defines. Also to make e.g. pmd_wrprotect() work on the kernel mapping
a couple more flags must be set. Therefore add the missing flags also.
In order to make everything symmetrical this patch also adds software
dirty, young, read and write bits for region 3 table entries.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
We have already two inline assemblies which make use of the csp
instruction. Since I need a third instance let's introduce a generic
inline assmebly which can be used by everyone.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Without the storage-key facility, SIE won't interpret SSKE, ISKE and
RRBE for us. So let's add proper interception handlers that will be called
if lazy sske cannot be enabled.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We already indicate that facility but don't implement it in our pfmf
interception handler. Let's add a new storage key handling function for
conditionally setting the guest storage key.
As we will reuse this function later on, let's directly implement returning
the old key via parameter and indicating if any change happened via rc.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's just split returning the key and reporting errors. This makes calling
code easier and avoids bugs as happened already.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Commit 1e133ab296 ("s390/mm: split arch/s390/mm/pgtable.c") changed
the return value of get_guest_storage_key to an unsigned char, resulting
in -EFAULT getting interpreted as a valid storage key.
Cc: stable@vger.kernel.org # 4.6+
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
If guest-storage-limit-suppression is not available, we would for now
have a valid guest address space with size 0. So let's simply set the
origin to 0 and the limit to hamax.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's detect the Collaborative-memory-management-interpretation facility,
aka CMM assist, so we can correctly enable cmma later.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We have certain instructions that indicate available subfunctions via
a query subfunction (crypto functions and ptff), or via a test bit
function (plo).
By exposing these "subfunction blocks" to user space, we allow user space
to
1) query available subfunctions and make sure subfunctions won't get lost
during migration - e.g. properly indicate them via a CPU model
2) change the subfunctions to be reported to the guest (even adding
unavailable ones)
This mechanism works just like the way we indicate the stfl(e) list to
user space.
This way, user space could even emulate some subfunctions in QEMU in the
future. If this is ever applicable, we have to make sure later on, that
unsupported subfunctions result in an intercept to QEMU.
Please note that support to indicate them to the guest is still missing
and requires hardware support. Usually, the IBC takes already care of these
subfunctions for migration safety. QEMU should make sure to always set
these bits properly according to the machine generation to be emulated.
Available subfunctions are only valid in combination with STFLE bits
retrieved via KVM_S390_VM_CPU_MACHINE and enabled via
KVM_S390_VM_CPU_PROCESSOR. If the applicable bits are available, the
indicated subfunctions are guaranteed to be correct.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
KVM will have to query these functions, let's add at least the query
capabilities.
PCKMO has RRE format, as bit 16-31 are ignored, we can still use the
existing function. As PCKMO won't touch the cc, let's force it to 0
upfront.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Acked-by: Ingo Tuchscherer <ingo.tuchscherer@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
ESOP guarantees that during a protection exception, bit 61 of real location
168-175 will only be set to 1 if it was because of ALCP or DATP. If the
exception is due to LAP or KCP, the bit will always be set to 0.
The old SOP definition allowed bit 61 to be unpredictable in case of LAP
or KCP in some conditions. So ESOP replaces this unpredictability by
a guarantee.
Therefore, we can directly forward ESOP if it is available on our machine.
We don't have to do anything when ESOP is disabled - the guest will simply
expect unpredictable values. Our guest access functions are already
handling ESOP properly.
Please note that future functionality in KVM will require knowledge about
ESOP being enabled for a guest or not.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
For now, we only have an interface to query and configure facilities
indicated via STFL(E). However, we also have features indicated via
SCLP, that have to be indicated to the guest by user space and usually
require KVM support.
This patch allows user space to query and configure available cpu features
for the guest.
Please note that disabling a feature doesn't necessarily mean that it is
completely disabled (e.g. ESOP is mostly handled by the SIE). We will try
our best to disable it.
Most features (e.g. SCLP) can't directly be forwarded, as most of them need
in addition to hardware support, support in KVM. As we later on want to
turn these features in KVM explicitly on/off (to simulate different
behavior), we have to filter all features provided by the hardware and
make them configurable.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Store hypervisor information is a valid instruction not only in
supervisor state but also in problem state, i.e. the guest's
userspace. Its execution is not only computational and memory
intensive, but also has to get hold of the ipte lock to write to the
guest's memory.
This lock is not intended to be held often and long, especially not
from the untrusted guest userspace. Therefore we apply rate limiting
of sthyi executions per VM.
Signed-off-by: Janosch Frank <frankja@linux.vnet.ibm.com>
Acked-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Store Hypervisor Information is an emulated z/VM instruction that
provides a guest with basic information about the layers it is running
on. This includes information about the cpu configuration of both the
machine and the lpar, as well as their names, machine model and
machine type. This information enables an application to determine the
maximum capacity of CPs and IFLs available to software.
The instruction is available whenever the facility bit 74 is set,
otherwise executing it results in an operation exception.
It is important to check the validity flags in the sections before
using data from any structure member. It is not guaranteed that all
members will be valid on all machines / machine configurations.
Signed-off-by: Janosch Frank <frankja@linux.vnet.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The new store hypervisor information instruction, which we are going
to introduce, needs previously unused fields in diag 204 structures.
Signed-off-by: Janosch Frank <frankja@linux.vnet.ibm.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
This commit introduces code that handles operation exception
interceptions. With this handler we can emulate instructions by using
illegal opcodes.
Signed-off-by: Janosch Frank <frankja@linux.vnet.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Diag204's cpu structures only contain the cpu type by means of an
index in the diag224 name table. Hence, to be able to use diag204 in
any meaningful way, we also need a usable diag224 interface.
Signed-off-by: Janosch Frank <frankja@linux.vnet.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
sclp_ocf.c is the only way to get the cpc name, as it registers the
sole event handler for the ocf event. By creating a new global
function that copies that name, we make it accessible to the world
which longs to retrieve it.
Additionally we now also store the cpc name as EBCDIC, so we don't
have to convert it to and from ASCII if it is requested in native
encoding.
Signed-off-by: Janosch Frank <frankja@linux.vnet.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>