MADT scanning will stop when it gets an error from the handler,
acpi_map_gic_cpu_interface(), on arm64. However, we need to
find all of the enabled CPUs so that SMP initialization can work
properly. So, if an error occurs in this case, ignore it for
now so that we can find all of the enabled CPUs.
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
As we detect more architectural features at runtime, it makes
sense to reuse the existing framework whilst avoiding to call
a feature an erratum...
This patch extract the core capability parsing, moves it into
a new file (cpufeature.c), and let the CPU errata detection code
use it.
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Since all immediate branches are PC-relative on Aarch64, these
instructions cannot be used as an alternative with the simplistic
approach we currently have (the immediate has been computed from
the .altinstr_replacement section, and end-up being completely off
if we insert it directly).
This patch handles the b and bl instructions in a different way,
using the insn framework to recompute the immediate, and generate
the right displacement.
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Patching an instruction sometimes requires extracting the immediate
field from this instruction. To facilitate this, and avoid
potential duplication of code, add aarch64_insn_decode_immediate
as the reciprocal to aarch64_insn_encode_immediate.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
An upcoming patch will depend on tai_ns() and NMI-safe ktime_get_raw_fast(),
so merge timers/core here in a separate topic branch until it's all cooked
and timers/core is merged upstream.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
acpi_parse_gic_cpu_interface calls acpi_map_gic_cpu_interface by both
passing a 32-bit value in the u8 enabled parameter and then subsequently
ignoring its return value.
Sort it out.
Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
If acpi=force is passed on the command line, it forces ACPI to be
the only available boot method, hence it must be left enabled even
if the initialization and sanity checks on ACPI tables fails.
This patch refactors ACPI initialization to prevent disabling ACPI
if acpi=force is passed on the command line.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Hanjun Guo <hanjun.guo@linaro.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Hanjun Guo <hanjun.guo@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Current ACPI init code on ARM64 relies on acpi_table_parse() API to
check if the FADT is present and to carry out sanity checks on that.
The handler passed to the acpi_table_parse() function and used to
carry out the parsing on the requested table returns a value that is
ignored by the acpi_table_parse() function, so it is not possible
to propagate errors back to the acpi_table_parse() caller through
the handler.
This forces ARM64 ACPI init code to have disable_acpi() calls scattered
all over the place that makes code unwieldy and not easy to follow.
This patch refactors the ARM64 ACPI init code, by creating a
self-contained function (ie acpi_fadt_sanity_check()) that carries
out the required checks on FADT and returns an adequate return value
to the caller. This allows creating a common error path that disables
ACPI and makes code more readable and easy to parse and change were
further checks FADT to be added in the future.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Hanjun Guo <hanjun.guo@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Signed-off-by: Will Deacon <will.deacon@arm.com>
PSCI v0.2+ allows the kernel to probe the PSCI firmware version.
This patch replaces the default initialization of PSCI v0.2+
functions with code that allows probing PSCI firmware version
and initializes PSCI functions accordingly.
Cc: Sudeep Holla <sudeep.holla@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
PSCI v0.2+ versions provide a specific PSCI call (PSCI_VERSION) to
detect the PSCI version at run-time. Current PSCI v0.2 init code
carries out the version probing in the PSCI 0.2 DT init function,
but the version probing does not depend on DT so it can be factored out
in order to make it available to other boot mechanisms (ie ACPI) to
reuse. The psci_probe() probing function can be easily extended
to add detection and initialization of PSCI functions defined in
PSCI versions >0.2.
Cc: Sudeep Holla <sudeep.holla@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The code deployed to implement GSI linux IRQ numbers mapping on arm64 turns
out to be generic enough so that it can be moved to ACPI core code along
with its respective config option ACPI_GENERIC_GSI selectable on
architectures that can reuse the same code.
Current ACPI IRQ mapping code is not integrated in the kernel IRQ domain
infrastructure, in particular there is no way to look-up the
IRQ domain associated with a particular interrupt controller, so this
first version of GSI generic code carries out the GSI<->IRQ mapping relying
on the IRQ default domain which is supposed to be always set on a
specific architecture in case the domain structure passed to
irq_create/find_mapping() functions is missing.
This patch moves the arm64 acpi functions that implement the gsi mappings:
acpi_gsi_to_irq()
acpi_register_gsi()
acpi_unregister_gsi()
to ACPI core code. Since the generic GSI<->domain mapping is based on IRQ
domains, it can be extended as soon as a way to map an interrupt
controller to an IRQ domain is implemented for ACPI in the IRQ domain
layer.
x86 and ia64 code for GSI mappings cannot rely on the generic GSI
layer at present for legacy reasons, so they do not select the
ACPI_GENERIC_GSI config options and keep relying on their arch
specific GSI mapping layer.
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Acked-by: Hanjun Guo <hanjun.guo@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Since the policy is that once we pass acpi=force in the early
param, we will not unflatten device tree even if ACPI is disabled
in ACPI table init fails, so fix the code by comparinging both
acpi_disabled and param_acpi_force before the device tree is
unflattened.
CC: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
ACPI kernel uses MADT table for proper GIC initialization. It needs to
parse GIC related subtables, collect CPU interface and distributor
addresses and call driver initialization function (which is hardware
abstraction agnostic). In a similar way, FDT initialize GICv1/2.
NOTE: This commit allow to initialize GICv1/2 basic functionality.
While now simple GICv2 init call is used, any further GIC features
require generic infrastructure for proper ACPI irqchip initialization.
That mechanism and stacked irqdomains to support GICv2 MSI/virtualization
extension, GICv3/4 and its ITS are considered as next steps.
CC: Jason Cooper <jason@lakedaemon.net>
CC: Marc Zyngier <marc.zyngier@arm.com>
CC: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Tested-by: Yijing Wang <wangyijing@huawei.com>
Tested-by: Mark Langsdorf <mlangsdo@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Tested-by: Timur Tabi <timur@codeaurora.org>
Tested-by: Robert Richter <rrichter@cavium.com>
Acked-by: Robert Richter <rrichter@cavium.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Jason Cooper <jason@lakedaemon.net>
Reviewed-by: Grant Likely <grant.likely@linaro.org>
Signed-off-by: Tomasz Nowicki <tomasz.nowicki@linaro.org>
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
MADT contains the information for MPIDR which is essential for
SMP initialization, parse the GIC cpu interface structures to
get the MPIDR value and map it to cpu_logical_map(), and add
enabled cpu with valid MPIDR into cpu_possible_map.
ACPI 5.1 only has two explicit methods to boot up SMP, PSCI and
Parking protocol, but the Parking protocol is only specified for
ARMv7 now, so make PSCI as the only way for the SMP boot protocol
before some updates for the ACPI spec or the Parking protocol spec.
Parking protocol patches for SMP boot will be sent to upstream when
the new version of Parking protocol is ready.
CC: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
CC: Catalin Marinas <catalin.marinas@arm.com>
CC: Will Deacon <will.deacon@arm.com>
CC: Mark Rutland <mark.rutland@arm.com>
Tested-by: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Tested-by: Yijing Wang <wangyijing@huawei.com>
Tested-by: Mark Langsdorf <mlangsdo@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Tested-by: Timur Tabi <timur@codeaurora.org>
Tested-by: Robert Richter <rrichter@cavium.com>
Acked-by: Robert Richter <rrichter@cavium.com>
Acked-by: Olof Johansson <olof@lixom.net>
Reviewed-by: Grant Likely <grant.likely@linaro.org>
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Tomasz Nowicki <tomasz.nowicki@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
There are two flags: PSCI_COMPLIANT and PSCI_USE_HVC. When set,
the former signals to the OS that the firmware is PSCI compliant.
The latter selects the appropriate conduit for PSCI calls by
toggling between Hypervisor Calls (HVC) and Secure Monitor Calls
(SMC).
FADT table contains such information in ACPI 5.1, FADT table was
parsed in ACPI table init and copy to struct acpi_gbl_FADT, so
use the flags in struct acpi_gbl_FADT for PSCI init.
Since ACPI 5.1 doesn't support self defined PSCI function IDs,
which means that only PSCI 0.2+ is supported in ACPI.
CC: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
CC: Catalin Marinas <catalin.marinas@arm.com>
CC: Will Deacon <will.deacon@arm.com>
Tested-by: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Tested-by: Yijing Wang <wangyijing@huawei.com>
Tested-by: Mark Langsdorf <mlangsdo@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Tested-by: Timur Tabi <timur@codeaurora.org>
Tested-by: Robert Richter <rrichter@cavium.com>
Acked-by: Robert Richter <rrichter@cavium.com>
Acked-by: Olof Johansson <olof@lixom.net>
Acked-by: Grant Likely <grant.likely@linaro.org>
Signed-off-by: Graeme Gregory <graeme.gregory@linaro.org>
Signed-off-by: Tomasz Nowicki <tomasz.nowicki@linaro.org>
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This implements the following policy to decide whether ACPI should
be used to boot the system:
- acpi=off: ACPI will not be used to boot the system, even if there is
no alternative available (e.g., device tree is empty)
- acpi=force: only ACPI will be used to boot the system; if that fails,
there will be no fallback to alternative methods (such as device tree)
- otherwise, ACPI will be used as a fallback if the device tree turns out
to lack a platform description; the heuristic to decide this is whether
/chosen is the only node present at depth 1
CC: Catalin Marinas <catalin.marinas@arm.com>
CC: Will Deacon <will.deacon@arm.com>
CC: Rafael J. Wysocki <rjw@rjwysocki.net>
Acked-by: Olof Johansson <olof@lixom.net>
Acked-by: Grant Likely <grant.likely@linaro.org>
Tested-by: Timur Tabi <timur@codeaurora.org>
Signed-off-by: Al Stone <al.stone@linaro.org>
Signed-off-by: Graeme Gregory <graeme.gregory@linaro.org>
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
CONFIG_ACPI depends CONFIG_PCI on x86 and ia64, in ARM64 server
world we will have PCIe in most cases, but some of them may not,
make CONFIG_ACPI depend CONFIG_PCI on ARM64 will satisfy both.
With that case, we need some arch dependent PCI functions to
access the config space before the PCI root bridge is created, and
pci_acpi_scan_root() to create the PCI root bus. So introduce
some stub function here to make ACPI core compile and revisit
them later when implemented on ARM64.
CC: Liviu Dudau <Liviu.Dudau@arm.com>
CC: Catalin Marinas <catalin.marinas@arm.com>
CC: Will Deacon <will.deacon@arm.com>
Tested-by: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Tested-by: Yijing Wang <wangyijing@huawei.com>
Tested-by: Mark Langsdorf <mlangsdo@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Tested-by: Timur Tabi <timur@codeaurora.org>
Tested-by: Robert Richter <rrichter@cavium.com>
Acked-by: Robert Richter <rrichter@cavium.com>
Reviewed-by: Grant Likely <grant.likely@linaro.org>
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
As we want to get ACPI tables to parse and then use the information
for system initialization, we should get the RSDP (Root System
Description Pointer) first, it then locates Extended Root Description
Table (XSDT) which contains all the 64-bit physical address that
pointer to other boot-time tables.
Introduce acpi.c and its related head file in this patch to provide
fundamental needs of extern variables and functions for ACPI core,
and then get boot-time tables as needed.
- asm/acenv.h for arch specific ACPICA environments and
implementation, It is needed unconditionally by ACPI core;
- asm/acpi.h for arch specific variables and functions needed by
ACPI driver core;
- acpi.c for ARM64 related ACPI implementation for ACPI driver
core;
acpi_boot_table_init() is introduced to get RSDP and boot-time tables,
it will be called in setup_arch() before paging_init(), so we should
use eary_memremap() mechanism here to get the RSDP and all the table
pointers.
FADT Major.Minor version was introduced in ACPI 5.1, it is the same
as ACPI version.
In ACPI 5.1, some major gaps are fixed for ARM, such as updates in
MADT table for GIC and SMP init, without those updates, we can not
get the MPIDR for SMP init, and GICv2/3 related init information, so
we can't boot arm64 ACPI properly with table versions predating 5.1.
If firmware provides ACPI tables with ACPI version less than 5.1,
OS has no way to retrieve the configuration data that is necessary
to init SMP boot protocol and the GIC properly, so disable ACPI if
we get an FADT table with version less that 5.1 when acpi_boot_table_init()
called.
CC: Catalin Marinas <catalin.marinas@arm.com>
CC: Will Deacon <will.deacon@arm.com>
CC: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Tested-by: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Tested-by: Yijing Wang <wangyijing@huawei.com>
Tested-by: Mark Langsdorf <mlangsdo@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Tested-by: Timur Tabi <timur@codeaurora.org>
Tested-by: Robert Richter <rrichter@cavium.com>
Acked-by: Robert Richter <rrichter@cavium.com>
Acked-by: Olof Johansson <olof@lixom.net>
Acked-by: Grant Likely <grant.likely@linaro.org>
Signed-off-by: Al Stone <al.stone@linaro.org>
Signed-off-by: Graeme Gregory <graeme.gregory@linaro.org>
Signed-off-by: Tomasz Nowicki <tomasz.nowicki@linaro.org>
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We write idmap_t0sz with SCTLR_EL1.{C,M} clear, but we only have the
guarnatee that the kernel Image is clean, not invalid in the caches, and
therefore we might read a stale value once the MMU is enabled.
This patch ensures we invalidate the corresponding cacheline after the
write as we do for all other data written before we set SCTLR_EL1.{C.M},
guaranteeing that the value will be visible later. We rely on the DSBs
in __create_page_tables to complete the maintenance.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
CC: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Historically, the PMU devicetree bindings have expected SPIs to be
listed in order of *logical* CPU number. This is problematic for
bootloaders, especially when the boot CPU (logical ID 0) isn't listed
first in the devicetree.
This patch adds a new optional property, interrupt-affinity, to the
PMU node which allows the interrupt affinity to be described using
a list of phandled to CPU nodes, with each entry in the list
corresponding to the SPI at the same index in the interrupts property.
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
After writing the page tables, we use __inval_cache_range to invalidate
any stale cache entries. Strongly Ordered memory accesses are not
ordered w.r.t. cache maintenance instructions, and hence explicit memory
barriers are required to provide this ordering. However,
__inval_cache_range was written to be used on Normal Cacheable memory
once the MMU and caches are on, and does not have any barriers prior to
the DC instructions.
This patch adds a DMB between the page tables being written and the
corresponding cachelines being invalidated, ensuring that the
invalidation makes the new data visible to subsequent cacheable
accesses. A barrier is not required before the prior invalidate as we do
not access the page table memory area prior to this, and earlier
barriers in preserve_boot_args and set_cpu_boot_mode_flag ensures
ordering w.r.t. any stores performed prior to entering Linux.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Fixes: c218bca74e ("arm64: Relax the kernel cache requirements for boot")
Signed-off-by: Will Deacon <will.deacon@arm.com>
The page size and the number of translation levels, and hence the supported
virtual address range, are build-time configurables on arm64 whose optimal
values are use case dependent. However, in the current implementation, if
the system's RAM is located at a very high offset, the virtual address range
needs to reflect that merely because the identity mapping, which is only used
to enable or disable the MMU, requires the extended virtual range to map the
physical memory at an equal virtual offset.
This patch relaxes that requirement, by increasing the number of translation
levels for the identity mapping only, and only when actually needed, i.e.,
when system RAM's offset is found to be out of reach at runtime.
Tested-by: Laura Abbott <lauraa@codeaurora.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Rework of the KVM HYP bounce page from Ard Biesheuvel. Subsequent arm64
idmap rework depends on this, so merge it here with Marc Zyngier's
blessing (kvm-arm co-maintainer).
init_mm isn't a normal mm: it has swapper_pg_dir as its pgd (which
contains kernel mappings) and is used as the active_mm for the idle
thread.
When restoring the pgd after an EFI call, we write current->active_mm
into TTBR0. If the current task is actually the idle thread (e.g. when
initialising the EFI RTC before entering userspace), then the TLB can
erroneously populate itself with junk global entries as a result of
speculative table walks.
When we do eventually return to userspace, the task can end up hitting
these junk mappings leading to lockups, corruption or crashes.
This patch fixes the problem in the same way as the CPU suspend code by
ensuring that we never switch to the init_mm in efi_set_pgd and instead
point TTBR0 at the zero page. A check is also added to cpu_switch_mm to
BUG if we get passed swapper_pg_dir.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Fixes: f3cdfd239d ("arm64/efi: move SetVirtualAddressMap() to UEFI stub")
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
According to the arm64 boot protocol, registers x1 to x3 should be
zero upon kernel entry, and non-zero values are reserved for future
use. This future use is going to be problematic if we never enforce
the current rules, so start enforcing them now, by emitting a warning
if non-zero values are detected.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This removes the function __calc_phys_offset and all open coded
virtual to physical address translations using the offset kept
in x28.
Instead, just use absolute or PC-relative symbol references as
appropriate when referring to virtual or physical addresses,
respectively.
Tested-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Enabling of the MMU is split into two functions, with an align and
a branch in the middle. On arm64, the entire kernel Image is ID mapped
so this is really not necessary, and we can just merge it into a
single function.
Also replaces an open coded adrp/add reference to __enable_mmu pair
with adr_l.
Tested-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The global processor_id is assigned the MIDR_EL1 value of the boot
CPU in the early init code, but is never referenced afterwards.
As the relevance of the MIDR_EL1 value of the boot CPU is debatable
anyway, especially under big.LITTLE, let's remove it before anyone
starts using it.
Tested-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
struct cpu_table is an artifact left from the (very) early days of
the arm64 port, and its only real use is to allow the most beautiful
"AArch64 Processor" string to be displayed at boot time.
Really? Yes, really.
Let's get rid of it. In order to avoid another BogoMips-gate, the
aforementioned string is preserved.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The perf core implicitly rejects events spanning multiple HW PMUs, as in
these cases the event->ctx will differ. However this validation is
performed after pmu::event_init() is called in perf_init_event(), and
thus pmu::event_init() may be called with a group leader from a
different HW PMU.
The ARM64 PMU driver does not take this fact into account, and when
validating groups assumes that it can call to_arm_pmu(event->pmu) for
any HW event. When the event in question is from another HW PMU this is
wrong, and results in dereferencing garbage.
This patch updates the ARM64 PMU driver to first test for and reject
events from other PMUs, moving the to_arm_pmu and related logic after
this test. Fixes a crash triggered by perf_fuzzer on Linux-4.0-rc2, with
a CCI PMU present:
Bad mode in Synchronous Abort handler detected, code 0x86000006 -- IABT (current EL)
CPU: 0 PID: 1371 Comm: perf_fuzzer Not tainted 3.19.0+ #249
Hardware name: V2F-1XV7 Cortex-A53x2 SMM (DT)
task: ffffffc07c73a280 ti: ffffffc07b0a0000 task.ti: ffffffc07b0a0000
PC is at 0x0
LR is at validate_event+0x90/0xa8
pc : [<0000000000000000>] lr : [<ffffffc000090228>] pstate: 00000145
sp : ffffffc07b0a3ba0
[< (null)>] (null)
[<ffffffc0000907d8>] armpmu_event_init+0x174/0x3cc
[<ffffffc00015d870>] perf_try_init_event+0x34/0x70
[<ffffffc000164094>] perf_init_event+0xe0/0x10c
[<ffffffc000164348>] perf_event_alloc+0x288/0x358
[<ffffffc000164c5c>] SyS_perf_event_open+0x464/0x98c
Code: bad PC value
Also cleans up the code to use the arm_pmu only when we know
that we are dealing with an arm pmu event.
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Peter Ziljstra (Intel) <peterz@infradead.org>
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The HYP init bounce page is a runtime construct that ensures that the
HYP init code does not cross a page boundary. However, this is something
we can do perfectly well at build time, by aligning the code appropriately.
For arm64, we just align to 4 KB, and enforce that the code size is less
than 4 KB, regardless of the chosen page size.
For ARM, the whole code is less than 256 bytes, so we tweak the linker
script to align at a power of 2 upper bound of the code size
Note that this also fixes a benign off-by-one error in the original bounce
page code, where a bounce page would be allocated unnecessarily if the code
was exactly 1 page in size.
On ARM, it also fixes an issue with very large kernels reported by Arnd
Bergmann, where stub sections with linker emitted veneers could erroneously
trigger the size/alignment ASSERT() in the linker script.
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The arm mmap2 syscall takes the offset in units of 4K, thus with 64K pages
the offset needs to be scaled to units of pages.
Signed-off-by: Andreas Schwab <schwab@suse.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
[will: removed redundant lr parameter, localised PAGE_SHIFT #if check]
Signed-off-by: Will Deacon <will.deacon@arm.com>
We currently don't log the boot mode for arm64 as we do for arm, and
without KVM the user is provided with no indication as to which mode(s)
CPUs were booted in, which can seriously hinder debugging in some cases.
Add logging to the boot path once all CPUs are up. Where CPUs are
mismatched in violation of the boot protocol, WARN and set a taint (as
we do for CPU other CPU feature mismatches) given that the
firmware/bootloader is buggy and should be fixed.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Commit 828e9834e9 ("arm64: head: create a new function for setting
the boot_cpu_mode flag") added BOOT_CPU_MODE_EL1, a nonzero value
replacing uses of zero. However it failed to update __boot_cpu_mode
appropriately.
A CPU booted at EL2 writes BOOT_CPU_MODE_EL2 to __boot_cpu_mode[0], and
a CPU booted at EL1 writes BOOT_CPU_MODE_EL1 to __boot_cpu_mode[1].
Later is_hyp_mode_mismatched() determines there to be a mismatch if
__boot_cpu_mode[0] != __boot_cpu_mode[1].
If all CPUs are booted at EL1, __boot_cpu_mode[0] will be set to
BOOT_CPU_MODE_EL1, but __boot_cpu_mode[1] will retain its initial value
of zero, and is_hyp_mode_mismatched will erroneously determine that the
boot modes are mismatched. This hasn't been a problem so far, but later
patches which will make use of is_hyp_mode_mismatched() expect it to
work correctly.
This patch initialises __boot_cpu_mode[1] to BOOT_CPU_MODE_EL1, fixing
the erroneous mismatch detection when all CPUs are booted at EL1.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently we only perform alternative patching for kernels built with
CONFIG_SMP, as we call apply_alternatives_all() in smp.c, which is only
built for CONFIG_SMP. Thus !SMP kernels may not have necessary
alternatives patched in.
This patch ensures that we call apply_alternatives_all() once all CPUs
are booted, even for !SMP kernels, by having the smp_init_cpus() stub
call this for !SMP kernels via up_late_init. A new wrapper,
do_post_cpus_up_work, is added so we can hook other calls here later
(e.g. boot mode logging).
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Fixes: e039ee4ee3 ("arm64: add alternative runtime patching")
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Another one for the big head.S spring cleaning: the label should
be after the .align or it may point to the padding.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
If UEFI Runtime Services are available, they are preferred over direct
PSCI calls or other methods to reset the system.
For the reset case, we need to hook into machine_restart(), as the
arm_pm_restart function pointer may be overwritten by modules.
Tested-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The native (64-bit) sigval_t union contains sival_int (32-bit) and
sival_ptr (64-bit). When a compat application invokes a syscall that
takes a sigval_t value (as part of a larger structure, e.g.
compat_sys_mq_notify, compat_sys_timer_create), the compat_sigval_t
union is converted to the native sigval_t with sival_int overlapping
with either the least or the most significant half of sival_ptr,
depending on endianness. When the corresponding signal is delivered to a
compat application, on big endian the current (compat_uptr_t)sival_ptr
cast always returns 0 since sival_int corresponds to the top part of
sival_ptr. This patch fixes copy_siginfo_to_user32() so that sival_int
is copied to the compat_siginfo_t structure.
Cc: <stable@vger.kernel.org>
Reported-by: Bamvor Jian Zhang <bamvor.zhangjian@huawei.com>
Tested-by: Bamvor Jian Zhang <bamvor.zhangjian@huawei.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>