When entering idle, it's a good oportunity to verify that the TSC_ADJUST
MSR has not been tampered with (BIOS hiding SMM cycles). If tampering is
detected, emit a warning and restore it to the previous value.
This is especially important for machines, which mark the TSC reliable
because there is no watchdog clocksource available (SoCs).
This is not sufficient for HPC (NOHZ_FULL) situations where a CPU never
goes idle, but adding a timer to do the check periodically is not an option
either. On a machine, which has this issue, the check triggeres right
during boot, so there is a decent chance that the sysadmin will notice.
Rate limit the check to once per second and warn only once per cpu.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20161119134017.732180441@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The TSC_ADJUST MSR shows whether the TSC has been modified. This is helpful
in a two aspects:
1) It allows to detect BIOS wreckage, where SMM code tries to 'hide' the
cycles spent by storing the TSC value at SMM entry and restoring it at
SMM exit. On affected machines the TSCs run slowly out of sync up to the
point where the clocksource watchdog (if available) detects it.
The TSC_ADJUST MSR allows to detect the TSC modification before that and
eventually restore it. This is also important for SoCs which have no
watchdog clocksource and therefore TSC wreckage cannot be detected and
acted upon.
2) All threads in a package are required to have the same TSC_ADJUST
value. Broken BIOSes break that and as a result the TSC synchronization
check fails.
The TSC_ADJUST MSR allows to detect the deviation when a CPU comes
online. If detected set it to the value of an already online CPU in the
same package. This also allows to reduce the number of sync tests
because with that in place the test is only required for the first CPU
in a package.
In principle all CPUs in a system should have the same TSC_ADJUST value
even across packages, but with physical CPU hotplug this assumption is
not true because the TSC starts with power on, so physical hotplug has
to do some trickery to bring the TSC into sync with already running
packages, which requires to use an TSC_ADJUST value different from CPUs
which got powered earlier.
A final enhancement is the opportunity to compensate for unsynced TSCs
accross nodes at boot time and make the TSC usable that way. It won't
help for TSCs which run apart due to frequency skew between packages,
but this gets detected by the clocksource watchdog later.
The first step toward this is to store the TSC_ADJUST value of a starting
CPU and compare it with the value of an already online CPU in the same
package. If they differ, emit a warning and adjust it to the reference
value. The !SMP version just stores the boot value for later verification.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20161119134017.655323776@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Power management suspend/resume tracing (ab)uses the RTC to store
suspend/resume information persistently. As a consequence the RTC value is
clobbered when timekeeping is resumed and tries to inject the sleep time.
Commit a4f8f6667f ("timekeeping: Cap array access in timekeeping_debug")
plugged a out of bounds array access in the timekeeping debug code which
was caused by the clobbered RTC value, but we still use the clobbered RTC
value for sleep time injection into kernel timekeeping, which will result
in random adjustments depending on the stored "hash" value.
To prevent this keep track of the RTC clobbering and ignore the invalid RTC
timestamp at resume. If the system resumed successfully clear the flag,
which marks the RTC as unusable, warn the user about the RTC clobber and
recommend to adjust the RTC with 'ntpdate' or 'rdate'.
[jstultz: Fixed up pr_warn formating, and implemented suggestions from Ingo]
[ tglx: Rewrote changelog ]
Originally-from: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Acked-by: Pavel Machek <pavel@ucw.cz>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Xunlei Pang <xlpang@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Link: http://lkml.kernel.org/r/1480372524-15181-3-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When removing a sub directory/rdtgroup by rmdir or umount, closid in a
task in the sub directory is set to default rdtgroup's closid which is 0.
If the task is running on a CPU, the PQR_ASSOC MSR is only updated
when the task runs through a context switch. Up to the context switch,
the task runs with the wrong closid.
Make the change immediately effective by invoking a smp function call on
all CPUs which are running moved task. If one of the affected tasks was
moved or scheduled out before the function call is executed on the CPU the
only damage is the extra interruption of the CPU.
[ tglx: Reworked it to avoid blindly interrupting all CPUs and extra loops ]
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1479511084-59727-2-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Single-stepping through head_64.S made me look at the fixmap page PTEs
fixup loop:
So we're going through the whole level2_fixmap_pgt 4K page, looking at
whether PAGE_PRESENT is set in those PTEs and add the delta between
where we're compiled to run and where we actually end up running.
However, if that delta is 0 (most cases) we go through all those 512
PTEs for no reason at all. Oh well, we add 0 but that's no reason to me.
Skipping that useless fixup gives us a boot speedup of 0.004 seconds in
my guest. Not a lot but considering how cheap it is, I'll take it. Here
is the printk time difference:
before:
...
[ 0.000000] tsc: Marking TSC unstable due to TSCs unsynchronized
[ 0.013590] Calibrating delay loop (skipped), value calculated using timer frequency..
8027.17 BogoMIPS (lpj=16054348)
[ 0.017094] pid_max: default: 32768 minimum: 301
...
after:
...
[ 0.000000] tsc: Marking TSC unstable due to TSCs unsynchronized
[ 0.009587] Calibrating delay loop (skipped), value calculated using timer frequency..
8026.86 BogoMIPS (lpj=16053724)
[ 0.013090] pid_max: default: 32768 minimum: 301
...
For the other two changes converting naked numbers to defines:
# arch/x86/kernel/head_64.o:
text data bss dec hex filename
1124 290864 4096 296084 48494 head_64.o.before
1124 290864 4096 296084 48494 head_64.o.after
md5:
87086e202588939296f66e892414ffe2 head_64.o.before.asm
87086e202588939296f66e892414ffe2 head_64.o.after.asm
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161125111448.23623-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On platforms supporting Intel Turbo Boost Max Technology 3.0, the maximum
turbo frequencies of some cores in a CPU package may be higher than for
the other cores in the same package. In that case, better performance
(and possibly lower energy consumption as well) can be achieved by
making the scheduler prefer to run tasks on the CPUs with higher max
turbo frequencies.
To that end, set up a core priority metric to abstract the core
preferences based on the maximum turbo frequency. In that metric,
the cores with higher maximum turbo frequencies are higher-priority
than the other cores in the same package and that causes the scheduler
to favor them when making load-balancing decisions using the asymmertic
packing approach. At the same time, the priority of SMT threads with a
higher CPU number is reduced so as to avoid scheduling tasks on all of
the threads that belong to a favored core before all of the other cores
have been given a task to run.
The priority metric will be initialized by the P-state driver with the
help of the sched_set_itmt_core_prio() function. The P-state driver
will also determine whether or not ITMT is supported by the platform
and will call sched_set_itmt_support() to indicate that.
Co-developed-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Co-developed-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: linux-pm@vger.kernel.org
Cc: peterz@infradead.org
Cc: jolsa@redhat.com
Cc: rjw@rjwysocki.net
Cc: linux-acpi@vger.kernel.org
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: bp@suse.de
Link: http://lkml.kernel.org/r/cd401ccdff88f88c8349314febdc25d51f7c48f7.1479844244.git.tim.c.chen@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Intel Xeons from Ivy Bridge onwards support a processor identification
number set in the factory. To the user this is a handy unique number to
identify a particular CPU. Intel can decode this to the fab/production
run to track errors. On systems that have it, include it in the machine
check record. I'm told that this would be helpful for users that run
large data centers with multi-socket servers to keep track of which CPUs
are seeing errors.
Boris:
* Add some clarifying comments and spacing.
* Mask out [63:2] in the disabled-but-not-locked case
* Call the MSR variable "val" for more readability.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/20161123114855.njguoaygp3qnbkia@pd.tnic
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Install the callbacks via the state machine and let the core invoke
the callbacks on the already online CPUs.
Move the callbacks to online/offline as there is no point in having the
files around before the cpu is online and until its completely gone.
[ tglx: Move the callbacks to online/offline ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: rt@linuxtronix.de
Link: http://lkml.kernel.org/r/20161117183541.8588-4-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No point to have this file around before the cpu is online and no point to
have it around until the cpu is dead. Get rid of the explicit state.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
No point to have the sysfs files around before the cpu is online and no
point to have them around until the cpu is dead. Get rid of the explicit
state.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
The Unified Memory Controllers (UMCs) on Fam17h log a normalized address
in their MCA_ADDR registers. We need to convert that normalized address
to a system physical address in order to support a few facilities:
1) To offline poisoned pages in DRAM proactively in the deferred error
handler.
2) To print sysaddr and page info for DRAM ECC errors in EDAC.
[ Boris: fixes/cleanups ontop:
* hi_addr_offset = 0 - no need for that branch. Stick it all under the
HiAddrOffsetEn case. It confines hi_addr_offset's declaration too.
* Move variables to the innermost scope they're used at so that we save
on stack and not blow it up immediately on function entry.
* Do not modify *sys_addr prematurely - we want to not exit early and
have modified *sys_addr some, which callers get to see. We either
convert to a sys_addr or we don't do anything. And we signal that with
the retval of the function.
* Rename label out -> out_err - because it is the error path.
* No need to pr_err of the conversion failed case: imagine a
sparsely-populated machine with UMCs which don't have DIMMs. Callers
should look at the retval instead and issue a printk only when really
necessary. No need for useless info in dmesg.
* s/temp_reg/tmp/ and other variable names shortening => shorter code.
* Use BIT() everywhere.
* Make error messages more informative.
* Small build fix for the !CONFIG_X86_MCE_AMD case.
* ... and more minor cleanups.
]
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20161122111133.mjzpvzhf7o7yl2oa@pd.tnic
[ Typo fixes. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So adding thresholding_en et al was a good thing for removing the
per-CPU thresholding callback, i.e., threshold_cpu_callback.
But, in order for it to work and especially that test in
mce_threshold_create_device() so that all thresholding banks get
properly created and not the whole thing to fail with a NULL ptr
dereference at mce_cpu_pre_down() when we offline the CPUs, we need to
set the thresholding_en flag *before* we start creating the devices.
Yap, it failed because thresholding_en wasn't set at the time
we were creating the banks so we didn't create any and then at
mce_cpu_pre_down() -> mce_threshold_remove_device() time, we would blow
up.
And the fix is actually easy: we have thresholding on the system when we
have managed to set the thresholding vector to amd_threshold_interrupt()
earlier in mce_amd_feature_init() while we were picking apart the
thresholding banks and what is set and what not.
So let's do that.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Fixes: 4d7b02d58c ("x86/mcheck: Split threshold_cpu_callback into two callbacks")
Link: http://lkml.kernel.org/r/20161119103402.5227-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
All places which used the TSC_RELIABLE to skip the delayed calibration
have been converted to use the TSC_KNOWN_FREQ flag.
Make the immeditate clocksource registration, which skips the long term
calibration, solely depend on TSC_KNOWN_FREQ.
The TSC_RELIABLE now merily removes the requirement for a watchdog
clocksource.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Bin Gao <bin.gao@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
TSC on Intel Atom SoCs capable of determining TSC frequency by MSR is
reliable and the frequency is known (provided by HW).
On these platforms PIT/HPET is generally not available so calibration won't
work at all and there is no other clocksource to act as a watchdog for the
TSC, so we have no other choice than to trust it.
Set both X86_FEATURE_TSC_KNOWN_FREQ and X86_FEATURE_TSC_RELIABLE flags to
make sure the calibration is skipped and no watchdog is required.
Signed-off-by: Bin Gao <bin.gao@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1479241644-234277-5-git-send-email-bin.gao@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
On Intel GOLDMONT Atom SoC TSC is the only available clocksource, so there
is no way to do software calibration or have a watchdog clocksource for it.
Software calibration is already disabled via the TSC_KNOWN_FREQ flag, but
the watchdog requirement still persists, so such systems cannot switch to
high resolution/nohz mode.
Mark it reliable, so it becomes usable. Hardware teams confirmed that this
is safe on that SoC.
Signed-off-by: Bin Gao <bin.gao@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1479241644-234277-4-git-send-email-bin.gao@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
CPUs/SoCs with CPUID leaf 0x15 come with a known frequency and will report
the frequency to software via CPUID instruction. This hardware provided
frequency is the "real" frequency of TSC.
Set the X86_FEATURE_TSC_KNOWN_FREQ flag for such systems to skip the
software calibration process.
A 24 hours test on one of the CPUID 0x15 capable platforms was
conducted. PIT calibrated frequency resulted in more than 3 seconds drift
whereas the CPUID determined frequency showed less than 0.5 second
drift.
Signed-off-by: Bin Gao <bin.gao@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1479241644-234277-3-git-send-email-bin.gao@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The X86_FEATURE_TSC_RELIABLE flag in Linux kernel implies both reliable
(at runtime) and trustable (at calibration). But reliable running and
trustable calibration independent of each other.
Add a new flag X86_FEATURE_TSC_KNOWN_FREQ, which denotes that the frequency
is known (via MSR/CPUID). This flag is only meant to skip the long term
calibration on systems which have a known frequency.
Add X86_FEATURE_TSC_KNOWN_FREQ to the skip the delayed calibration and
leave X86_FEATURE_TSC_RELIABLE in place.
After converting the existing users of X86_FEATURE_TSC_RELIABLE to use
either both flags or just X86_FEATURE_TSC_KNOWN_FREQ we can seperate the
functionality.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Bin Gao <bin.gao@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1479241644-234277-2-git-send-email-bin.gao@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The latest binutils are warning about a .fill directive with an explicit
value in a .bss section:
arch/x86/kernel/head_32.S: Assembler messages:
arch/x86/kernel/head_32.S:677: Warning: ignoring fill value in section `.bss..page_aligned'
arch/x86/kernel/head_32.S:679: Warning: ignoring fill value in section `.bss..page_aligned'
This comes from the 'ENTRY()' macro padding the space between the symbols
with 'nop' via:
.align 4,0x90
Open-coding the .globl directive without the padding avoids that warning,
as all the symbols are already page aligned.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161116141726.2013389-1-arnd@arndb.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Some devices on Fam17h can only be accessed through the System Management
Network (SMN). The SMN is accessed by a pair of index/data registers in PCI
config space. Add a pair of functions to read from and write to the SMN.
The Data Fabric on Fam17h allows multiple devices to use the same register
space. The registers of a specific device are accessed indirectly using the
device's DF InstanceId. Currently, we only need to read from these devices,
so only define a read function for now.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/1478812257-5424-5-git-send-email-Yazen.Ghannam@amd.com
[ Boris: make __amd_smn_rw() even more compact. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>