Overlayfs should print an error message if an incorrect mount option
is caught like other filesystems.
After this patch, improper option input could be clearly known.
Reported-by: Fabian Sturm <fabian.sturm@aduu.de>
Signed-off-by: hujianyang <hujianyang@huawei.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
We are keeping track of how many extents we need to reserve properly based on
the amount we want to write, but we were still incrementing outstanding_extents
if we wrote less than what we requested. This isn't quite right since we will
be limited to our max extent size. So instead lets do something horrible! Keep
track of how many outstanding_extents we reserved, and decrement each time we
allocate an extent. If we use our entire reserve make sure to jack up
outstanding_extents on the inode so the accounting works out properly. Thanks,
Reported-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
I introduced a regression wrt outstanding_extents accounting. These are tricky
areas that aren't easily covered by xfstests as we could change MAX_EXTENT_SIZE
at any time. So add sanity tests to cover the various conditions that are
tricky in order to make sure we don't introduce regressions in the future.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
If we fail during our sanity tests we could get NULL deref's because we unload
the module before the dummy extent buffers are free'd via RCU. So check for
this case and just free the things directly. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
My fix
Btrfs: fix merge delalloc logic
only fixed half of the problems, it didn't fix the case where we have two large
extents on either side and then join them together with a new small extent. We
need to instead keep track of how many extents we have accounted for with each
side of the new extent, and then see how many extents we need for the new large
extent. If they match then we know we need to keep our reservation, otherwise
we need to drop our reservation. This shows up with a case like this
[BTRFS_MAX_EXTENT_SIZE+4K][4K HOLE][BTRFS_MAX_EXTENT_SIZE+4K]
Previously the logic would have said that the number extents required for the
new size (3) is larger than the number of extents required for the largest side
(2) therefore we need to keep our reservation. But this isn't the case, since
both sides require a reservation of 2 which leads to 4 for the whole range
currently reserved, but we only need 3, so we need to drop one of the
reservations. The same problem existed for splits, we'd think we only need 3
extents when creating the hole but in reality we need 4. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Add a tuning knob so we can adjust the dirtytime expiration timeout,
which is very useful for testing lazytime.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Jan Kara <jack@suse.cz>
Jan Kara pointed out that if there is an inode which is constantly
getting dirtied with I_DIRTY_PAGES, an inode with an updated timestamp
will never be written since inode->dirtied_when is constantly getting
updated. We fix this by adding an extra field to the inode,
dirtied_time_when, so inodes with a stale dirtytime can get detected
and handled.
In addition, if we have a dirtytime inode caused by an atime update,
and there is no write activity on the file system, we need to have a
secondary system to make sure these inodes get written out. We do
this by setting up a second delayed work structure which wakes up the
CPU much more rarely compared to writeback_expire_centisecs.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Jan Kara <jack@suse.cz>
__RASSERT format string does not use the PID argument. reiserfs_panic
arguments are therefore formatted with the wrong format specifier (for
example __LINE__ with %s). This bug was introduced when commit
c3a9c2109f ("reiserfs: rework reiserfs_panic") removed a
"reiserfs[%i]" prefix.
This bug is only triggered when using CONFIG_REISERFS_CHECK, otherwise
__RASSERT is never used.
Signed-off-by: Nicolas Iooss <nicolas.iooss_linux@m4x.org>
Acked-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Writing the block group cache will modify the extent tree quite a bit because it
truncates the old space cache and pre-allocates new stuff. To try and cut down
on the churn lets do the setup dance first, then later on hopefully we can avoid
looping with newly dirtied roots. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Kernfs supports two styles of read: direct_read and seqfile_read.
The latter supports 'poll' correctly thanks to the update of
'->event' in kernfs_seq_show.
The former does not as '->event' is never updated on a read.
So add an appropriate update in kernfs_file_direct_read().
This was noticed because some 'md' sysfs attributes were
recently changed to use direct reads.
Reported-by: Prakash Punnoor <prakash@punnoor.de>
Reported-by: Torsten Kaiser <just.for.lkml@googlemail.com>
Fixes: 750f199ee8
Signed-off-by: NeilBrown <neilb@suse.de>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In the function ramoops_probe, the console_size, pmsg_size,
ftrace_size may be update because the value is not the power
of two. We should update the module parameter variables
as well so they are visible through /sys/module/ramoops/parameters
correctly.
Signed-off-by: Wang Long <long.wanglong@huawei.com>
Acked-by: Mark Salyzyn <salyzyn@android.com>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Fix the following warnings:
fs/udf/balloc.c:768:15: warning: conversion to 'sector_t' from 'int'
may change the sign of the result [-Wsign-conversion]
allocated = udf_bitmap_prealloc_blocks(sb,
^
fs/udf/balloc.c:773:15: warning: conversion to 'sector_t' from 'int'
may change the sign of the result [-Wsign-conversion]
allocated = udf_table_prealloc_blocks(sb,
^
fs/udf/balloc.c:778:15: warning: conversion to 'sector_t' from 'int'
may change the sign of the result [-Wsign-conversion]
allocated = udf_bitmap_prealloc_blocks(sb,
^
fs/udf/balloc.c:783:15: warning: conversion to 'sector_t' from 'int'
may change the sign of the result [-Wsign-conversion]
allocated = udf_table_prealloc_blocks(sb,
^
fs/udf/balloc.c:791:26: warning: conversion to 'loff_t' from 'sector_t'
may change the sign of the result [-Wsign-conversion]
inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
^
fs/udf/balloc.c:792:2: warning: conversion to 'int' from 'sector_t'
may alter its value [-Wconversion]
return allocated;
Suggested-by: Jan Kara <jack@suse.cz>
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Jan Kara <jack@suse.cz>
It's possible that "fl" won't point at a valid lock at this point, so
use "victim" instead which is either a valid lock or NULL.
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Dave could hit this assert consistently running btrfs/078. This is because
when we update the block groups we could truncate the free space, which would
try to delete the csums for that range and dirty the csum root. For this to
happen we have to have already written out the csum root so it's kind of hard to
hit this case. This patch fixes this by changing the logic to only write the
dirty block groups if the dirty_cowonly_roots list is empty. This will get us
the same effect as before since we add the extent root last, and will cover the
case that we dirty some other root again but not the extent root. Thanks,
Reported-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Direct IO can easily pass in an buffer that is greater than
BTRFS_MAX_EXTENT_SIZE, so take this into account when reserving extents in the
delalloc reservation code. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
My patch to properly count outstanding extents wrt MAX_EXTENT_SIZE introduced a
regression when re-dirtying already dirty areas. We have logic in split to make
sure we are taking the largest space into account but didn't have it for merge,
so it was sometimes making us think we were turning a tiny extent into a huge
extent, when in reality we already had a huge extent and needed to use the other
side in our logic. This fixes the regression that was reported by a user on
list. Thanks,
Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Case (oper1->seq > oper2->seq) should differ with case (oper1->seq < oper2->seq).
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
This problem is uncovered by a test case: http://patchwork.ozlabs.org/patch/244297.
Fsync() can report success when it actually doesn't. When we
have several threads running fsync() at the same tiem and in one fsync() we
get a transaction abortion due to some problems(in the test case it's disk
failures), and other fsync()s may return successfully which makes userspace
programs think that data is now safely flushed into disk.
It's because that after fsyncs() fail btrfs_sync_log() due to disk failures,
they get to try btrfs_commit_transaction() where it finds that there is
already a transaction being committed, and they'll just call wait_for_commit()
and return. Note that we actually check "trans->aborted" in btrfs_end_transaction,
but it's likely that the error message is still not yet throwed out and only after
wait_for_commit() we're sure whether the transaction is committed successfully.
This add the necessary check and it now passes the test.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
This patch fixes mips compilation warning:
fs/btrfs/disk-io.c: In function 'btrfs_check_super_valid':
fs/btrfs/disk-io.c:3927:21: warning: format '%lu' expects argument
of type 'long unsigned int', but argument 3 has type 'unsigned int' [-Wformat]
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Chris Mason <clm@fb.com>
Most callers in the kernel want to perform synchronous file I/O, but
still have to bloat the stack with a full struct kiocb. Split out
the parts needed in filesystem code from those in the aio code, and
only allocate those needed to pass down argument on the stack. The
aio code embedds the generic iocb in the one it allocates and can
easily get back to it by using container_of.
Also add a ->ki_complete method to struct kiocb, this is used to call
into the aio code and thus removes the dependency on aio for filesystems
impementing asynchronous operations. It will also allow other callers
to substitute their own completion callback.
We also add a new ->ki_flags field to work around the nasty layering
violation recently introduced in commit 5e33f6 ("usb: gadget: ffs: add
eventfd notification about ffs events").
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The AIO interface is fairly complex because it tries to allow
filesystems to always work async and then wakeup a synchronous
caller through aio_complete. It turns out that basically no one
was doing this to avoid the complexity and context switches,
and we've already fixed up the remaining users and can now
get rid of this case.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This follows up "nfs: fix dio deadlock when O_DIRECT flag is flipped"
and removes the unnecessary CONFIG_NFS_SWAP switch.
Signed-off-by: Peng Tao <tao.peng@primarydata.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
There is no need to pass the total request length in the kiocb, as
we already get passed in through the iov_iter argument.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
With FAN_ONDIR set, the user can end up getting events, which it hasn't
marked. This was revealed with fanotify04 testcase failure on
Linux-4.0-rc1, and is a regression from 3.19, revealed with 66ba93c0d7
("fanotify: don't set FAN_ONDIR implicitly on a marks ignored mask").
# /opt/ltp/testcases/bin/fanotify04
[ ... ]
fanotify04 7 TPASS : event generated properly for type 100000
fanotify04 8 TFAIL : fanotify04.c:147: got unexpected event 30
fanotify04 9 TPASS : No event as expected
The testcase sets the adds the following marks : FAN_OPEN | FAN_ONDIR for
a fanotify on a dir. Then does an open(), followed by close() of the
directory and expects to see an event FAN_OPEN(0x20). However, the
fanotify returns (FAN_OPEN|FAN_CLOSE_NOWRITE(0x10)). This happens due to
the flaw in the check for event_mask in fanotify_should_send_event() which
does:
if (event_mask & marks_mask & ~marks_ignored_mask)
return true;
where, event_mask == (FAN_ONDIR | FAN_CLOSE_NOWRITE),
marks_mask == (FAN_ONDIR | FAN_OPEN),
marks_ignored_mask == 0
Fix this by masking the outgoing events to the user, as we already take
care of FAN_ONDIR and FAN_EVENT_ON_CHILD.
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Tested-by: Lino Sanfilippo <LinoSanfilippo@gmx.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Eric Paris <eparis@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
According to a report from Yuxuan Shui, nilfs2 in kernel 3.19 got stuck
during recovery at mount time. The code path that caused the deadlock was
as follows:
nilfs_fill_super()
load_nilfs()
nilfs_salvage_orphan_logs()
* Do roll-forwarding, attach segment constructor for recovery,
and kick it.
nilfs_segctor_thread()
nilfs_segctor_thread_construct()
* A lock is held with nilfs_transaction_lock()
nilfs_segctor_do_construct()
nilfs_segctor_drop_written_files()
iput()
iput_final()
write_inode_now()
writeback_single_inode()
__writeback_single_inode()
do_writepages()
nilfs_writepage()
nilfs_construct_dsync_segment()
nilfs_transaction_lock() --> deadlock
This can happen if commit 7ef3ff2fea ("nilfs2: fix deadlock of segment
constructor over I_SYNC flag") is applied and roll-forward recovery was
performed at mount time. The roll-forward recovery can happen if datasync
write is done and the file system crashes immediately after that. For
instance, we can reproduce the issue with the following steps:
< nilfs2 is mounted on /nilfs (device: /dev/sdb1) >
# dd if=/dev/zero of=/nilfs/test bs=4k count=1 && sync
# dd if=/dev/zero of=/nilfs/test conv=notrunc oflag=dsync bs=4k
count=1 && reboot -nfh
< the system will immediately reboot >
# mount -t nilfs2 /dev/sdb1 /nilfs
The deadlock occurs because iput() can run segment constructor through
writeback_single_inode() if MS_ACTIVE flag is not set on sb->s_flags. The
above commit changed segment constructor so that it calls iput()
asynchronously for inodes with i_nlink == 0, but that change was
imperfect.
This fixes the another deadlock by deferring iput() in segment constructor
even for the case that mount is not finished, that is, for the case that
MS_ACTIVE flag is not set.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Reported-by: Yuxuan Shui <yshuiv7@gmail.com>
Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It turns out that making this feature ro_compat isn't quite enough to
prevent accidental corruption on mount from older kernels. Ocfs2 (like
other file systems) will process orphaned inodes even when the user mounts
in 'ro' mode. So for the case of a filesystem not knowing the append_dio
feature, mounting the filesystem could result in orphaned-for-dio files
being deleted, which we clearly don't want.
So instead, turn this into an incompat flag.
Btw, this is kind of my fault - initially I asked that we add a flag to
cover the feature and even suggested that we use an ro flag. It wasn't
until I was looking through our commits for v4.0-rc1 that I realized we
actually want this to be incompat.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Cc: Joseph Qi <joseph.qi@huawei.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Do so on the assumption that for most use cases, that list will turn into
a more or less LRU-ordered list, and so the list traversals in
nfs_client_return_marked_delegations() are likely to be shorter before
hitting a candidate to return.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
A remount that alters security flavors can appear to succeed when it should
instead return -EINVAL. Check to see if the current security flavor exists
within the flavors specified in the remount options, and if not fail the
remount.
Signed-off-by: Benjamin Coddington <bcodding@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
The function nfs4_pnfs_v3_ds_connect_unload is exported so it can be
used by other modules, but is also marked '__exit' and will be
discarded when built into the kernel, as pointed out by this
linker error:
`nfs4_pnfs_v3_ds_connect_unload' referenced in section `___ksymtab_gpl+nfs4_pnfs_v3_ds_connect_unload' of fs/built-in.o: defined in discarded section `.exit.text' of fs/built-in.o
This removes the __exit annotation to make it safe to call this function.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Fixes: 5f01d95394 ("nfs41: create NFSv3 DS connection if specified")
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
The semantic patch that fixes this problem is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@r@
type T;
identifier f;
@@
static T f (...) { ... }
@@
identifier r.f;
declarer name EXPORT_SYMBOL_GPL;
@@
-EXPORT_SYMBOL_GPL(f);
// </smpl>
Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Pull btrfs fixes from Chris Mason:
"Outside of misc fixes, Filipe has a few fsync corners and we're
pulling in one more of Josef's fixes from production use here"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs:__add_inode_ref: out of bounds memory read when looking for extended ref.
Btrfs: fix data loss in the fast fsync path
Btrfs: remove extra run_delayed_refs in update_cowonly_root
Btrfs: incremental send, don't rename a directory too soon
btrfs: fix lost return value due to variable shadowing
Btrfs: do not ignore errors from btrfs_lookup_xattr in do_setxattr
Btrfs: fix off-by-one logic error in btrfs_realloc_node
Btrfs: add missing inode update when punching hole
Btrfs: abort the transaction if we fail to update the free space cache inode
Btrfs: fix fsync race leading to ordered extent memory leaks
Pull file locking fix from Jeff Layton:
"Just a single patch to fix a memory leak that Daniel Wagner discovered
while doing some testing with leases"
* tag 'locks-v4.0-3' of git://git.samba.org/jlayton/linux:
locks: fix fasync_struct memory leak in lease upgrade/downgrade handling
Pull NFS client bugfixes from Trond Myklebust:
"Highlights include:
- Fix a regression in the NFSv4 open state recovery code
- Fix a regression in the NFSv4 close code
- Fix regressions and side-effects of the loop-back mounted NFS fixes
in 3.18, that cause the NFS read() syscall to return EBUSY.
- Fix regressions around the readdirplus code and how it interacts
with the VFS lazy unmount changes that went into v3.18.
- Fix issues with out-of-order RPC call replies replacing updated
attributes with stale ones (particularly after a truncate()).
- Fix an underflow checking issue with RPC/RDMA credits
- Fix a number of issues with the NFSv4 delegation return/free code.
- Fix issues around stale NFSv4.1 leases when doing a mount"
* tag 'nfs-for-4.0-3' of git://git.linux-nfs.org/projects/trondmy/linux-nfs: (24 commits)
NFSv4.1: Clear the old state by our client id before establishing a new lease
NFSv4: Fix a race in NFSv4.1 server trunking discovery
NFS: Don't write enable new pages while an invalidation is proceeding
NFS: Fix a regression in the read() syscall
NFSv4: Ensure we skip delegations that are already being returned
NFSv4: Pin the superblock while we're returning the delegation
NFSv4: Ensure we honour NFS_DELEGATION_RETURNING in nfs_inode_set_delegation()
NFSv4: Ensure that we don't reap a delegation that is being returned
NFS: Fix stateid used for NFS v4 closes
NFSv4: Don't call put_rpccred() under the rcu_read_lock()
NFS: Don't require a filehandle to refresh the inode in nfs_prime_dcache()
NFSv3: Use the readdir fileid as the mounted-on-fileid
NFS: Don't invalidate a submounted dentry in nfs_prime_dcache()
NFSv4: Set a barrier in the update_changeattr() helper
NFS: Fix nfs_post_op_update_inode() to set an attribute barrier
NFS: Remove size hack in nfs_inode_attrs_need_update()
NFSv4: Add attribute update barriers to delegreturn and pNFS layoutcommit
NFS: Add attribute update barriers to NFS writebacks
NFS: Set an attribute barrier on all updates
NFS: Add attribute update barriers to nfs_setattr_update_inode()
...
Improper arithmetics when calculting the address of the extended ref could
lead to an out of bounds memory read and kernel panic.
Signed-off-by: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
cc: stable@vger.kernel.org # v3.7+
Signed-off-by: Chris Mason <clm@fb.com>
When using the fast file fsync code path we can miss the fact that new
writes happened since the last file fsync and therefore return without
waiting for the IO to finish and write the new extents to the fsync log.
Here's an example scenario where the fsync will miss the fact that new
file data exists that wasn't yet durably persisted:
1. fs_info->last_trans_committed == N - 1 and current transaction is
transaction N (fs_info->generation == N);
2. do a buffered write;
3. fsync our inode, this clears our inode's full sync flag, starts
an ordered extent and waits for it to complete - when it completes
at btrfs_finish_ordered_io(), the inode's last_trans is set to the
value N (via btrfs_update_inode_fallback -> btrfs_update_inode ->
btrfs_set_inode_last_trans);
4. transaction N is committed, so fs_info->last_trans_committed is now
set to the value N and fs_info->generation remains with the value N;
5. do another buffered write, when this happens btrfs_file_write_iter
sets our inode's last_trans to the value N + 1 (that is
fs_info->generation + 1 == N + 1);
6. transaction N + 1 is started and fs_info->generation now has the
value N + 1;
7. transaction N + 1 is committed, so fs_info->last_trans_committed
is set to the value N + 1;
8. fsync our inode - because it doesn't have the full sync flag set,
we only start the ordered extent, we don't wait for it to complete
(only in a later phase) therefore its last_trans field has the
value N + 1 set previously by btrfs_file_write_iter(), and so we
have:
inode->last_trans <= fs_info->last_trans_committed
(N + 1) (N + 1)
Which made us not log the last buffered write and exit the fsync
handler immediately, returning success (0) to user space and resulting
in data loss after a crash.
This can actually be triggered deterministically and the following excerpt
from a testcase I made for xfstests triggers the issue. It moves a dummy
file across directories and then fsyncs the old parent directory - this
is just to trigger a transaction commit, so moving files around isn't
directly related to the issue but it was chosen because running 'sync' for
example does more than just committing the current transaction, as it
flushes/waits for all file data to be persisted. The issue can also happen
at random periods, since the transaction kthread periodicaly commits the
current transaction (about every 30 seconds by default).
The body of the test is:
_scratch_mkfs >> $seqres.full 2>&1
_init_flakey
_mount_flakey
# Create our main test file 'foo', the one we check for data loss.
# By doing an fsync against our file, it makes btrfs clear the 'needs_full_sync'
# bit from its flags (btrfs inode specific flags).
$XFS_IO_PROG -f -c "pwrite -S 0xaa 0 8K" \
-c "fsync" $SCRATCH_MNT/foo | _filter_xfs_io
# Now create one other file and 2 directories. We will move this second file
# from one directory to the other later because it forces btrfs to commit its
# currently open transaction if we fsync the old parent directory. This is
# necessary to trigger the data loss bug that affected btrfs.
mkdir $SCRATCH_MNT/testdir_1
touch $SCRATCH_MNT/testdir_1/bar
mkdir $SCRATCH_MNT/testdir_2
# Make sure everything is durably persisted.
sync
# Write more 8Kb of data to our file.
$XFS_IO_PROG -c "pwrite -S 0xbb 8K 8K" $SCRATCH_MNT/foo | _filter_xfs_io
# Move our 'bar' file into a new directory.
mv $SCRATCH_MNT/testdir_1/bar $SCRATCH_MNT/testdir_2/bar
# Fsync our first directory. Because it had a file moved into some other
# directory, this made btrfs commit the currently open transaction. This is
# a condition necessary to trigger the data loss bug.
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/testdir_1
# Now fsync our main test file. If the fsync succeeds, we expect the 8Kb of
# data we wrote previously to be persisted and available if a crash happens.
# This did not happen with btrfs, because of the transaction commit that
# happened when we fsynced the parent directory.
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo
# Simulate a crash/power loss.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
# Now check that all data we wrote before are available.
echo "File content after log replay:"
od -t x1 $SCRATCH_MNT/foo
status=0
exit
The expected golden output for the test, which is what we get with this
fix applied (or when running against ext3/4 and xfs), is:
wrote 8192/8192 bytes at offset 0
XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
wrote 8192/8192 bytes at offset 8192
XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
File content after log replay:
0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
*
0020000 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb
*
0040000
Without this fix applied, the output shows the test file does not have
the second 8Kb extent that we successfully fsynced:
wrote 8192/8192 bytes at offset 0
XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
wrote 8192/8192 bytes at offset 8192
XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
File content after log replay:
0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
*
0020000
So fix this by skipping the fsync only if we're doing a full sync and
if the inode's last_trans is <= fs_info->last_trans_committed, or if
the inode is already in the log. Also remove setting the inode's
last_trans in btrfs_file_write_iter since it's useless/unreliable.
Also because btrfs_file_write_iter no longer sets inode->last_trans to
fs_info->generation + 1, don't set last_trans to 0 if we bail out and don't
bail out if last_trans is 0, otherwise something as simple as the following
example wouldn't log the second write on the last fsync:
1. write to file
2. fsync file
3. fsync file
|--> btrfs_inode_in_log() returns true and it set last_trans to 0
4. write to file
|--> btrfs_file_write_iter() no longers sets last_trans, so it
remained with a value of 0
5. fsync
|--> inode->last_trans == 0, so it bails out without logging the
second write
A test case for xfstests will be sent soon.
CC: <stable@vger.kernel.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Commit 8634b51f6c (locks: convert lease handling to file_lock_context)
introduced a regression in the handling of lease upgrade/downgrades.
In the event that we already have a lease on a file and are going to
either upgrade or downgrade it, we skip doing any list insertion or
deletion and simply re-call lm_setup on the existing lease.
As of commit 8634b51f6c however, we end up calling lm_setup on the
lease that was passed in, instead of on the existing lease. This causes
us to leak the fasync_struct that was allocated in the event that there
was not already an existing one (as it always appeared that there
wasn't one).
Fixes: 8634b51f6c (locks: convert lease handling to file_lock_context)
Reported-and-Tested-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Pull eCryptfs fixes from Tyler Hicks:
"Fixes for proper ioctl handling and an untriggerable buffer overflow
- The eCryptfs ioctl handling functions should only pass known-good
ioctl commands to the lower filesystem
- A static checker found a potential buffer overflow. Upon
inspection, it is not triggerable due to input validation performed
on the mount parameters"
* tag 'ecryptfs-4.0-rc3-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tyhicks/ecryptfs:
eCryptfs: don't pass fs-specific ioctl commands through
eCryptfs: ensure copy to crypt_stat->cipher does not overrun
Currently quota format that supports 64-bit usage sets maximum quota
limit as 2^64-1. However quota core code uses signed numbers to track
usage and even limits themselves are stored in long long. Checking of
maximum allowable limits worked by luck until commit 14bf61ffe6
(quota: Switch ->get_dqblk() and ->set_dqblk() to use bytes as space
units) because variable we compared with was unsigned. After that commit
the type we compared against changed to signed and thus checks for
maximum limits with the newest VFS quota format started to refuse any
non-negative value. Later the problem was inadvertedly fixed by commit
b10a08194c (quota: Store maximum space limit in bytes) because we
started to compare against unsigned type as well.
Fix possible future problems of this kind by setting maximum limits to
2^63-1 to avoid overflow issues.
Reported-by: Carlos Carvalho <carlos@fisica.ufpr.br>
Signed-off-by: Jan Kara <jack@suse.cz>
Root level in quota tree must be already allocated otherwise this block
could be used for something else.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Jan Kara <jack@suse.cz>