The 64-bit entry code was using six stack slots less by not
saving/restoring registers which are callee-preserved according
to the C ABI, and was not allocating space for them.
Only when syscalls needed a complete "struct pt_regs" was
the complete area allocated and filled in.
As an additional twist, on interrupt entry a "slightly less
truncated pt_regs" trick is used, to make nested interrupt
stacks easier to unwind.
This proved to be a source of significant obfuscation and subtle
bugs. For example, 'stub_fork' had to pop the return address,
extend the struct, save registers, and push return address back.
Ugly. 'ia32_ptregs_common' pops return address and "returns" via
jmp insn, throwing a wrench into CPU return stack cache.
This patch changes the code to always allocate a complete
"struct pt_regs" on the kernel stack. The saving of registers
is still done lazily.
"Partial pt_regs" trick on interrupt stack is retained.
Macros which manipulate "struct pt_regs" on stack are reworked:
- ALLOC_PT_GPREGS_ON_STACK allocates the structure.
- SAVE_C_REGS saves to it those registers which are clobbered
by C code.
- SAVE_EXTRA_REGS saves to it all other registers.
- Corresponding RESTORE_* and REMOVE_PT_GPREGS_FROM_STACK macros
reverse it.
'ia32_ptregs_common', 'stub_fork' and friends lost their ugly dance
with the return pointer.
LOAD_ARGS32 in ia32entry.S now uses symbolic stack offsets
instead of magic numbers.
'error_entry' and 'save_paranoid' now use SAVE_C_REGS +
SAVE_EXTRA_REGS instead of having it open-coded yet again.
Patch was run-tested: 64-bit executables, 32-bit executables,
strace works.
Timing tests did not show measurable difference in 32-bit
and 64-bit syscalls.
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Cc: Alexei Starovoitov <ast@plumgrid.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Will Drewry <wad@chromium.org>
Link: http://lkml.kernel.org/r/1423778052-21038-2-git-send-email-dvlasenk@redhat.com
Link: http://lkml.kernel.org/r/b89763d354aa23e670b9bdf3a40ae320320a7c2e.1424989793.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull alternative instructions framework improvements from Borislav Petkov:
"A more involved rework of the alternatives framework to be able to
pad instructions and thus make using the alternatives macros more
straightforward and without having to figure out old and new instruction
sizes but have the toolchain figure that out for us.
Furthermore, it optimizes JMPs used so that fetch and decode can be
relieved with smaller versions of the JMPs, where possible.
Some stats:
x86_64 defconfig:
Alternatives sites total: 2478
Total padding added (in Bytes): 6051
The padding is currently done for:
X86_FEATURE_ALWAYS
X86_FEATURE_ERMS
X86_FEATURE_LFENCE_RDTSC
X86_FEATURE_MFENCE_RDTSC
X86_FEATURE_SMAP
This is with the latest version of the patchset. Of course, on each
machine the alternatives sites actually being patched are a proper
subset of the total number."
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 microcode loader code cleanups from Borislav Petkov:
"The first part of the scrubbing of the intel early microcode loader.
There's more work to come but let's unload this pile first."
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 debugging updates from Borislav Petkov:
"Two small fixes to the stack dumper, a cleanup and sustaining the
previous log level after a newline. (Adrien Schildknecht)"
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When doing
echo 1 > /sys/devices/system/cpu/microcode/reload
in order to reload microcode, I get:
microcode: Total microcode saved: 1
BUG: using smp_processor_id() in preemptible [00000000] code: bash/2606
caller is debug_smp_processor_id+0x17/0x20
CPU: 1 PID: 2606 Comm: bash Not tainted 3.19.0-rc7+ #9
Hardware name: LENOVO 2320CTO/2320CTO, BIOS G2ET86WW (2.06 ) 11/13/2012
ffffffff81a4266d ffff8802131db808 ffffffff81666588 0000000000000007
0000000000000001 ffff8802131db838 ffffffff812e6eef ffff8802131db868
00000000000306a9 0000000000000010 0000000000000015 ffff8802131db848
Call Trace:
dump_stack
check_preemption_disabled
debug_smp_processor_id
show_saved_mc
? save_microcode.constprop.8
save_mc_for_early
? print_context_stack
? dump_trace
? __bfs
? mark_held_locks
? get_page_from_freelist
? trace_hardirqs_on_caller
? trace_hardirqs_on
? __alloc_pages_nodemask
? __get_vm_area_node
? map_vm_area
? __vmalloc_node_range
? generic_load_microcode
generic_load_microcode
? microcode_fini_cpu
request_microcode_fw
reload_store
dev_attr_store
sysfs_kf_write
kernfs_fop_write
vfs_write
? sysret_check
SyS_write
system_call_fastpath
microcode: CPU1: sig=0x306a9, pf=0x10, rev=0x15
microcode: mc_saved[0]: sig=0x306a9, pf=0x12, rev=0x1b, toal size=0x3000, date = 2014-05-29
because we're using smp_processor_id() in preemtible context. And we
don't really need to use it there because the microcode container we're
dumping is global and CPU-specific info is irrelevant.
While at it, make pr_* stuff use "microcode: " prefix for easier
grepping and document how to enable the DEBUG build.
Signed-off-by: Borislav Petkov <bp@suse.de>
... arguments list so that it comes more natural for those functions to
have the signature, processor flags and revision together, before the
rest of the args.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
* remove state variable and out label
* get rid of completely unused mc_size
* shorten variable names
* get rid of local variables
* don't do assignments in local var declarations for less cluttered code
* finally rename it to the shorter and perfectly fine load_microcode_early()
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
... to the header. Split the family acquiring function into a
main one, doing CPUID and a helper which computes the extended
family and is used in multiple places. Get rid of the locally-grown
get_x86_{family,model}().
While at it, rename local variables to something more descriptive and
vertically align assignments for better readability.
There should be no functionality change resulting from this patch.
Signed-off-by: Borislav Petkov <bp@suse.de>
Shorten local variable names for better readability and flatten loop
indentation levels.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
... of microcode patches instead of handing in a pointer which is used
for I/O in an otherwise void function.
Signed-off-by: Borislav Petkov <bp@suse.de>
Don't compute start and end from start and size in order to compute size
again down the path in scan_microcode(). So pass size directly instead
and simplify a bunch. Shorten variable names and remove useless ones.
Signed-off-by: Borislav Petkov <bp@suse.de>
... and only then deref it. Also, shorten some variable names and rename
others so as to diminish the ubiquitous presence of the "mc_" prefix
everywhere and make it a bit more readable.
Use kcalloc so that we don't kfree() uninitialized memory on the unwind
path, as suggested by Quentin.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
We should check the return value of the routines fishing out the proper
microcode and not try to apply if we haven't found a suitable blob.
Signed-off-by: Borislav Petkov <bp@suse.de>
Pull x86 fixes from Ingo Molnar:
"A CR4-shadow 32-bit init fix, plus two typo fixes"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Init per-cpu shadow copy of CR4 on 32-bit CPUs too
x86/platform/intel-mid: Fix trivial printk message typo in intel_mid_arch_setup()
x86/cpu/intel: Fix trivial typo in intel_tlb_table[]
Pull perf fixes from Ingo Molnar:
"Two kprobes fixes and a handful of tooling fixes"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf tools: Make sparc64 arch point to sparc
perf symbols: Define EM_AARCH64 for older OSes
perf top: Fix SIGBUS on sparc64
perf tools: Fix probing for PERF_FLAG_FD_CLOEXEC flag
perf tools: Fix pthread_attr_setaffinity_np build error
perf tools: Define _GNU_SOURCE on pthread_attr_setaffinity_np feature check
perf bench: Fix order of arguments to memcpy_alloc_mem
kprobes/x86: Check for invalid ftrace location in __recover_probed_insn()
kprobes/x86: Use 5-byte NOP when the code might be modified by ftrace
Before this patch early_trap_init() installs DEBUG_STACK for
X86_TRAP_BP and X86_TRAP_DB. However, DEBUG_STACK doesn't work
correctly until cpu_init() <-- trap_init().
This patch passes 0 to set_intr_gate_ist() and
set_system_intr_gate_ist() instead of DEBUG_STACK to let it use
same stack as kernel, and installs DEBUG_STACK for them in
trap_init().
As core runs at ring 0 between early_trap_init() and
trap_init(), there is no chance to get a bad stack before
trap_init().
As NMI is also enabled in trap_init(), we don't need to care
about is_debug_stack() and related things used in
arch/x86/kernel/nmi.c.
Signed-off-by: Wang Nan <wangnan0@huawei.com>
Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: <dave.hansen@linux.intel.com>
Cc: <lizefan@huawei.com>
Cc: <luto@amacapital.net>
Cc: <oleg@redhat.com>
Link: http://lkml.kernel.org/r/1424929779-13174-1-git-send-email-wangnan0@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We can leverage the workqueue that we use for RMID rotation to support
scheduling of conflicting monitoring events. Allowing events that
monitor conflicting things is done at various other places in the perf
subsystem, so there's precedent there.
An example of two conflicting events would be monitoring a cgroup and
simultaneously monitoring a task within that cgroup.
This uses the cache_groups list as a queuing mechanism, where every
event that reaches the front of the list gets the chance to be scheduled
in, possibly descheduling any conflicting events that are running.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kanaka Juvva <kanaka.d.juvva@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Link: http://lkml.kernel.org/r/1422038748-21397-10-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are many use cases where people will want to monitor more tasks
than there exist RMIDs in the hardware, meaning that we have to perform
some kind of multiplexing.
We do this by "rotating" the RMIDs in a workqueue, and assigning an RMID
to a waiting event when the RMID becomes unused.
This scheme reserves one RMID at all times for rotation. When we need to
schedule a new event we give it the reserved RMID, pick a victim event
from the front of the global CQM list and wait for the victim's RMID to
drop to zero occupancy, before it becomes the new reserved RMID.
We put the victim's RMID onto the limbo list, where it resides for a
"minimum queue time", which is intended to save ourselves an expensive
smp IPI when the RMID is unlikely to have a occupancy value below
__intel_cqm_threshold.
If we fail to recycle an RMID, even after waiting the minimum queue time
then we need to increment __intel_cqm_threshold. There is an upper bound
on this threshold, __intel_cqm_max_threshold, which is programmable from
userland as /sys/devices/intel_cqm/max_recycling_threshold.
The comments above __intel_cqm_rmid_rotate() have more details.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kanaka Juvva <kanaka.d.juvva@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Link: http://lkml.kernel.org/r/1422038748-21397-9-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add support for task events as well as system-wide events. This change
has a big impact on the way that we gather LLC occupancy values in
intel_cqm_event_read().
Currently, for system-wide (per-cpu) events we defer processing to
userspace which knows how to discard all but one cpu result per package.
Things aren't so simple for task events because we need to do the value
aggregation ourselves. To do this, we defer updating the LLC occupancy
value in event->count from intel_cqm_event_read() and do an SMP
cross-call to read values for all packages in intel_cqm_event_count().
We need to ensure that we only do this for one task event per cache
group, otherwise we'll report duplicate values.
If we're a system-wide event we want to fallback to the default
perf_event_count() implementation. Refactor this into a common function
so that we don't duplicate the code.
Also, introduce PERF_TYPE_INTEL_CQM, since we need a way to track an
event's task (if the event isn't per-cpu) inside of the Intel CQM PMU
driver. This task information is only availble in the upper layers of
the perf infrastructure.
Other perf backends stash the target task in event->hw.*target so we
need to do something similar. The task is used to determine whether
events should share a cache group and an RMID.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kanaka Juvva <kanaka.d.juvva@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Cc: linux-api@vger.kernel.org
Link: http://lkml.kernel.org/r/1422038748-21397-8-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
show_stack_log_lvl() does not set the log level after a new line, the
following messages printed with pr_cont() are thus assigned to the
default log level.
This patch prepends the log level to the next message following a new
line.
print_trace_address() uses printk(log_lvl). Using printk() with just
a log level is ignored and thus has no effect on the next pr_cont().
We need to prepend the log level directly into the message.
Signed-off-by: Adrien Schildknecht <adrien+dev@schischi.me>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1424399661-20327-1-git-send-email-adrien+dev@schischi.me
Signed-off-by: Borislav Petkov <bp@suse.de>
Hypercalls submitted by user space tools via the privcmd driver can
take a long time (potentially many 10s of seconds) if the hypercall
has many sub-operations.
A fully preemptible kernel may deschedule such as task in any upcall
called from a hypercall continuation.
However, in a kernel with voluntary or no preemption, hypercall
continuations in Xen allow event handlers to be run but the task
issuing the hypercall will not be descheduled until the hypercall is
complete and the ioctl returns to user space. These long running
tasks may also trigger the kernel's soft lockup detection.
Add xen_preemptible_hcall_begin() and xen_preemptible_hcall_end() to
bracket hypercalls that may be preempted. Use these in the privcmd
driver.
When returning from an upcall, call xen_maybe_preempt_hcall() which
adds a schedule point if if the current task was within a preemptible
hypercall.
Since _cond_resched() can move the task to a different CPU, clear and
set xen_in_preemptible_hcall around the call.
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
AFAICS, there is no reason why kernel threads should have FPU context
even if use_eager_fpu() == T. Now that interrupted_kernel_fpu_idle()
does not check __thread_has_fpu() in the use_eager_fpu() case, we
can remove the init_fpu() code from eager_fpu_init() and change
flush_thread() called by do_execve() to initialize FPU.
Note: of course, the change in flush_thread() is horrible and must be
cleanuped. We need the new helper, and flush_thread() should return the
error if init_fpu() fails.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Suresh Siddha <sbsiddha@gmail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Link: http://lkml.kernel.org/r/20150119185212.GD16427@redhat.com
Signed-off-by: Borislav Petkov <bp@suse.de>
The __thread_has_fpu() check in interrupted_kernel_fpu_idle() was needed
to prevent the nested kernel_fpu_begin(). Now that we have in_kernel_fpu
and !__thread_has_fpu() case in __kernel_fpu_begin() does not depend on
use_eager_fpu() (except clts) we can remove it.
__thread_has_fpu() can be false even if use_eager_fpu(), but this case
does not differ from !use_eager_fpu() case except we should not worry
about X86_CR0_TS, __kernel_fpu_begin()/end() will not touch this bit.
Note: I think we can kill all irq_fpu_usable() checks except in_kernel_fpu,
just we need to record the state of X86_CR0_TS in __kernel_fpu_begin() and
conditionalize stts() in __kernel_fpu_end(), but this needs another patch.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Suresh Siddha <sbsiddha@gmail.com>
Link: http://lkml.kernel.org/r/20150119185151.GC16427@redhat.com
Signed-off-by: Borislav Petkov <bp@suse.de>
__kernel_fpu_begin() does nothing if !__thread_has_fpu() && use_eager_fpu(),
perhaps it assumes that this case is simply impossible. This is certainly
not possible if in_interrupt() == T; interrupted_user_mode() should have
FPU, and interrupted_kernel_fpu_idle() should fail if !__thread_has_fpu().
However, even if use_eager_fpu() == T a task can do drop_fpu(), then switch
to another thread which becomes fpu_owner_task, then resume and call some
function which does kernel_fpu_begin(). Say, an exiting task does a lot of
things after exit_thread(), it is not safe to assume that it can't use FPU
in these paths.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Suresh Siddha <sbsiddha@gmail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Pekka Riikonen <priikone@iki.fi>
Link: http://lkml.kernel.org/r/20150119185132.GB16427@redhat.com
Signed-off-by: Borislav Petkov <bp@suse.de>