Pull x86 asm updates from Ingo Molnar:
"The main changes in this cycle were:
- MSR access API fixes and enhancements (Andy Lutomirski)
- early exception handling improvements (Andy Lutomirski)
- user-space FS/GS prctl usage fixes and improvements (Andy
Lutomirski)
- Remove the cpu_has_*() APIs and replace them with equivalents
(Borislav Petkov)
- task switch micro-optimization (Brian Gerst)
- 32-bit entry code simplification (Denys Vlasenko)
- enhance PAT handling in enumated CPUs (Toshi Kani)
... and lots of other cleanups/fixlets"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (70 commits)
x86/arch_prctl/64: Restore accidentally removed put_cpu() in ARCH_SET_GS
x86/entry/32: Remove asmlinkage_protect()
x86/entry/32: Remove GET_THREAD_INFO() from entry code
x86/entry, sched/x86: Don't save/restore EFLAGS on task switch
x86/asm/entry/32: Simplify pushes of zeroed pt_regs->REGs
selftests/x86/ldt_gdt: Test set_thread_area() deletion of an active segment
x86/tls: Synchronize segment registers in set_thread_area()
x86/asm/64: Rename thread_struct's fs and gs to fsbase and gsbase
x86/arch_prctl/64: Remove FSBASE/GSBASE < 4G optimization
x86/segments/64: When load_gs_index fails, clear the base
x86/segments/64: When loadsegment(fs, ...) fails, clear the base
x86/asm: Make asm/alternative.h safe from assembly
x86/asm: Stop depending on ptrace.h in alternative.h
x86/entry: Rename is_{ia32,x32}_task() to in_{ia32,x32}_syscall()
x86/asm: Make sure verify_cpu() has a good stack
x86/extable: Add a comment about early exception handlers
x86/msr: Set the return value to zero when native_rdmsr_safe() fails
x86/paravirt: Make "unsafe" MSR accesses unsafe even if PARAVIRT=y
x86/paravirt: Add paravirt_{read,write}_msr()
x86/msr: Carry on after a non-"safe" MSR access fails
...
Pull x86 fixes from Ingo Molnar:
"Misc fixes: a binutils fix, an lguest fix, an mcelog fix and a missing
documentation fix"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Avoid using object after free in genpool
lguest, x86/entry/32: Fix handling of guest syscalls using interrupt gates
x86/build: Build compressed x86 kernels as PIE
x86/mm/pkeys: Add missing Documentation
There are several reports of freeze on enabling HWP (Hardware PStates)
feature on Skylake-based systems by the Intel P-states driver. The root
cause is identified as the HWP interrupts causing BIOS code to freeze.
HWP interrupts use the thermal LVT which can be handled by Linux
natively, but on the affected Skylake-based systems SMM will respond
to it by default. This is a problem for several reasons:
- On the affected systems the SMM thermal LVT handler is broken (it
will crash when invoked) and a BIOS update is necessary to fix it.
- With thermal interrupt handled in SMM we lose all of the reporting
features of the arch/x86/kernel/cpu/mcheck/therm_throt driver.
- Some thermal drivers like x86-package-temp depend on the thermal
threshold interrupts signaled via the thermal LVT.
- The HWP interrupts are useful for debugging and tuning
performance (if the kernel can handle them).
The native handling of thermal interrupts needs to be enabled
because of that.
This requires some way to tell SMM that the OS can handle thermal
interrupts. That can be done by using _OSC/_PDC in processor
scope very early during ACPI initialization.
The meaning of _OSC/_PDC bit 12 in processor scope is whether or
not the OS supports native handling of interrupts for Collaborative
Processor Performance Control (CPPC) notifications. Since on
HWP-capable systems CPPC is a firmware interface to HWP, setting
this bit effectively tells the firmware that the OS will handle
thermal interrupts natively going forward.
For details on _OSC/_PDC refer to:
http://www.intel.com/content/www/us/en/standards/processor-vendor-specific-acpi-specification.html
To implement the _OSC/_PDC handshake as described, introduce a new
function, acpi_early_processor_osc(), that walks the ACPI
namespace looking for ACPI processor objects and invokes _OSC for
them with bit 12 in the capabilities buffer set and terminates the
namespace walk on the first success.
Also modify intel_thermal_interrupt() to clear HWP status bits in
the HWP_STATUS MSR to acknowledge HWP interrupts (which prevents
them from firing continuously).
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
[ rjw: Subject & changelog, function rename ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Pull x86 asm updates from Ingo Molnar:
"This is another big update. Main changes are:
- lots of x86 system call (and other traps/exceptions) entry code
enhancements. In particular the complex parts of the 64-bit entry
code have been migrated to C code as well, and a number of dusty
corners have been refreshed. (Andy Lutomirski)
- vDSO special mapping robustification and general cleanups (Andy
Lutomirski)
- cpufeature refactoring, cleanups and speedups (Borislav Petkov)
- lots of other changes ..."
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (64 commits)
x86/cpufeature: Enable new AVX-512 features
x86/entry/traps: Show unhandled signal for i386 in do_trap()
x86/entry: Call enter_from_user_mode() with IRQs off
x86/entry/32: Change INT80 to be an interrupt gate
x86/entry: Improve system call entry comments
x86/entry: Remove TIF_SINGLESTEP entry work
x86/entry/32: Add and check a stack canary for the SYSENTER stack
x86/entry/32: Simplify and fix up the SYSENTER stack #DB/NMI fixup
x86/entry: Only allocate space for tss_struct::SYSENTER_stack if needed
x86/entry: Vastly simplify SYSENTER TF (single-step) handling
x86/entry/traps: Clear DR6 early in do_debug() and improve the comment
x86/entry/traps: Clear TIF_BLOCKSTEP on all debug exceptions
x86/entry/32: Restore FLAGS on SYSEXIT
x86/entry/32: Filter NT and speed up AC filtering in SYSENTER
x86/entry/compat: In SYSENTER, sink AC clearing below the existing FLAGS test
selftests/x86: In syscall_nt, test NT|TF as well
x86/asm-offsets: Remove PARAVIRT_enabled
x86/entry/32: Introduce and use X86_BUG_ESPFIX instead of paravirt_enabled
uprobes: __create_xol_area() must nullify xol_mapping.fault
x86/cpufeature: Create a new synthetic cpu capability for machine check recovery
...
Pull RAS updates from Ingo Molnar:
"Various RAS updates:
- AMD MCE support updates for future CPUs, fixes and 'SMCA' (Scalable
MCA) error decoding support (Aravind Gopalakrishnan)
- x86 memcpy_mcsafe() support, to enable smart(er) hardware error
recovery in NVDIMM drivers, based on an extension of the x86
exception handling code. (Tony Luck)"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
EDAC/sb_edac: Fix computation of channel address
x86/mm, x86/mce: Add memcpy_mcsafe()
x86/mce/AMD: Document some functionality
x86/mce: Clarify comments regarding deferred error
x86/mce/AMD: Fix logic to obtain block address
x86/mce/AMD, EDAC: Enable error decoding of Scalable MCA errors
x86/mce: Move MCx_CONFIG MSR definitions
x86/mce: Check for faults tagged in EXTABLE_CLASS_FAULT exception table entries
x86/mm: Expand the exception table logic to allow new handling options
x86/mce/AMD: Set MCAX Enable bit
x86/mce/AMD: Carve out threshold block preparation
x86/mce/AMD: Fix LVT offset configuration for thresholding
x86/mce/AMD: Reduce number of blocks scanned per bank
x86/mce/AMD: Do not perform shared bank check for future processors
x86/mce: Fix order of AMD MCE init function call
The Intel Software Developer Manual describes bit 24 in the MCG_CAP
MSR:
MCG_SER_P (software error recovery support present) flag,
bit 24 — Indicates (when set) that the processor supports
software error recovery
But only some models with this capability bit set will actually
generate recoverable machine checks.
Check the model name and set a synthetic capability bit. Provide
a command line option to set this bit anyway in case the kernel
doesn't recognise the model name.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/2e5bfb23c89800a036fb8a45fa97a74bb16bc362.1455732970.git.tony.luck@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Extend the severity checking code to add a new context IN_KERN_RECOV
which is used to indicate that the machine check was triggered by code
in the kernel tagged with _ASM_EXTABLE_FAULT() so that the ex_handler_fault()
handler will provide the fixup code with the trap number.
Major re-work to the tail code in do_machine_check() to make all this
readable/maintainable. One functional change is that tolerant=3 no longer
stops recovery actions. Revert to only skipping sending SIGBUS to the
current process.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/89d243d05a7943bb187d1074bb30d9c4f482d5f5.1455732970.git.tony.luck@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull RAS updates from Ingo Molnar:
"Various x86 MCE fixes and small enhancements"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Make usable address checks Intel-only
x86/mce: Add the missing memory error check on AMD
x86/RAS: Remove mce.usable_addr
x86/mce: Do not enter deferred errors into the generic pool twice
Intel's MCA implementation broadcasts MCEs to all CPUs on the
node. This poses a problem for offlined CPUs which cannot
participate in the rendezvous process:
Kernel panic - not syncing: Timeout: Not all CPUs entered broadcast exception handler
Kernel Offset: disabled
Rebooting in 100 seconds..
More specifically, Linux does a soft offline of a CPU when
writing a 0 to /sys/devices/system/cpu/cpuX/online, which
doesn't prevent the #MC exception from being broadcasted to that
CPU.
Ensure that offline CPUs don't participate in the MCE rendezvous
and clear the RIP valid status bit so that a second MCE won't
cause a shutdown.
Without the patch, mce_start() will increment mce_callin and
wait for all CPUs. Offlined CPUs should avoid participating in
the rendezvous process altogether.
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
[ Massage commit message. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: <stable@vger.kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1449742346-21470-2-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We used to have a special ring buffer for deferred errors that
was used to mark problem pages. We replaced that with a generic
pool. Then later converted mce_log() to also use the same pool.
As a result, we end up adding all deferred errors to the pool
twice.
Rearrange this code. Make sure to set the m.severity and
m.usable_addr fields for deferred errors. Then if flags and
mca_cfg.dont_log_ce mean we call mce_log() we are done, because
that will add this entry to the generic pool.
If we skipped mce_log(), then we still want to take action for
the deferred error, so add to the pool.
Change the name of the boolean "error_logged" to "error_seen",
we should set it whether of not we logged an error because the
return value from machine_check_poll() is used to decide whether
storms have subsided or not.
Reported-by: Gong Chen <gong.chen@linux.intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1448350880-5573-2-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The per CPU thermal vector init code checks if the thermal
vector is already installed and complains and bails out if it
is.
This happens after kexec, as kernel shut down does not clear the
thermal vector APIC register.
This causes two problems:
1. So we always do not fully initialize thermal reports after
kexec. The CPU is still likely initialized, as the previous
kernel should have done it. But we don't set up the software
pointer to the thermal vector, so reporting may end up with a
unknown thermal interrupt message.
2. Also it complains for every logical CPU, even though the
value is actually derived from BP only.
The problem is that we end up with one message per CPU, so on
larger systems it becomes very noisy and messes up the otherwise
nicely formatted CPU bootup numbers in the kernel log.
Just remove the check. I checked the code and there's no valid
code paths where the thermal init code for a CPU could be called
multiple times.
Why the kernel does not clean up this value on shutdown:
The thermal monitoring is controlled per logical CPU thread.
Normal shutdown code is just running on one CPU. To disable it
we would need a broadcast NMI to all CPUs on shut down. That's
overkill for this. So we just ignore it after kexec.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1445246268-26285-9-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is not safe to clear global MCi_CTL banks during CPU offline
or suspend/resume operations. These MSRs are either
thread-scoped (meaning private to a thread), or core-scoped
(private to threads in that core only), or with a socket scope:
visible and controllable from all threads in the socket.
When we offline a single CPU, clearing those MCi_CTL bits will
stop signaling for all the shared, i.e., socket-wide resources,
such as LLC, iMC, etc.
In addition, it might be possible to compromise the integrity of
an Intel Secure Guard eXtentions (SGX) system if the attacker
has control of the host system and is able to inject errors
which would be otherwise ignored when MCi_CTL bits are cleared.
Hence on SGX enabled systems, if MCi_CTL is cleared, SGX gets
disabled.
Tested-by: Serge Ayoun <serge.ayoun@intel.com>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
[ Cleanup text. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1441391390-16985-1-git-send-email-ashok.raj@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 asm changes from Ingo Molnar:
"The biggest changes in this cycle were:
- Revamp, simplify (and in some cases fix) Time Stamp Counter (TSC)
primitives. (Andy Lutomirski)
- Add new, comprehensible entry and exit handlers written in C.
(Andy Lutomirski)
- vm86 mode cleanups and fixes. (Brian Gerst)
- 32-bit compat code cleanups. (Brian Gerst)
The amount of simplification in low level assembly code is already
palpable:
arch/x86/entry/entry_32.S | 130 +----
arch/x86/entry/entry_64.S | 197 ++-----
but more simplifications are planned.
There's also the usual laudry mix of low level changes - see the
changelog for details"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (83 commits)
x86/asm: Drop repeated macro of X86_EFLAGS_AC definition
x86/asm/msr: Make wrmsrl() a function
x86/asm/delay: Introduce an MWAITX-based delay with a configurable timer
x86/asm: Add MONITORX/MWAITX instruction support
x86/traps: Weaken context tracking entry assertions
x86/asm/tsc: Add rdtscll() merge helper
selftests/x86: Add syscall_nt selftest
selftests/x86: Disable sigreturn_64
x86/vdso: Emit a GNU hash
x86/entry: Remove do_notify_resume(), syscall_trace_leave(), and their TIF masks
x86/entry/32: Migrate to C exit path
x86/entry/32: Remove 32-bit syscall audit optimizations
x86/vm86: Rename vm86->v86flags and v86mask
x86/vm86: Rename vm86->vm86_info to user_vm86
x86/vm86: Clean up vm86.h includes
x86/vm86: Move the vm86 IRQ definitions to vm86.h
x86/vm86: Use the normal pt_regs area for vm86
x86/vm86: Eliminate 'struct kernel_vm86_struct'
x86/vm86: Move fields from 'struct kernel_vm86_struct' to 'struct vm86'
x86/vm86: Move vm86 fields out of 'thread_struct'
...
Pull RAS updates from Ingo Molnar:
"MCE handling updates, but also some generic drivers/edac/ changes to
better organize the Kconfig space"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ras: Move AMD MCE injector to arch/x86/ras/
x86/mce: Add a wrapper around mce_log() for injection
x86/mce: Rename rcu_dereference_check_mce() to mce_log_get_idx_check()
RAS: Add a menuconfig option with descriptive text
x86/mce: Reenable CMCI banks when swiching back to interrupt mode
x86/mce: Clear Local MCE opt-in before kexec
x86/mce: Remove unused function declarations
x86/mce: Kill drain_mcelog_buffer()
x86/mce: Avoid potential deadlock due to printk() in MCE context
x86/mce: Remove the MCE ring for Action Optional errors
x86/mce: Don't use percpu workqueues
x86/mce: Provide a lockless memory pool to save error records
x86/mce: Reuse one of the u16 padding fields in 'struct mce'
Zhang Liguang reported the following issue:
1) System detects a CMCI storm on the current CPU.
2) Kernel disables the CMCI interrupt on banks owned by the
current CPU and switches to poll mode
3) After the CMCI storm subsides, kernel switches back to
interrupt mode
4) We expect the system to reenable the CMCI interrupt on banks
owned by the current CPU
mce_intel_adjust_timer
|-> cmci_reenable
|-> cmci_discover # owned banks are ignored here
static void cmci_discover(int banks)
...
for (i = 0; i < banks; i++) {
...
if (test_bit(i, owned)) # ownd banks is ignore here
continue;
So convert cmci_storm_disable_banks() to
cmci_toggle_interrupt_mode() which controls whether to enable or
disable CMCI interrupts with its argument.
NB: We cannot clear the owned bit because the banks won't be
polled, otherwise. See:
27f6c573e0 ("x86, CMCI: Add proper detection of end of CMCI storms")
for more info.
Reported-by: Zhang Liguang <zhangliguang@huawei.com>
Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # v3.15+
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: huawei.libin@huawei.com
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: rui.xiang@huawei.com
Link: http://lkml.kernel.org/r/1439396985-12812-10-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>