The "enable" file for the event system can be removed when a module
is unloaded and the event system only has events from that module.
As the event system nr_events count goes to zero, it may be freed
if its ref_count is also set to zero.
Like the "filter" file, the "enable" file may be opened by a task and
referenced later, after a module has been unloaded and the events for
that event system have been removed.
Although the "filter" file referenced the event system structure,
the "enable" file only references a pointer to the event system
name. Since the name is freed when the event system is removed,
it is possible that an access to the "enable" file may reference
a freed pointer.
Update the "enable" file to use the subsystem_open() routine that
the "filter" file uses, to keep a reference to the event system
structure while the "enable" file is opened.
Cc: <stable@kernel.org>
Reported-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The event system is freed when its nr_events is set to zero. This happens
when a module created an event system and then later the module is
removed. Modules may share systems, so the system is allocated when
it is created and freed when the modules are unloaded and all the
events under the system are removed (nr_events set to zero).
The problem arises when a task opened the "filter" file for the
system. If the module is unloaded and it removed the last event for
that system, the system structure is freed. If the task that opened
the filter file accesses the "filter" file after the system has
been freed, the system will access an invalid pointer.
By adding a ref_count, and using it to keep track of what
is using the event system, we can free it after all users
are finished with the event system.
Cc: <stable@kernel.org>
Reported-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
There is a bug in free_unnecessary_pages() that causes it to
attempt to free too many pages in some cases, which triggers the
BUG_ON() in memory_bm_clear_bit() for copy_bm. Namely, if
count_data_pages() is initially greater than alloc_normal, we get
to_free_normal equal to 0 and "save" greater from 0. In that case,
if the sum of "save" and count_highmem_pages() is greater than
alloc_highmem, we subtract a positive number from to_free_normal.
Hence, since to_free_normal was 0 before the subtraction and is
an unsigned int, the result is converted to a huge positive number
that is used as the number of pages to free.
Fix this bug by checking if to_free_normal is actually greater
than or equal to the number we're going to subtract from it.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Reported-and-tested-by: Matthew Garrett <mjg@redhat.com>
Cc: stable@kernel.org
Provides the ability to resize a resource that is already allocated.
This functionality is put in place to support reallocation needs of
pci resources.
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
Acked-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The common clocks management code in drivers/base/power/clock_ops.c
is going to be used during system-wide power transitions as well as
for runtime PM, so it shouldn't depend on CONFIG_PM_RUNTIME.
However, the suspend/resume functions provided by it for
CONFIG_PM_RUNTIME unset, to be used during system-wide power
transitions, should not behave in the same way as their counterparts
defined for CONFIG_PM_RUNTIME set, because in that case the clocks
are managed differently at run time.
The names of the functions still contain the word "runtime" after
this change, but that is going to be modified by a separate patch
later.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Reviewed-by: Kevin Hilman <khilman@ti.com>
Introduce common headers, helper functions and callbacks allowing
platforms to use simple generic power domains for runtime power
management.
Introduce struct generic_pm_domain to be used for representing
power domains that each contain a number of devices and may be
parent domains or subdomains with respect to other power domains.
Among other things, this structure includes callbacks to be
provided by platforms for performing specific tasks related to
power management (i.e. ->stop_device() may disable a device's
clocks, while ->start_device() may enable them, ->power_off() is
supposed to remove power from the entire power domain
and ->power_on() is supposed to restore it).
Introduce functions that can be used as power domain runtime PM
callbacks, pm_genpd_runtime_suspend() and pm_genpd_runtime_resume(),
as well as helper functions for the initialization of a power
domain represented by a struct generic_power_domain object,
adding a device to or removing a device from it and adding or
removing subdomains.
Introduce configuration option CONFIG_PM_GENERIC_DOMAINS to be
selected by the platforms that want to use the new code.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Reviewed-by: Kevin Hilman <khilman@ti.com>
The perf_event overflow handler does not receive any caller-derived
argument, so many callers need to resort to looking up the perf_event
in their local data structure. This is ugly and doesn't scale if a
single callback services many perf_events.
Fix by adding a context parameter to perf_event_create_kernel_counter()
(and derived hardware breakpoints APIs) and storing it in the perf_event.
The field can be accessed from the callback as event->overflow_handler_context.
All callers are updated.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1309362157-6596-2-git-send-email-avi@redhat.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since only samples call perf_output_sample() its much saner (and more
correct) to put the sample logic in there than in the
perf_output_begin()/perf_output_end() pair.
Saves a useless argument, reduces conditionals and shrinks
struct perf_output_handle, win!
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-2crpvsx3cqu67q3zqjbnlpsc@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The nmi parameter indicated if we could do wakeups from the current
context, if not, we would set some state and self-IPI and let the
resulting interrupt do the wakeup.
For the various event classes:
- hardware: nmi=0; PMI is in fact an NMI or we run irq_work_run from
the PMI-tail (ARM etc.)
- tracepoint: nmi=0; since tracepoint could be from NMI context.
- software: nmi=[0,1]; some, like the schedule thing cannot
perform wakeups, and hence need 0.
As one can see, there is very little nmi=1 usage, and the down-side of
not using it is that on some platforms some software events can have a
jiffy delay in wakeup (when arch_irq_work_raise isn't implemented).
The up-side however is that we can remove the nmi parameter and save a
bunch of conditionals in fast paths.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Michael Cree <mcree@orcon.net.nz>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Don Zickus <dzickus@redhat.com>
Link: http://lkml.kernel.org/n/tip-agjev8eu666tvknpb3iaj0fg@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Due to restriction and specifics of Netburst PMU we need a separated
event for NMI watchdog. In particular every Netburst event
consumes not just a counter and a config register, but also an
additional ESCR register.
Since ESCR registers are grouped upon counters (i.e. if ESCR is occupied
for some event there is no room for another event to enter until its
released) we need to pick up the "least" used ESCR (or the most available
one) for nmi-watchdog purposes -- so MSR_P4_CRU_ESCR2/3 was chosen.
With this patch nmi-watchdog and perf top should be able to run simultaneously.
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
CC: Lin Ming <ming.m.lin@intel.com>
CC: Arnaldo Carvalho de Melo <acme@redhat.com>
CC: Frederic Weisbecker <fweisbec@gmail.com>
Tested-and-reviewed-by: Don Zickus <dzickus@redhat.com>
Tested-and-reviewed-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110623124918.GC13050@sun
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The event tracing infrastructure exposes two timers which should be updated
each time the value of the counter is updated. Currently, these counters are
only updated when userspace calls read() on the fd associated with an event.
This means that counters which are read via the mmap'd page exclusively never
have their timers updated. This patch adds ensures that the timers are updated
each time the values in the mmap'd page are updated.
Signed-off-by: Eric B Munson <emunson@mgebm.net>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1308932786-5111-1-git-send-email-emunson@mgebm.net
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since 2.6.36 (specifically commit d57e34fdd6 ("perf: Simplify the
ring-buffer logic: make perf_buffer_alloc() do everything needed"),
the perf_buffer_init_code() has been mis-setting the buffer watermark
if perf_event_attr.wakeup_events has a non-zero value.
This is because perf_event_attr.wakeup_events is a union with
perf_event_attr.wakeup_watermark.
This commit re-enables the check for perf_event_attr.watermark being
set before continuing with setting a non-default watermark.
This bug is most noticable when you are trying to use PERF_IOC_REFRESH
with a value larger than one and perf_event_attr.wakeup_events is set to
one. In this case the buffer watermark will be set to 1 and you will
get extraneous POLL_IN overflows rather than POLL_HUP as expected.
[ avoid using attr.wakeup_events when attr.watermark is set ]
Signed-off-by: Vince Weaver <vweaver1@eecs.utk.edu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: <stable@kernel.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.00.1106011506390.5384@cl320.eecs.utk.edu
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since commit ec514c48 ("sched: Fix rt_rq runtime leakage bug")
'cat /proc/sched_debug' will print data of root_task_group.rt_rq
multiple times.
This is because autogroup does not have its own rt group, instead
rt group of autogroup is linked to root_task_group.
So skip it when we are looking for all rt sched groups, and it
will also save some noop operation against root_task_group when
__disable_runtime()/__enable_runtime().
-v2: Based on Cheng Xu's idea which uses less code.
Signed-off-by: Yong Zhang <yong.zhang0@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Cheng Xu <chengxu@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/BANLkTi=87P3RoTF_UEtamNfc_XGxQXE__Q@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In this revision the conversion of secid to SELinux context and adding it
to the audit log is moved from xt_AUDIT.c to audit.c with the aid of a
separate helper function - audit_log_secctx - which does both the conversion
and logging of SELinux context, thus also preventing internal secid number
being leaked to userspace. If conversion is not successful an error is raised.
With the introduction of this helper function the work done in xt_AUDIT.c is
much more simplified. It also opens the possibility of this helper function
being used by other modules (including auditd itself), if desired. With this
addition, typical (raw auditd) output after applying the patch would be:
type=NETFILTER_PKT msg=audit(1305852240.082:31012): action=0 hook=1 len=52 inif=? outif=eth0 saddr=10.1.1.7 daddr=10.1.2.1 ipid=16312 proto=6 sport=56150 dport=22 obj=system_u:object_r:ssh_client_packet_t:s0
type=NETFILTER_PKT msg=audit(1306772064.079:56): action=0 hook=3 len=48 inif=eth0 outif=? smac=00:05:5d:7c:27:0b dmac=00:02:b3:0a:7f:81 macproto=0x0800 saddr=10.1.2.1 daddr=10.1.1.7 ipid=462 proto=6 sport=22 dport=3561 obj=system_u:object_r:ssh_server_packet_t:s0
Acked-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Mr Dash Four <mr.dash.four@googlemail.com>
Signed-off-by: Patrick McHardy <kaber@trash.net>
Currently a single process may register exit handlers unlimited times.
It may lead to a bloated listeners chain and very slow process
terminations.
Eg after 10KK sent TASKSTATS_CMD_ATTR_REGISTER_CPUMASKs ~300 Mb of
kernel memory is stolen for the handlers chain and "time id" shows 2-7
seconds instead of normal 0.003. It makes it possible to exhaust all
kernel memory and to eat much of CPU time by triggerring numerous exits
on a single CPU.
The patch limits the number of times a single process may register
itself on a single CPU to one.
One little issue is kept unfixed - as taskstats_exit() is called before
exit_files() in do_exit(), the orphaned listener entry (if it was not
explicitly deregistered) is kept until the next someone's exit() and
implicit deregistration in send_cpu_listeners(). So, if a process
registered itself as a listener exits and the next spawned process gets
the same pid, it would inherit taskstats attributes.
Signed-off-by: Vasiliy Kulikov <segooon@gmail.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MTRR rendezvous sequence is not implemened using stop_machine() before, as this
gets called both from the process context aswell as the cpu online paths
(where the cpu has not come online and the interrupts are disabled etc).
Now that we have a new stop_machine_from_inactive_cpu() API, use it for
rendezvous during mtrr init of a logical processor that is coming online.
For the rest (runtime MTRR modification, system boot, resume paths), use
stop_machine() to implement the rendezvous sequence. This will consolidate and
cleanup the code.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/20110623182057.076997177@sbsiddha-MOBL3.sc.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Currently, mtrr wants stop_machine functionality while a CPU is being
brought up. As stop_machine() requires the calling CPU to be active,
mtrr implements its own stop_machine using stop_one_cpu() on each
online CPU. This doesn't only unnecessarily duplicate complex logic
but also introduces a possibility of deadlock when it races against
the generic stop_machine().
This patch implements stop_machine_from_inactive_cpu() to serve such
use cases. Its functionality is basically the same as stop_machine();
however, it should be called from a CPU which isn't active and doesn't
depend on working scheduling on the calling CPU.
This is achieved by using busy loops for synchronization and
open-coding stop_cpus queuing and waiting with direct invocation of
fn() for local CPU inbetween.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20110623182056.982526827@sbsiddha-MOBL3.sc.intel.com
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
MTRR rendezvous sequence using stop_one_cpu_nowait() can potentially
happen in parallel with another system wide rendezvous using
stop_machine(). This can lead to deadlock (The order in which
works are queued can be different on different cpu's. Some cpu's
will be running the first rendezvous handler and others will be running
the second rendezvous handler. Each set waiting for the other set to join
for the system wide rendezvous, leading to a deadlock).
MTRR rendezvous sequence is not implemented using stop_machine() as this
gets called both from the process context aswell as the cpu online paths
(where the cpu has not come online and the interrupts are disabled etc).
stop_machine() works with only online cpus.
For now, take the stop_machine mutex in the MTRR rendezvous sequence that
gets called from an online cpu (here we are in the process context
and can potentially sleep while taking the mutex). And the MTRR rendezvous
that gets triggered during cpu online doesn't need to take this stop_machine
lock (as the stop_machine() already ensures that there is no cpu hotplug
going on in parallel by doing get_online_cpus())
TBD: Pursue a cleaner solution of extending the stop_machine()
infrastructure to handle the case where the calling cpu is
still not online and use this for MTRR rendezvous sequence.
fixes: https://bugzilla.novell.com/show_bug.cgi?id=672008
Reported-by: Vadim Kotelnikov <vadimuzzz@inbox.ru>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/20110623182056.807230326@sbsiddha-MOBL3.sc.intel.com
Cc: stable@kernel.org # 2.6.35+, backport a week or two after this gets more testing in mainline
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
wait_consider_task() checks same_thread_group(parent, real_parent),
this is the open-coded ptrace_reparented().
__ptrace_detach() remains the only function which has to check this by
hand, although we could reorganize the code to delay __ptrace_unlink.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Kill real_parent_is_ptracer() and update the callers to use
ptrace_reparented(), after the previous patch they do the same.
Remove the unnecessary ->ptrace != 0 check in get_signal_to_deliver(),
if ptrace_reparented() == T then the task must be ptraced.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
__ptrace_detach() and do_notify_parent() set task->exit_signal = -1
to mark the task dead. This is no longer needed, nobody checks
exit_signal to detect the EXIT_DEAD task.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Upadate the last user of task_detached(), wait_task_zombie(), to
use thread_group_leader() and kill task_detached().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Change reparent_leader() to check ->exit_state instead of ->exit_signal,
this matches the similar EXIT_DEAD check in wait_consider_task() and
allows us to cleanup the do_notify_parent/task_detached logic.
task_detached() was really needed during reparenting before 9cd80bbb
"do_wait() optimization: do not place sub-threads on ->children list"
to filter out the sub-threads. After this change task_detached(p) can
only be true if p is the dead group_leader and its parent ignores
SIGCHLD, in this case the caller of do_notify_parent() is going to
reap this task and it should set EXIT_DEAD.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Change other callers of do_notify_parent() to check the value it
returns, this makes the subsequent task_detached() unnecessary.
Mark do_notify_parent() as __must_check.
Use thread_group_leader() instead of !task_detached() to check
if we need to notify the real parent in wait_task_zombie().
Remove the stale comment in release_task(). "just for sanity" is
no longer true, we have to set EXIT_DEAD to avoid the races with
do_wait().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
__ptrace_detach() relies on the current obscure behaviour of
do_notify_parent(tsk) which changes tsk->exit_signal if this child
should be silently reaped. That is why we check task_detached(), it
is true if the task is sub-thread, or it is the group_leader but
its exit_signal was changed by do_notify_parent().
This is confusing, change the code to rely on !thread_group_leader()
or the value returned by do_notify_parent().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Kill tracehook_notify_death(), reimplement the logic in its caller,
exit_notify().
Also, change the exec_id's check to use thread_group_leader() instead
of task_detached(), this is more clear. This logic only applies to
the exiting leader, a sub-thread must never change its exit_signal.
Note: when the traced group leader exits the exit_signal-or-SIGCHLD
logic looks really strange:
- we notify the tracer even if !thread_group_empty() but
do_wait(WEXITED) can't work until all threads exit
- if the tracer is real_parent, it is not clear why can't
we use ->exit_signal event if !thread_group_empty()
-v2: do not try to fix the 2nd oddity to avoid the subtle behavior
change mixed with reorganization, suggested by Tejun.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
- change do_notify_parent() to return a boolean, true if the task should
be reaped because its parent ignores SIGCHLD.
- update the only caller which checks the returned value, exit_notify().
This temporary uglifies exit_notify() even more, will be cleanuped by
the next change.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
The sleeping inside spinlock detection is actually used
for more general sleeping inside atomic sections
debugging: preemption disabled, rcu read side critical
sections, interrupts, interrupt disabled, etc...
Change the name of the config and its help section to
reflect its more general role.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ingo Molnar <mingo@elte.hu>
At this point, tracehooks aren't useful to mainline kernel and mostly
just add an extra layer of obfuscation. Although they have comments,
without actual in-kernel users, it is difficult to tell what are their
assumptions and they're actually trying to achieve. To mainline
kernel, they just aren't worth keeping around.
This patch kills the following clone and exec related tracehooks.
tracehook_prepare_clone()
tracehook_finish_clone()
tracehook_report_clone()
tracehook_report_clone_complete()
tracehook_unsafe_exec()
The changes are mostly trivial - logic is moved to the caller and
comments are merged and adjusted appropriately.
The only exception is in check_unsafe_exec() where LSM_UNSAFE_PTRACE*
are OR'd to bprm->unsafe instead of setting it, which produces the
same result as the field is always zero on entry. It also tests
p->ptrace instead of (p->ptrace & PT_PTRACED) for consistency, which
also gives the same result.
This doesn't introduce any behavior change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
At this point, tracehooks aren't useful to mainline kernel and mostly
just add an extra layer of obfuscation. Although they have comments,
without actual in-kernel users, it is difficult to tell what are their
assumptions and they're actually trying to achieve. To mainline
kernel, they just aren't worth keeping around.
This patch kills the following trivial tracehooks.
* Ones testing whether task is ptraced. Replace with ->ptrace test.
tracehook_expect_breakpoints()
tracehook_consider_ignored_signal()
tracehook_consider_fatal_signal()
* ptrace_event() wrappers. Call directly.
tracehook_report_exec()
tracehook_report_exit()
tracehook_report_vfork_done()
* ptrace_release_task() wrapper. Call directly.
tracehook_finish_release_task()
* noop
tracehook_prepare_release_task()
tracehook_report_death()
This doesn't introduce any behavior change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
task_ptrace(task) simply dereferences task->ptrace and isn't even used
consistently only adding confusion. Kill it and directly access
->ptrace instead.
This doesn't introduce any behavior change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Because the read_persistent_clock interface is usually backed by
only a second granular interface, each time we read from the persistent
clock for suspend/resume, we introduce a half second (on average) of error.
In order to avoid this error accumulating as the system is suspended
over and over, this patch measures the time delta between the persistent
clock and the system CLOCK_REALTIME.
If the delta is less then 2 seconds from the last suspend, we compensate
by using the previous time delta (keeping it close). If it is larger
then 2 seconds, we assume the clock was set or has been changed, so we
do no correction and update the delta.
Note: If NTP is running, ths could seem to "fight" with the NTP corrected
time, where as if the system time was off by 1 second, and NTP slewed the
value in, a suspend/resume cycle could undo this correction, by trying to
restore the previous offset from the persistent clock. However, without
this patch, since each read could cause almost a full second worth of
error, its possible to get almost 2 seconds of error just from the
suspend/resume cycle alone, so this about equal to any offset added by
the compensation.
Further on systems that suspend/resume frequently, this should keep time
closer then NTP could compensate for if the errors were allowed to
accumulate.
Credits to Arve Hjønnevåg for suggesting this solution.
CC: Arve Hjønnevåg <arve@android.com>
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Arve suggested making sure we catch possible negative sleep time
intervals that could be passed into timekeeping_inject_sleeptime.
CC: Arve Hjønnevåg <arve@android.com>
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Toralf Förster and Richard Weinberger noted that if there is
no RTC device, the alarm timers core prints out an annoying
"ALARM timers will not wake from suspend" message.
This warning has been removed in a previous patch, however
the issue still remains: The original idea was to support
alarm timers even if there was no rtc device, as long as the
system didn't go into suspend.
However, after further consideration, communicating to the application
that alarmtimers are not fully functional seems like the better
solution.
So this patch makes it so we return -ENOTSUPP to any posix _ALARM
clockid calls if there is no backing RTC device on the system.
Further this changes the behavior where when there is no rtc device
we will check for one on clock_getres, clock_gettime, timer_create,
and timer_nsleep instead of on suspend.
CC: Toralf Förster <toralf.foerster@gmx.de>
CC: Richard Weinberger <richard@nod.at
CC: Peter Zijlstra <peterz@infradead.org>
CC: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Toralf Förster <toralf.foerster@gmx.de>
Reported by: Richard Weinberger <richard@nod.at>
Signed-off-by: John Stultz <john.stultz@linaro.org>