Number of attribute checks are currently performed after hashtab
is already allocated. Move them to be able to split them out to
the check function later on. Checks have to now be performed on
the attr union directly instead of the members of bpf_map, since
bpf_map will be allocated later. No functional changes.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
.map_alloc callbacks contain a number of checks validating user-
-provided map attributes against constraints of a particular map
type. For offloaded maps we will need to check map attributes
without actually allocating any memory on the host. Add a new
callback for validating attributes before any memory is allocated.
This callback can be selectively implemented by map types for
sharing code with offloads, or simply to separate the logical
steps of validation and allocation.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Because the return value of cpu_timer_sample_group() is not checked,
compilers and static checkers can legitimately warn about a potential use
of the uninitialized variable 'now'. This is not a runtime issue as all call
sites hand in valid clock ids.
Also cpu_timer_sample_group() is invoked unconditionally even when the
result is not used because *oldval is NULL.
Make the invocation conditional and check the return value.
[ tglx: Massage changelog ]
Signed-off-by: Max R. P. Grossmann <m@max.pm>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: john.stultz@linaro.org
Link: https://lkml.kernel.org/r/20180108190157.10048-1-m@max.pm
Julia reported futex state corruption in the following scenario:
waiter waker stealer (prio > waiter)
futex(WAIT_REQUEUE_PI, uaddr, uaddr2,
timeout=[N ms])
futex_wait_requeue_pi()
futex_wait_queue_me()
freezable_schedule()
<scheduled out>
futex(LOCK_PI, uaddr2)
futex(CMP_REQUEUE_PI, uaddr,
uaddr2, 1, 0)
/* requeues waiter to uaddr2 */
futex(UNLOCK_PI, uaddr2)
wake_futex_pi()
cmp_futex_value_locked(uaddr2, waiter)
wake_up_q()
<woken by waker>
<hrtimer_wakeup() fires,
clears sleeper->task>
futex(LOCK_PI, uaddr2)
__rt_mutex_start_proxy_lock()
try_to_take_rt_mutex() /* steals lock */
rt_mutex_set_owner(lock, stealer)
<preempted>
<scheduled in>
rt_mutex_wait_proxy_lock()
__rt_mutex_slowlock()
try_to_take_rt_mutex() /* fails, lock held by stealer */
if (timeout && !timeout->task)
return -ETIMEDOUT;
fixup_owner()
/* lock wasn't acquired, so,
fixup_pi_state_owner skipped */
return -ETIMEDOUT;
/* At this point, we've returned -ETIMEDOUT to userspace, but the
* futex word shows waiter to be the owner, and the pi_mutex has
* stealer as the owner */
futex_lock(LOCK_PI, uaddr2)
-> bails with EDEADLK, futex word says we're owner.
And suggested that what commit:
73d786bd04 ("futex: Rework inconsistent rt_mutex/futex_q state")
removes from fixup_owner() looks to be just what is needed. And indeed
it is -- I completely missed that requeue_pi could also result in this
case. So we need to restore that, except that subsequent patches, like
commit:
16ffa12d74 ("futex: Pull rt_mutex_futex_unlock() out from under hb->lock")
changed all the locking rules. Even without that, the sequence:
- if (rt_mutex_futex_trylock(&q->pi_state->pi_mutex)) {
- locked = 1;
- goto out;
- }
- raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
- owner = rt_mutex_owner(&q->pi_state->pi_mutex);
- if (!owner)
- owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
- raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
- ret = fixup_pi_state_owner(uaddr, q, owner);
already suggests there were races; otherwise we'd never have to look
at next_owner.
So instead of doing 3 consecutive wait_lock sections with who knows
what races, we do it all in a single section. Additionally, the usage
of pi_state->owner in fixup_owner() was only safe because only the
rt_mutex owner would modify it, which this additional case wrecks.
Luckily the values can only change away and not to the value we're
testing, this means we can do a speculative test and double check once
we have the wait_lock.
Fixes: 73d786bd04 ("futex: Rework inconsistent rt_mutex/futex_q state")
Reported-by: Julia Cartwright <julia@ni.com>
Reported-by: Gratian Crisan <gratian.crisan@ni.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Julia Cartwright <julia@ni.com>
Tested-by: Gratian Crisan <gratian.crisan@ni.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20171208124939.7livp7no2ov65rrc@hirez.programming.kicks-ass.net
Divides by zero are not nice, lets avoid them if possible.
Also do_div() seems not needed when dealing with 32bit operands,
but this seems a minor detail.
Fixes: bd4cf0ed33 ("net: filter: rework/optimize internal BPF interpreter's instruction set")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Merge misc fixlets from Andrew Morton:
"4 fixes"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
tools/objtool/Makefile: don't assume sync-check.sh is executable
kdump: write correct address of mem_section into vmcoreinfo
kmemleak: allow to coexist with fault injection
MAINTAINERS, nilfs2: change project home URLs
Support in-kernel fault-injection framework via debugfs.
This allows you to inject a conditional error to specified
function using debugfs interfaces.
Here is the result of test script described in
Documentation/fault-injection/fault-injection.txt
===========
# ./test_fail_function.sh
1+0 records in
1+0 records out
1048576 bytes (1.0 MB, 1.0 MiB) copied, 0.0227404 s, 46.1 MB/s
btrfs-progs v4.4
See http://btrfs.wiki.kernel.org for more information.
Label: (null)
UUID: bfa96010-12e9-4360-aed0-42eec7af5798
Node size: 16384
Sector size: 4096
Filesystem size: 1001.00MiB
Block group profiles:
Data: single 8.00MiB
Metadata: DUP 58.00MiB
System: DUP 12.00MiB
SSD detected: no
Incompat features: extref, skinny-metadata
Number of devices: 1
Devices:
ID SIZE PATH
1 1001.00MiB /dev/loop2
mount: mount /dev/loop2 on /opt/tmpmnt failed: Cannot allocate memory
SUCCESS!
===========
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Since error-injection framework is not limited to be used
by kprobes, nor bpf. Other kernel subsystems can use it
freely for checking safeness of error-injection, e.g.
livepatch, ftrace etc.
So this separate error-injection framework from kprobes.
Some differences has been made:
- "kprobe" word is removed from any APIs/structures.
- BPF_ALLOW_ERROR_INJECTION() is renamed to
ALLOW_ERROR_INJECTION() since it is not limited for BPF too.
- CONFIG_FUNCTION_ERROR_INJECTION is the config item of this
feature. It is automatically enabled if the arch supports
error injection feature for kprobe or ftrace etc.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Compare instruction pointer with original one on the
stack instead using per-cpu bpf_kprobe_override flag.
This patch also consolidates reset_current_kprobe() and
preempt_enable_no_resched() blocks. Those can be done
in one place.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Check whether error injectable event is on function entry or not.
Currently it checks the event is ftrace-based kprobes or not,
but that is wrong. It should check if the event is on the entry
of target function. Since error injection will override a function
to just return with modified return value, that operation must
be done before the target function starts making stackframe.
As a side effect, bpf error injection is no need to depend on
function-tracer. It can work with sw-breakpoint based kprobe
events too.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In preparation for unconditionally copying the whole of siginfo
to userspace clear si_sys_private. So this kernel internal
value is guaranteed not to make it to userspace.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Call clear_siginfo to ensure stack allocated siginfos are fully
initialized before being passed to the signal sending functions.
This ensures that if there is the kind of confusion documented by
TRAP_FIXME, FPE_FIXME, or BUS_FIXME the kernel won't send unitialized
data to userspace when the kernel generates a signal with SI_USER but
the copy to userspace assumes it is a different kind of signal, and
different fields are initialized.
This also prepares the way for turning copy_siginfo_to_user
into a copy_to_user, by removing the need in many cases to perform
a field by field copy simply to skip the uninitialized fields.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Setting si_code to 0 results in a userspace seeing an si_code of 0.
This is the same si_code as SI_USER. Posix and common sense requires
that SI_USER not be a signal specific si_code. As such this use of 0
for the si_code is a pretty horribly broken ABI.
Further use of si_code == 0 guaranteed that copy_siginfo_to_user saw a
value of __SI_KILL and now sees a value of SIL_KILL with the result
that uid and pid fields are copied and which might copying the si_addr
field by accident but certainly not by design. Making this a very
flakey implementation.
Utilizing FPE_FIXME, BUS_FIXME, TRAP_FIXME siginfo_layout will now return
SIL_FAULT and the appropriate fields will be reliably copied.
But folks this is a new and unique kind of bad. This is massively
untested code bad. This is inventing new and unique was to get
siginfo wrong bad. This is don't even think about Posix or what
siginfo means bad. This is lots of eyeballs all missing the fact
that the code does the wrong thing bad. This is getting stuck
and keep making the same mistake bad.
I really hope we can find a non userspace breaking fix for this on a
port as new as arm64.
Possible ABI fixes include:
- Send the signal without siginfo
- Don't generate a signal
- Possibly assign and use an appropriate si_code
- Don't handle cases which can't happen
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Tyler Baicar <tbaicar@codeaurora.org>
Cc: James Morse <james.morse@arm.com>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Olof Johansson <olof@lixom.net>
Cc: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: linux-arm-kernel@lists.infradead.org
Ref: 53631b54c8 ("arm64: Floating point and SIMD")
Ref: 32015c2356 ("arm64: exception: handle Synchronous External Abort")
Ref: 1d18c47c73 ("arm64: MMU fault handling and page table management")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
show_workqueue_state() can print out a lot of messages while being in
atomic context, e.g. sysrq-t -> show_workqueue_state(). If the console
device is slow it may end up triggering NMI hard lockup watchdog.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org # v4.5+
Pull scheduler fixes from Ingo Molnar:
"A Kconfig fix, a build fix and a membarrier bug fix"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
membarrier: Disable preemption when calling smp_call_function_many()
sched/isolation: Make CONFIG_CPU_ISOLATION=y depend on SMP or COMPILE_TEST
ia64, sched/cputime: Fix build error if CONFIG_VIRT_CPU_ACCOUNTING_NATIVE=y
Pull locking fixes from Ingo Molnar:
"No functional effects intended: removes leftovers from recent lockdep
and refcounts work"
* 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/refcounts: Remove stale comment from the ARCH_HAS_REFCOUNT Kconfig entry
locking/lockdep: Remove cross-release leftovers
locking/Documentation: Remove stale crossrelease_fullstack parameter
Currently we assign managed interrupt vectors to all present CPUs. This
works fine for systems were we only online/offline CPUs. But in case of
systems that support physical CPU hotplug (or the virtualized version of
it) this means the additional CPUs covered for in the ACPI tables or on
the command line are not catered for. To fix this we'd either need to
introduce new hotplug CPU states just for this case, or we can start
assining vectors to possible but not present CPUs.
Reported-by: Christian Borntraeger <borntraeger@de.ibm.com>
Tested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Tested-by: Stefan Haberland <sth@linux.vnet.ibm.com>
Fixes: 4b855ad371 ("blk-mq: Create hctx for each present CPU")
Cc: linux-kernel@vger.kernel.org
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
BPF alignment tests got a conflict because the registers
are output as Rn_w instead of just Rn in net-next, and
in net a fixup for a testcase prohibits logical operations
on pointers before using them.
Also, we should attempt to patch BPF call args if JIT always on is
enabled. Instead, if we fail to JIT the subprogs we should pass
an error back up and fail immediately.
Signed-off-by: David S. Miller <davem@davemloft.net>
Daniel Borkmann says:
====================
pull-request: bpf-next 2018-01-11
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Various BPF related improvements and fixes to nfp driver: i) do
not register XDP RXQ structure to control queues, ii) round up
program stack size to word size for nfp, iii) restrict MTU changes
when BPF offload is active, iv) add more fully featured relocation
support to JIT, v) add support for signed compare instructions to
the nfp JIT, vi) export and reuse verfier log routine for nfp, and
many more, from Jakub, Quentin and Nic.
2) Fix a syzkaller reported GPF in BPF's copy_verifier_state() when
we hit kmalloc failure path, from Alexei.
3) Add two follow-up fixes for the recent XDP RXQ series: i) kvzalloc()
allocated memory was only kfree()'ed, and ii) fix a memory leak where
RX queue was not freed in netif_free_rx_queues(), from Jakub.
4) Add a sample for transferring XDP meta data into the skb, here it
is used for setting skb->mark with the buffer from XDP, from Jesper.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
klp_send_signals() and klp_force_transition() do not acquire klp_mutex,
because it seemed to be superfluous. A potential race in
klp_send_signals() was harmless and there was nothing in
klp_force_transition() which needed to be synchronized. That changed
with the addition of klp_forced variable during the review process.
There is a small window now, when klp_complete_transition() does not see
klp_forced set to true while all tasks have been already transitioned to
the target state. module_put() is called and the module can be removed.
Acquire klp_mutex in sysfs callback to prevent it. Do the same for the
signal sending just to be sure. There is no real downside to that.
Fixes: c99a2be790 ("livepatch: force transition to finish")
Fixes: 43347d56c8 ("livepatch: send a fake signal to all blocking tasks")
Reported-by: Jason Baron <jbaron@akamai.com>
Signed-off-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Immediate flag has been used to disable per-task consistency and patch
all tasks immediately. It could be useful if the patch doesn't change any
function or data semantics.
However, it causes problems on its own. The consistency problem is
currently broken with respect to immediate patches.
func a
patches 1i
2i
3
When the patch 3 is applied, only 2i function is checked (by stack
checking facility). There might be a task sleeping in 1i though. Such
task is migrated to 3, because we do not check 1i in
klp_check_stack_func() at all.
Coming atomic replace feature would be easier to implement and more
reliable without immediate.
Thus, remove immediate feature completely and save us from the problems.
Note that force feature has the similar problem. However it is
considered as a last resort. If used, administrator should not apply any
new live patches and should plan for reboot into an updated kernel.
The architectures would now need to provide HAVE_RELIABLE_STACKTRACE to
fully support livepatch.
Signed-off-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
syzkaller tried to alloc a map with 0xfffffffd entries out of a userns,
and thus unprivileged. With the recently added logic in b2157399cc
("bpf: prevent out-of-bounds speculation") we round this up to the next
power of two value for max_entries for unprivileged such that we can
apply proper masking into potentially zeroed out map slots.
However, this will generate an index_mask of 0xffffffff, and therefore
a + 1 will let this overflow into new max_entries of 0. This will pass
allocation, etc, and later on map access we still enforce on the original
attr->max_entries value which was 0xfffffffd, therefore triggering GPF
all over the place. Thus bail out on overflow in such case.
Moreover, on 32 bit archs roundup_pow_of_two() can also not be used,
since fls_long(max_entries - 1) can result in 32 and 1UL << 32 in 32 bit
space is undefined. Therefore, do this by hand in a 64 bit variable.
This fixes all the issues triggered by syzkaller's reproducers.
Fixes: b2157399cc ("bpf: prevent out-of-bounds speculation")
Reported-by: syzbot+b0efb8e572d01bce1ae0@syzkaller.appspotmail.com
Reported-by: syzbot+6c15e9744f75f2364773@syzkaller.appspotmail.com
Reported-by: syzbot+d2f5524fb46fd3b312ee@syzkaller.appspotmail.com
Reported-by: syzbot+61d23c95395cc90dbc2b@syzkaller.appspotmail.com
Reported-by: syzbot+0d363c942452cca68c01@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The following snippet was throwing an 'unknown opcode cc' warning
in BPF interpreter:
0: (18) r0 = 0x0
2: (7b) *(u64 *)(r10 -16) = r0
3: (cc) (u32) r0 s>>= (u32) r0
4: (95) exit
Although a number of JITs do support BPF_ALU | BPF_ARSH | BPF_{K,X}
generation, not all of them do and interpreter does neither. We can
leave existing ones and implement it later in bpf-next for the
remaining ones, but reject this properly in verifier for the time
being.
Fixes: 17a5267067 ("bpf: verifier (add verifier core)")
Reported-by: syzbot+93c4904c5c70348a6890@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Trivial fix to spelling mistake in error message text.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Make cgroup.threads file delegatable.
The behavior of cgroup.threads should follow the behavior of cgroup.procs.
Signed-off-by: Roman Gushchin <guro@fb.com>
Discovered-by: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Daniel Borkmann says:
====================
pull-request: bpf 2018-01-09
The following pull-request contains BPF updates for your *net* tree.
The main changes are:
1) Prevent out-of-bounds speculation in BPF maps by masking the
index after bounds checks in order to fix spectre v1, and
add an option BPF_JIT_ALWAYS_ON into Kconfig that allows for
removing the BPF interpreter from the kernel in favor of
JIT-only mode to make spectre v2 harder, from Alexei.
2) Remove false sharing of map refcount with max_entries which
was used in spectre v1, from Daniel.
3) Add a missing NULL psock check in sockmap in order to fix
a race, from John.
4) Fix test_align BPF selftest case since a recent change in
verifier rejects the bit-wise arithmetic on pointers
earlier but test_align update was missing, from Alexei.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Rename the BPF verifier `verbose()` to `bpf_verifier_log_write()` and
export it, so that other components (in particular, drivers for BPF
offload) can reuse the user buffer log to dump error messages at
verification time.
Renaming `verbose()` was necessary in order to avoid a name so generic
to be exported to the global namespace. However to prevent too much pain
for backports, the calls to `verbose()` in the kernel BPF verifier were
not changed. Instead, use function aliasing to make `verbose` point to
`bpf_verifier_log_write`. Another solution could consist in making a
wrapper around `verbose()`, but since it is a variadic function, I don't
see a clean way without creating two identical wrappers, one for the
verifier and one to export.
Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
If waking from an idle CPU due to an interrupt then it's possible that
the waker task will be pulled to wake on the current CPU. Unfortunately,
depending on the type of interrupt and IRQ configuration, there may not
be a strong relationship between the CPU an interrupt was delivered on
and the CPU a task was running on. For example, the interrupts could all
be delivered to CPUs on one particular node due to the machine topology
or IRQ affinity configuration. Another example is an interrupt for an IO
completion which can be delivered to any CPU where there is no guarantee
the data is either cache hot or even local.
This patch was motivated by the observation that an IO workload was
being pulled cross-node on a frequent basis when IO completed. From a
wakeup latency perspective, it's still useful to know that an idle CPU is
immediately available for use but lets only consider an automatic migration
if the CPUs share cache to limit damage due to NUMA migrations. Migrations
may still occur if wake_affine_weight determines it's appropriate.
These are the throughput results for dbench running on ext4 comparing
4.15-rc3 and this patch on a 2-socket machine where interrupts due to IO
completions can happen on any CPU.
4.15.0-rc3 4.15.0-rc3
vanilla lessmigrate
Hmean 1 854.64 ( 0.00%) 865.01 ( 1.21%)
Hmean 2 1229.60 ( 0.00%) 1274.44 ( 3.65%)
Hmean 4 1591.81 ( 0.00%) 1628.08 ( 2.28%)
Hmean 8 1845.04 ( 0.00%) 1831.80 ( -0.72%)
Hmean 16 2038.61 ( 0.00%) 2091.44 ( 2.59%)
Hmean 32 2327.19 ( 0.00%) 2430.29 ( 4.43%)
Hmean 64 2570.61 ( 0.00%) 2568.54 ( -0.08%)
Hmean 128 2481.89 ( 0.00%) 2499.28 ( 0.70%)
Stddev 1 14.31 ( 0.00%) 5.35 ( 62.65%)
Stddev 2 21.29 ( 0.00%) 11.09 ( 47.92%)
Stddev 4 7.22 ( 0.00%) 6.80 ( 5.92%)
Stddev 8 26.70 ( 0.00%) 9.41 ( 64.76%)
Stddev 16 22.40 ( 0.00%) 20.01 ( 10.70%)
Stddev 32 45.13 ( 0.00%) 44.74 ( 0.85%)
Stddev 64 93.10 ( 0.00%) 93.18 ( -0.09%)
Stddev 128 184.28 ( 0.00%) 177.85 ( 3.49%)
Note the small increase in throughput for low thread counts but also
note that the standard deviation for each sample during the test run is
lower. The throughput figures for dbench can be misleading so the benchmark
is actually modified to time the latency of the processing of one load
file with many samples taken. The difference in latency is
4.15.0-rc3 4.15.0-rc3
vanilla lessmigrate
Amean 1 21.71 ( 0.00%) 21.47 ( 1.08%)
Amean 2 30.89 ( 0.00%) 29.58 ( 4.26%)
Amean 4 47.54 ( 0.00%) 46.61 ( 1.97%)
Amean 8 82.71 ( 0.00%) 82.81 ( -0.12%)
Amean 16 149.45 ( 0.00%) 145.01 ( 2.97%)
Amean 32 265.49 ( 0.00%) 248.43 ( 6.42%)
Amean 64 463.23 ( 0.00%) 463.55 ( -0.07%)
Amean 128 933.97 ( 0.00%) 935.50 ( -0.16%)
Stddev 1 1.58 ( 0.00%) 1.54 ( 2.26%)
Stddev 2 2.84 ( 0.00%) 2.95 ( -4.15%)
Stddev 4 6.78 ( 0.00%) 6.85 ( -0.99%)
Stddev 8 16.85 ( 0.00%) 16.37 ( 2.85%)
Stddev 16 41.59 ( 0.00%) 41.04 ( 1.32%)
Stddev 32 111.05 ( 0.00%) 105.11 ( 5.35%)
Stddev 64 285.94 ( 0.00%) 288.01 ( -0.72%)
Stddev 128 803.39 ( 0.00%) 809.73 ( -0.79%)
It's a small improvement which is not surprising given that migrations that
migrate to a different node as not that common. However, it is noticeable
in the CPU migration statistics which are reduced by 24%.
There was a query for v1 of this patch about NAS so here are the results
for C-class using MPI for parallelisation on the same machine
nas-mpi
4.15.0-rc3 4.15.0-rc3
vanilla noirq
Time cg.C 24.25 ( 0.00%) 23.17 ( 4.45%)
Time ep.C 8.22 ( 0.00%) 8.29 ( -0.85%)
Time ft.C 22.67 ( 0.00%) 20.34 ( 10.28%)
Time is.C 1.42 ( 0.00%) 1.47 ( -3.52%)
Time lu.C 55.62 ( 0.00%) 54.81 ( 1.46%)
Time mg.C 7.93 ( 0.00%) 7.91 ( 0.25%)
4.15.0-rc3 4.15.0-rc3
vanilla noirq-v1r1
User 3799.96 3748.34
System 672.10 626.15
Elapsed 91.91 79.49
lu.C sees a small gain, ft.C a large gain and ep.C and is.C see small
regressions but in terms of absolute time, the difference is small and
likely within run-to-run variance. System CPU usage is slightly reduced.
schbench from Facebook was also requested. This is a bit of a mixed bag but
it's important to note that this workload should not be heavily impacted
by wakeups from interrupt context.
4.15.0-rc3 4.15.0-rc3
vanilla noirq-v1r1
Lat 50.00th-qrtle-1 41.00 ( 0.00%) 41.00 ( 0.00%)
Lat 75.00th-qrtle-1 42.00 ( 0.00%) 42.00 ( 0.00%)
Lat 90.00th-qrtle-1 43.00 ( 0.00%) 44.00 ( -2.33%)
Lat 95.00th-qrtle-1 44.00 ( 0.00%) 46.00 ( -4.55%)
Lat 99.00th-qrtle-1 57.00 ( 0.00%) 58.00 ( -1.75%)
Lat 99.50th-qrtle-1 59.00 ( 0.00%) 59.00 ( 0.00%)
Lat 99.90th-qrtle-1 67.00 ( 0.00%) 78.00 ( -16.42%)
Lat 50.00th-qrtle-2 40.00 ( 0.00%) 51.00 ( -27.50%)
Lat 75.00th-qrtle-2 45.00 ( 0.00%) 56.00 ( -24.44%)
Lat 90.00th-qrtle-2 53.00 ( 0.00%) 59.00 ( -11.32%)
Lat 95.00th-qrtle-2 57.00 ( 0.00%) 61.00 ( -7.02%)
Lat 99.00th-qrtle-2 67.00 ( 0.00%) 71.00 ( -5.97%)
Lat 99.50th-qrtle-2 69.00 ( 0.00%) 74.00 ( -7.25%)
Lat 99.90th-qrtle-2 83.00 ( 0.00%) 77.00 ( 7.23%)
Lat 50.00th-qrtle-4 51.00 ( 0.00%) 51.00 ( 0.00%)
Lat 75.00th-qrtle-4 57.00 ( 0.00%) 56.00 ( 1.75%)
Lat 90.00th-qrtle-4 60.00 ( 0.00%) 59.00 ( 1.67%)
Lat 95.00th-qrtle-4 62.00 ( 0.00%) 62.00 ( 0.00%)
Lat 99.00th-qrtle-4 73.00 ( 0.00%) 72.00 ( 1.37%)
Lat 99.50th-qrtle-4 76.00 ( 0.00%) 74.00 ( 2.63%)
Lat 99.90th-qrtle-4 85.00 ( 0.00%) 78.00 ( 8.24%)
Lat 50.00th-qrtle-8 54.00 ( 0.00%) 58.00 ( -7.41%)
Lat 75.00th-qrtle-8 59.00 ( 0.00%) 62.00 ( -5.08%)
Lat 90.00th-qrtle-8 65.00 ( 0.00%) 66.00 ( -1.54%)
Lat 95.00th-qrtle-8 67.00 ( 0.00%) 70.00 ( -4.48%)
Lat 99.00th-qrtle-8 78.00 ( 0.00%) 79.00 ( -1.28%)
Lat 99.50th-qrtle-8 81.00 ( 0.00%) 80.00 ( 1.23%)
Lat 99.90th-qrtle-8 116.00 ( 0.00%) 83.00 ( 28.45%)
Lat 50.00th-qrtle-16 65.00 ( 0.00%) 64.00 ( 1.54%)
Lat 75.00th-qrtle-16 77.00 ( 0.00%) 71.00 ( 7.79%)
Lat 90.00th-qrtle-16 83.00 ( 0.00%) 82.00 ( 1.20%)
Lat 95.00th-qrtle-16 87.00 ( 0.00%) 87.00 ( 0.00%)
Lat 99.00th-qrtle-16 95.00 ( 0.00%) 96.00 ( -1.05%)
Lat 99.50th-qrtle-16 99.00 ( 0.00%) 103.00 ( -4.04%)
Lat 99.90th-qrtle-16 104.00 ( 0.00%) 122.00 ( -17.31%)
Lat 50.00th-qrtle-32 71.00 ( 0.00%) 73.00 ( -2.82%)
Lat 75.00th-qrtle-32 91.00 ( 0.00%) 92.00 ( -1.10%)
Lat 90.00th-qrtle-32 108.00 ( 0.00%) 107.00 ( 0.93%)
Lat 95.00th-qrtle-32 118.00 ( 0.00%) 115.00 ( 2.54%)
Lat 99.00th-qrtle-32 134.00 ( 0.00%) 129.00 ( 3.73%)
Lat 99.50th-qrtle-32 138.00 ( 0.00%) 133.00 ( 3.62%)
Lat 99.90th-qrtle-32 149.00 ( 0.00%) 146.00 ( 2.01%)
Lat 50.00th-qrtle-39 83.00 ( 0.00%) 81.00 ( 2.41%)
Lat 75.00th-qrtle-39 105.00 ( 0.00%) 102.00 ( 2.86%)
Lat 90.00th-qrtle-39 120.00 ( 0.00%) 119.00 ( 0.83%)
Lat 95.00th-qrtle-39 129.00 ( 0.00%) 128.00 ( 0.78%)
Lat 99.00th-qrtle-39 153.00 ( 0.00%) 149.00 ( 2.61%)
Lat 99.50th-qrtle-39 166.00 ( 0.00%) 156.00 ( 6.02%)
Lat 99.90th-qrtle-39 12304.00 ( 0.00%) 12848.00 ( -4.42%)
When heavily loaded (e.g. 99.50th-qrtle-39 indicates 39 threads), there
are small gains in many cases. Otherwise it depends on the quartile used
where it can be bad -- e.g. 75.00th-qrtle-2. However, even these results
are probably a co-incidence. For this workload, much depends on what node
the threads get placed on and their relative locality and not wakeups from
interrupt context. A larger component on how it behaves would be automatic
NUMA balancing where a fault incurred to measure locality would be a much
larger contributer to latency than the wakeup path.
This is the results from an almost identical machine that happened to run
the same test. They only differ in terms of storage which is irrelevant
for this test.
4.15.0-rc3 4.15.0-rc3
vanilla noirq-v1r1
Lat 50.00th-qrtle-1 41.00 ( 0.00%) 41.00 ( 0.00%)
Lat 75.00th-qrtle-1 42.00 ( 0.00%) 42.00 ( 0.00%)
Lat 90.00th-qrtle-1 44.00 ( 0.00%) 43.00 ( 2.27%)
Lat 95.00th-qrtle-1 53.00 ( 0.00%) 45.00 ( 15.09%)
Lat 99.00th-qrtle-1 59.00 ( 0.00%) 58.00 ( 1.69%)
Lat 99.50th-qrtle-1 60.00 ( 0.00%) 59.00 ( 1.67%)
Lat 99.90th-qrtle-1 86.00 ( 0.00%) 61.00 ( 29.07%)
Lat 50.00th-qrtle-2 52.00 ( 0.00%) 41.00 ( 21.15%)
Lat 75.00th-qrtle-2 57.00 ( 0.00%) 46.00 ( 19.30%)
Lat 90.00th-qrtle-2 60.00 ( 0.00%) 53.00 ( 11.67%)
Lat 95.00th-qrtle-2 62.00 ( 0.00%) 57.00 ( 8.06%)
Lat 99.00th-qrtle-2 73.00 ( 0.00%) 68.00 ( 6.85%)
Lat 99.50th-qrtle-2 74.00 ( 0.00%) 71.00 ( 4.05%)
Lat 99.90th-qrtle-2 90.00 ( 0.00%) 75.00 ( 16.67%)
Lat 50.00th-qrtle-4 57.00 ( 0.00%) 52.00 ( 8.77%)
Lat 75.00th-qrtle-4 60.00 ( 0.00%) 58.00 ( 3.33%)
Lat 90.00th-qrtle-4 62.00 ( 0.00%) 62.00 ( 0.00%)
Lat 95.00th-qrtle-4 65.00 ( 0.00%) 65.00 ( 0.00%)
Lat 99.00th-qrtle-4 76.00 ( 0.00%) 75.00 ( 1.32%)
Lat 99.50th-qrtle-4 77.00 ( 0.00%) 77.00 ( 0.00%)
Lat 99.90th-qrtle-4 87.00 ( 0.00%) 81.00 ( 6.90%)
Lat 50.00th-qrtle-8 59.00 ( 0.00%) 57.00 ( 3.39%)
Lat 75.00th-qrtle-8 63.00 ( 0.00%) 62.00 ( 1.59%)
Lat 90.00th-qrtle-8 66.00 ( 0.00%) 67.00 ( -1.52%)
Lat 95.00th-qrtle-8 68.00 ( 0.00%) 70.00 ( -2.94%)
Lat 99.00th-qrtle-8 79.00 ( 0.00%) 80.00 ( -1.27%)
Lat 99.50th-qrtle-8 80.00 ( 0.00%) 84.00 ( -5.00%)
Lat 99.90th-qrtle-8 84.00 ( 0.00%) 90.00 ( -7.14%)
Lat 50.00th-qrtle-16 65.00 ( 0.00%) 65.00 ( 0.00%)
Lat 75.00th-qrtle-16 77.00 ( 0.00%) 75.00 ( 2.60%)
Lat 90.00th-qrtle-16 84.00 ( 0.00%) 83.00 ( 1.19%)
Lat 95.00th-qrtle-16 88.00 ( 0.00%) 87.00 ( 1.14%)
Lat 99.00th-qrtle-16 97.00 ( 0.00%) 96.00 ( 1.03%)
Lat 99.50th-qrtle-16 100.00 ( 0.00%) 104.00 ( -4.00%)
Lat 99.90th-qrtle-16 110.00 ( 0.00%) 126.00 ( -14.55%)
Lat 50.00th-qrtle-32 70.00 ( 0.00%) 71.00 ( -1.43%)
Lat 75.00th-qrtle-32 92.00 ( 0.00%) 94.00 ( -2.17%)
Lat 90.00th-qrtle-32 110.00 ( 0.00%) 110.00 ( 0.00%)
Lat 95.00th-qrtle-32 121.00 ( 0.00%) 118.00 ( 2.48%)
Lat 99.00th-qrtle-32 135.00 ( 0.00%) 137.00 ( -1.48%)
Lat 99.50th-qrtle-32 140.00 ( 0.00%) 146.00 ( -4.29%)
Lat 99.90th-qrtle-32 150.00 ( 0.00%) 160.00 ( -6.67%)
Lat 50.00th-qrtle-39 80.00 ( 0.00%) 71.00 ( 11.25%)
Lat 75.00th-qrtle-39 102.00 ( 0.00%) 91.00 ( 10.78%)
Lat 90.00th-qrtle-39 118.00 ( 0.00%) 108.00 ( 8.47%)
Lat 95.00th-qrtle-39 128.00 ( 0.00%) 117.00 ( 8.59%)
Lat 99.00th-qrtle-39 149.00 ( 0.00%) 133.00 ( 10.74%)
Lat 99.50th-qrtle-39 160.00 ( 0.00%) 139.00 ( 13.12%)
Lat 99.90th-qrtle-39 13808.00 ( 0.00%) 4920.00 ( 64.37%)
Despite being nearly identical, it showed a variety of major gains so
I'm not convinced that heavy emphasis should be placed on this particular
workload in terms of evaluating this particular patch. Further evidence of
this is the fact that testing on a UMA machine showed small gains/losses
even though the patch should be a no-op on UMA.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20171219085947.13136-2-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
capacity_spare_wake() in the slow path influences choice of idlest groups,
as we search for groups with maximum spare capacity. In scenarios where
RT pressure is high, a sub optimal group can be chosen and hurt
performance of the task being woken up.
Fix this by using capacity_of() instead of capacity_orig_of() in capacity_spare_wake().
Tests results from improvements with this change are below. More tests
were also done by myself and Matt Fleming to ensure no degradation in
different benchmarks.
1) Rohit ran barrier.c test (details below) with following improvements:
------------------------------------------------------------------------
This was Rohit's original use case for a patch he posted at [1] however
from his recent tests he showed my patch can replace his slow path
changes [1] and there's no need to selectively scan/skip CPUs in
find_idlest_group_cpu in the slow path to get the improvement he sees.
barrier.c (open_mp code) as a micro-benchmark. It does a number of
iterations and barrier sync at the end of each for loop.
Here barrier,c is running in along with ping on CPU 0 and 1 as:
'ping -l 10000 -q -s 10 -f hostX'
barrier.c can be found at:
http://www.spinics.net/lists/kernel/msg2506955.html
Following are the results for the iterations per second with this
micro-benchmark (higher is better), on a 44 core, 2 socket 88 Threads
Intel x86 machine:
+--------+------------------+---------------------------+
|Threads | Without patch | With patch |
| | | |
+--------+--------+---------+-----------------+---------+
| | Mean | Std Dev | Mean | Std Dev |
+--------+--------+---------+-----------------+---------+
|1 | 539.36 | 60.16 | 572.54 (+6.15%) | 40.95 |
|2 | 481.01 | 19.32 | 530.64 (+10.32%)| 56.16 |
|4 | 474.78 | 22.28 | 479.46 (+0.99%) | 18.89 |
|8 | 450.06 | 24.91 | 447.82 (-0.50%) | 12.36 |
|16 | 436.99 | 22.57 | 441.88 (+1.12%) | 7.39 |
|32 | 388.28 | 55.59 | 429.4 (+10.59%)| 31.14 |
|64 | 314.62 | 6.33 | 311.81 (-0.89%) | 11.99 |
+--------+--------+---------+-----------------+---------+
2) ping+hackbench test on bare-metal sever (by Rohit)
-----------------------------------------------------
Here hackbench is running in threaded mode along
with, running ping on CPU 0 and 1 as:
'ping -l 10000 -q -s 10 -f hostX'
This test is running on 2 socket, 20 core and 40 threads Intel x86
machine:
Number of loops is 10000 and runtime is in seconds (Lower is better).
+--------------+-----------------+--------------------------+
|Task Groups | Without patch | With patch |
| +-------+---------+----------------+---------+
|(Groups of 40)| Mean | Std Dev | Mean | Std Dev |
+--------------+-------+---------+----------------+---------+
|1 | 0.851 | 0.007 | 0.828 (+2.77%)| 0.032 |
|2 | 1.083 | 0.203 | 1.087 (-0.37%)| 0.246 |
|4 | 1.601 | 0.051 | 1.611 (-0.62%)| 0.055 |
|8 | 2.837 | 0.060 | 2.827 (+0.35%)| 0.031 |
|16 | 5.139 | 0.133 | 5.107 (+0.63%)| 0.085 |
|25 | 7.569 | 0.142 | 7.503 (+0.88%)| 0.143 |
+--------------+-------+---------+----------------+---------+
[1] https://patchwork.kernel.org/patch/9991635/
Matt Fleming also ran several different hackbench tests and cyclic test
to santiy-check that the patch doesn't harm other usecases.
Tested-by: Matt Fleming <matt@codeblueprint.co.uk>
Tested-by: Rohit Jain <rohit.k.jain@oracle.com>
Signed-off-by: Joel Fernandes <joelaf@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Atish Patra <atish.patra@oracle.com>
Cc: Brendan Jackman <brendan.jackman@arm.com>
Cc: Chris Redpath <Chris.Redpath@arm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Ramussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Saravana Kannan <skannan@quicinc.com>
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vikram Mulukutla <markivx@codeaurora.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: http://lkml.kernel.org/r/20171214212158.188190-1-joelaf@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>