Some of the APIC incarnations are operating in lowest priority delivery
mode. This worked as long as the vector management code allocated the same
vector on all possible CPUs for each interrupt.
Lowest priority delivery mode does not necessarily respect the affinity
setting and may redirect to some other online CPU. This was documented
somewhere in the old code and the conversion to single target delivery
missed to update the delivery mode of the affected APIC drivers which
results in spurious interrupts on some of the affected CPU/Chipset
combinations.
Switch the APIC drivers over to Fixed delivery mode and remove all
leftovers of lowest priority delivery mode.
Switching to Fixed delivery mode is not a problem on these CPUs because the
kernel already uses Fixed delivery mode for IPIs. The reason for this is
that th SDM explicitely forbids lowest prio mode for IPIs. The reason is
obvious: If the irq routing does not honor destination targets in lowest
prio mode then an IPI targeted at CPU1 might end up on CPU0, which would be
a fatal problem in many cases.
As a consequence of this change, the apic::irq_delivery_mode field is now
pointless, but this needs to be cleaned up in a separate patch.
Fixes: fdba46ffb4 ("x86/apic: Get rid of multi CPU affinity")
Reported-by: vcaputo@pengaru.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: vcaputo@pengaru.com
Cc: Pavel Machek <pavel@ucw.cz>
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1712281140440.1688@nanos
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull x86 header cleanups from Ingo Molnar:
"This tree is a cleanup of the x86 tree reducing spurious uses of
module.h - which should improve build performance a bit"
* 'x86-headers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, crypto: Restore MODULE_LICENSE() to glue_helper.c so it loads
x86/apic: Remove duplicated include from probe_64.c
x86/ce4100: Remove duplicated include from ce4100.c
x86/headers: Include spinlock_types.h in x8664_ksyms_64.c for missing spinlock_t
x86/platform: Delete extraneous MODULE_* tags fromm ts5500
x86: Audit and remove any remaining unnecessary uses of module.h
x86/kvm: Audit and remove any unnecessary uses of module.h
x86/xen: Audit and remove any unnecessary uses of module.h
x86/platform: Audit and remove any unnecessary uses of module.h
x86/lib: Audit and remove any unnecessary uses of module.h
x86/kernel: Audit and remove any unnecessary uses of module.h
x86/mm: Audit and remove any unnecessary uses of module.h
x86: Don't use module.h just for AUTHOR / LICENSE tags
Historically a lot of these existed because we did not have
a distinction between what was modular code and what was providing
support to modules via EXPORT_SYMBOL and friends. That changed
when we forked out support for the latter into the export.h file.
This means we should be able to reduce the usage of module.h
in code that is obj-y Makefile or bool Kconfig. The advantage
in doing so is that module.h itself sources about 15 other headers;
adding significantly to what we feed cpp, and it can obscure what
headers we are effectively using.
Since module.h was the source for init.h (for __init) and for
export.h (for EXPORT_SYMBOL) we consider each obj-y/bool instance
for the presence of either and replace as needed. Build testing
revealed some implicit header usage that was fixed up accordingly.
Note that some bool/obj-y instances remain since module.h is
the header for some exception table entry stuff, and for things
like __init_or_module (code that is tossed when MODULES=n).
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160714001901.31603-4-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For the x2apic cluster mode, vector for an interrupt is
currently reserved on all the cpu's that are part of the x2apic
cluster. But the interrupts will be routed only to the cluster
(derived from the first cpu in the mask) members specified in
the mask. So there is no need to reserve the vector in the
unused cluster members.
Modify __assign_irq_vector() to reserve the vectors based on the
user specified irq destination mask. If the new mask is a proper
subset of the currently used mask, cleanup the vector allocation
on the unused cpu members.
Also, allow the apic driver to tune the vector domain based on
the affinity mask (which in most cases is the user-specified
mask).
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Alexander Gordeev <agordeev@redhat.com>
Acked-by: Cyrill Gorcunov <gorcunov@openvz.org>
Link: http://lkml.kernel.org/r/1340656709-11423-3-git-send-email-suresh.b.siddha@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently __assign_irq_vector() goes through each cpu in the
specified mask until it finds a free vector in all the cpu's
that are part of the same interrupt domain. We visit all the
interrupt domain sibling cpus to reserve the free vector. So,
when we fail to find a free vector in an interrupt domain, it is
safe to continue our search with a cpu belonging to a new
interrupt domain. No need to go through each cpu, if the domain
containing that cpu is already visited.
Use the irq_cfg's old_domain to track the visited domains and
optimize the cpu traversal while finding a free vector in the
given cpumask.
NOTE: We can also optimize the search by using for_each_cpu() and
skip the current cpu, if it is not the first cpu in the mask
returned by the vector_allocation_domain(). But re-using the
cfg->old_domain to track the visited domains will be slightly
faster.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Alexander Gordeev <agordeev@redhat.com>
Acked-by: Cyrill Gorcunov <gorcunov@openvz.org>
Link: http://lkml.kernel.org/r/1340656709-11423-2-git-send-email-suresh.b.siddha@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In case of static vector allocation domains (i.e. flat) if all
vector numbers are exhausted, an attempt to assign a new vector
will lead to useless scans through all CPUs in the cpumask, even
though it is known that each new pass would fail. Make this
corner case less painful by letting report whether the vector
allocation domain depends on passed arguments or not and stop
scanning early.
The same could have been achived by introducing a static flag to
the apic operations. But let's allow vector_allocation_domain()
have more intelligence here and decide dynamically, in case we
would need it in the future.
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/20120607131542.GE4759@dhcp-26-207.brq.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
NUMAQ is the only meaningful user of this callback and
setup_local_APIC() the only callsite. Stop torturing everyone else by
making the callback optional and removing all the boilerplate
implementations and assignments.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
apic->apicid_to_node() is 32bit specific apic operation which
determines NUMA node for a CPU. Depending on the APIC
implementation, it can be easier to determine NUMA node from
either physical or logical apicid. Currently,
->apicid_to_node() takes @logical_apicid and calls
hard_smp_processor_id() if the physical apicid is needed.
This prevents NUMA mapping from being queried from a different
CPU, which in turn makes it impossible to initialize NUMA
mapping before SMP bringup.
This patch replaces apic->apicid_to_node() with
->x86_32_numa_cpu_node() which takes @cpu, from which both
logical and physical apicids can easily be determined. While at
it, drop duplicate implementations from bigsmp_32 and summit_32,
and use the default one.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-13-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On x86_32, the mapping between cpu and logical apic ID differs
depending on the specific apic implementation in use. The
mapping is initialized while bringing up CPUs; however, this
makes early inits ignore memory topology.
Add a x86_32 specific apic->x86_32_early_logical_apicid() which
is called early during boot to query the mapping. The mapping
is later verified against the result of init_apic_ldr(). The
method is allowed to return BAD_APICID if it can't be determined
early.
noop variant which always returns BAD_APICID is implemented and
added to all x86_32 apic implementations.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: penberg@kernel.org
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-8-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
apic_noop is used to provide dummy apic functions. It's installed
when the CPU has no APIC or when the APIC is disabled on the kernel
command line.
The apic_noop implementation of apic_write() warns when the CPU has
an APIC or when the APIC is not disabled.
That's bogus. The warning should only happen when the CPU has an
APIC _AND_ the APIC is not disabled. apic_noop.apic_read() has the
correct check.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: <stable@kernel.org> # in <= .32 this typo resides in native_apic_write_dummy()
LKML-Reference: <alpine.LFD.2.00.0912071255420.3089@localhost.localdomain>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We should not use physid_mask_t as a stack based
variable in apic code. This type depends on MAX_APICS
parameter which may be huge enough.
Especially it became a problem with apic NOOP driver which
is portable between 32 bit and 64 bit environment
(where we have really huge MAX_APICS).
So apic driver should operate with pointers and a caller
in turn should aware of allocation physid_mask_t variable.
As a side (but positive) effect -- we may use already
implemented physid_set_mask_of_physid function eliminating
default_apicid_to_cpu_present completely.
Note that physids_coerce and physids_promote turned into static
inline from macro (since macro hides the fact that parameter is
being interpreted as unsigned long, make it explicit).
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Maciej W. Rozycki <macro@linux-mips.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
LKML-Reference: <20091109220659.GA5568@lenovo>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In fact it's never get used on x86-64 (for 64 bit platform
we use differ technique to enumerate io-units).
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <20091108131645.GD5300@lenovo>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
As only apic noop is used we allow to use almost any operation
caller wants (and which of them noop driver supports of
course).
Initially it was reported by Ingo Molnar that apic noop
issue a warning for pkg id (which is actually false positive
and should be eliminated).
So we save checking (and warning issue) for read/write
operations while allow any other ops to be freely used.
Also:
- fix noop_cpu_to_logical_apicid, it should be 0.
- rename noop_default_phys_pkg_id to noop_phys_pkg_id
(we use default_ prefix for more general routines
in apic subsystem).
Reported-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Maciej W. Rozycki <macro@linux-mips.org>
LKML-Reference: <20091015150416.GC5331@lenovo>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Introduce NOOP APIC driver. We should use it in case if apic was
disabled due to hardware of software/firmware problems (including
user requested to disable it case).
The driver is attempting to catch any inappropriate apic operation
call with warning issue.
Also it is possible to use some apic operation like IPI calls,
read/write without checking for apic presence which should make
callers code easier.
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: yinghai@kernel.org
Cc: macro@linux-mips.org
LKML-Reference: <20091013201022.534682104@openvz.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>