current_fs_time() uses struct super_block* as an argument.
As per Linus's suggestion, this is changed to take struct
inode* as a parameter instead. This is because the function
is primarily meant for vfs inode timestamps.
Also the function was renamed as per Arnd's suggestion.
Change all calls to current_fs_time() to use the new
current_time() function instead. current_fs_time() will be
deleted.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
CURRENT_TIME_SEC is not y2038 safe. current_time() will
be transitioned to use 64 bit time along with vfs in a
separate patch.
There is no plan to transistion CURRENT_TIME_SEC to use
y2038 safe time interfaces.
current_time() will also be extended to use superblock
range checking parameters when range checking is introduced.
This works because alloc_super() fills in the the s_time_gran
in super block to NSEC_PER_SEC.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
CURRENT_TIME macro is not appropriate for filesystems as it
doesn't use the right granularity for filesystem timestamps.
Use current_time() instead.
CURRENT_TIME is also not y2038 safe.
This is also in preparation for the patch that transitions
vfs timestamps to use 64 bit time and hence make them
y2038 safe. As part of the effort current_time() will be
extended to do range checks. Hence, it is necessary for all
file system timestamps to use current_time(). Also,
current_time() will be transitioned along with vfs to be
y2038 safe.
Note that whenever a single call to current_time() is used
to change timestamps in different inodes, it is because they
share the same time granularity.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Felipe Balbi <balbi@kernel.org>
Acked-by: Steven Whitehouse <swhiteho@redhat.com>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Acked-by: David Sterba <dsterba@suse.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
proc uses new_inode_pseudo() to allocate a new inode.
This in turn calls the proc_inode_alloc() callback.
But, at this point, inode is still not initialized
with the super_block pointer which only happens just
before alloc_inode() returns after the call to
inode_init_always().
Also, the inode times are initialized again after the
call to new_inode_pseudo() in proc_inode_alloc().
The assignemet in proc_alloc_inode() is redundant and
also doesn't work after the current_time() api is
changed to take struct inode* instead of
struct *super_block.
This bug was reported after current_time() was used to
assign times in proc_alloc_inode().
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Reported-by: Fengguang Wu <fengguang.wu@intel.com> [0-day test robot]
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
current_fs_time() is used for inode timestamps.
Change the signature of the function to take inode pointer
instead of superblock as per Linus's suggestion.
Also, move the api under vfs as per the discussion on the
thread: https://lkml.org/lkml/2016/6/9/36 . As per Arnd's
suggestion on the thread, changing the function name.
current_fs_time() will be deleted after all the references
to it are replaced by current_time().
There was a bug reported by kbuild test bot with the change
as some of the calls to current_time() were made before the
super_block was initialized. Catch these accidental assignments
as timespec_trunc() does for wrong granularities. This allows
for the function to work right even in these circumstances.
But, adds a warning to make the user aware of the bug.
A coccinelle script was used to identify all the current
.alloc_inode super_block callbacks that updated inode timestamps.
proc filesystem was the only one that was modifying inode times
as part of this callback. The series includes a patch to fix that.
Note that timespec_trunc() will also be moved to fs/inode.c
in a separate patch when this will need to be revamped for
bounds checking purposes.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
__getblk_slow() was exported to modules in commit 3b5e6454aa
("fs/buffer.c: support buffer cache allocations with gfp modifiers").
This seems to have been a mistake, as no users were introduced nor was
the function declared in a header. Change it back to 'static'.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
nr_segs should never be less than zero as its type
is unsigned long, so let's remove this check.
Signed-off-by: Shawn Lin <shawn.lin@rock-chips.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
An NULL-pointer dereference happens in cachefiles_mark_object_inactive()
when it tries to read i_blocks so that it can tell the cachefilesd daemon
how much space it's making available.
The problem is that cachefiles_drop_object() calls
cachefiles_mark_object_inactive() after calling cachefiles_delete_object()
because the object being marked active staves off attempts to (re-)use the
file at that filename until after it has been deleted. This means that
d_inode is NULL by the time we come to try to access it.
To fix the problem, have the caller of cachefiles_mark_object_inactive()
supply the number of blocks freed up.
Without this, the following oops may occur:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000098
IP: [<ffffffffa06c5cc1>] cachefiles_mark_object_inactive+0x61/0xb0 [cachefiles]
...
CPU: 11 PID: 527 Comm: kworker/u64:4 Tainted: G I ------------ 3.10.0-470.el7.x86_64 #1
Hardware name: Hewlett-Packard HP Z600 Workstation/0B54h, BIOS 786G4 v03.19 03/11/2011
Workqueue: fscache_object fscache_object_work_func [fscache]
task: ffff880035edaf10 ti: ffff8800b77c0000 task.ti: ffff8800b77c0000
RIP: 0010:[<ffffffffa06c5cc1>] cachefiles_mark_object_inactive+0x61/0xb0 [cachefiles]
RSP: 0018:ffff8800b77c3d70 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff8800bf6cc400 RCX: 0000000000000034
RDX: 0000000000000000 RSI: ffff880090ffc710 RDI: ffff8800bf761ef8
RBP: ffff8800b77c3d88 R08: 2000000000000000 R09: 0090ffc710000000
R10: ff51005d2ff1c400 R11: 0000000000000000 R12: ffff880090ffc600
R13: ffff8800bf6cc520 R14: ffff8800bf6cc400 R15: ffff8800bf6cc498
FS: 0000000000000000(0000) GS:ffff8800bb8c0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 0000000000000098 CR3: 00000000019ba000 CR4: 00000000000007e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Stack:
ffff880090ffc600 ffff8800bf6cc400 ffff8800867df140 ffff8800b77c3db0
ffffffffa06c48cb ffff880090ffc600 ffff880090ffc180 ffff880090ffc658
ffff8800b77c3df0 ffffffffa085d846 ffff8800a96b8150 ffff880090ffc600
Call Trace:
[<ffffffffa06c48cb>] cachefiles_drop_object+0x6b/0xf0 [cachefiles]
[<ffffffffa085d846>] fscache_drop_object+0xd6/0x1e0 [fscache]
[<ffffffffa085d615>] fscache_object_work_func+0xa5/0x200 [fscache]
[<ffffffff810a605b>] process_one_work+0x17b/0x470
[<ffffffff810a6e96>] worker_thread+0x126/0x410
[<ffffffff810a6d70>] ? rescuer_thread+0x460/0x460
[<ffffffff810ae64f>] kthread+0xcf/0xe0
[<ffffffff810ae580>] ? kthread_create_on_node+0x140/0x140
[<ffffffff81695418>] ret_from_fork+0x58/0x90
[<ffffffff810ae580>] ? kthread_create_on_node+0x140/0x140
The oopsing code shows:
callq 0xffffffff810af6a0 <wake_up_bit>
mov 0xf8(%r12),%rax
mov 0x30(%rax),%rax
mov 0x98(%rax),%rax <---- oops here
lock add %rax,0x130(%rbx)
where this is:
d_backing_inode(object->dentry)->i_blocks
Fixes: a5b3a80b89 (CacheFiles: Provide read-and-reset release counters for cachefilesd)
Reported-by: Jianhong Yin <jiyin@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Steve Dickson <steved@redhat.com>
cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* the only remaining callers of "short" fault-ins are just as happy with generic
variants (both in lib/iov_iter.c); switch them to multipage variants, kill the
"short" ones
* rename the multipage variants to now available plain ones.
* get rid of compat macro defining iov_iter_fault_in_multipage_readable by
expanding it in its only user.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Fix the code so that we always mark the atime as invalid in nfs4_read_done().
Currently, the expectation appears to be that the pNFS drivers should always
do this, with the result that most of them don't.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
TEST_STATEID only tells you that you have a valid open stateid. It doesn't
tell the client anything about whether or not it holds the required share
locks.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Tested-by: Oleg Drokin <green@linuxhacker.ru>
[Anna: Wrap nfs_open_stateid_recover_openmode in CONFIG_NFS_V4_1 checks]
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
_nfs41_free_stateid() needs to be cached by the session, but
nfs41_test_stateid() may return NFS4ERR_RETRY_UNCACHED_REP (in which
case we should just retry).
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Tested-by: Oleg Drokin <green@linuxhacker.ru>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The actual stateid used in the READ or WRITE can represent a delegation,
a lock or a stateid, so it is useful to pass it as an argument to the
exception handler when an expired/revoked response is received from the
server. It also ensures that we don't re-label the state as needing
recovery if that has already occurred.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Tested-by: Oleg Drokin <green@linuxhacker.ru>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Modify the helper nfs_inode_find_state_and_recover() so that it
can check all open/lock/delegation state trackers on that inode for
whether or not they need are affected by a revoked stateid error.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Tested-by: Oleg Drokin <green@linuxhacker.ru>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
If a server returns NFS4ERR_ADMIN_REVOKED, NFS4ERR_DELEG_REVOKED
or NFS4ERR_EXPIRED on a call to close, open_downgrade, delegreturn, or
locku, we should call FREE_STATEID before attempting to recover.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Tested-by: Oleg Drokin <green@linuxhacker.ru>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Nothing should need to be serialised with FREE_STATEID on the client,
so let's make the RPC call always asynchronous. Also constify the
stateid argument.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Tested-by: Oleg Drokin <green@linuxhacker.ru>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Right now, we're only running TEST/FREE_STATEID on the locks if
the open stateid recovery succeeds. The protocol requires us to
always do so.
The fix would be to move the call to TEST/FREE_STATEID and do it
before we attempt open recovery.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Tested-by: Oleg Drokin <green@linuxhacker.ru>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
In some cases (e.g. when the SEQ4_STATUS_EXPIRED_ALL_STATE_REVOKED sequence
flag is set) we may already know that the stateid was revoked and that the
only valid operation we can call is FREE_STATEID. In those cases, allow
the stateid to carry the information in the type field, so that we skip
the redundant call to TEST_STATEID.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Tested-by: Oleg Drokin <green@linuxhacker.ru>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Ensure that if the server reboots while we're testing and recovering
from revoked delegations, we exit to allow the state manager to
handle matters.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Tested-by: Oleg Drokin <green@linuxhacker.ru>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
According to RFC5661, if any of the SEQUENCE status bits
SEQ4_STATUS_EXPIRED_ALL_STATE_REVOKED,
SEQ4_STATUS_EXPIRED_SOME_STATE_REVOKED, SEQ4_STATUS_ADMIN_STATE_REVOKED,
or SEQ4_STATUS_RECALLABLE_STATE_REVOKED are set, then we need to use
TEST_STATEID to figure out which stateids have been revoked, so we
can acknowledge the loss of state using FREE_STATEID.
While we already do this for open and lock state, we have not been doing
so for all the delegations.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Tested-by: Oleg Drokin <green@linuxhacker.ru>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
In NFSv4.1 and newer, if the server decides to revoke some or all of
the protocol state, the client is required to iterate through all the
stateids that it holds and call TEST_STATEID to determine which stateids
still correspond to valid state, and then call FREE_STATEID on the
others.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Tested-by: Oleg Drokin <green@linuxhacker.ru>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
If the server crashes while we're testing stateids for validity, then
we want to initiate session recovery. Usually, we will be calling from
a state manager thread, though, so we don't really want to wait.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Tested-by: Oleg Drokin <green@linuxhacker.ru>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Due to inode number reuse in filesystems, we can end up corrupting the
inode on our client if we apply the file attributes without ensuring that
the filehandle matches.
Typical symptoms include spurious "mode changed" reports in the syslog.
We still do want to ensure that we don't invalidate the dentry if the
inode number matches, but we don't have a filehandle.
Fixes: fa9233699c ("NFS: Don't require a filehandle to refresh...")
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Cc: stable@vger.kernel.org # v4.0+
Tested-by: Oleg Drokin <green@linuxhacker.ru>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
As described in RFC5661, section 18.46, some of the status flags exist
in order to tell the client when it needs to acknowledge the existence of
revoked state on the server and/or to recover state.
Those flags will then remain set until the recovery procedure is done.
In order to avoid looping, the client therefore needs to ignore
those particular flags while recovering.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Tested-by: Oleg Drokin <green@linuxhacker.ru>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
When zeroing blocks for DAX allocations, we also have to unmap aliases
in the block device mappings. Otherwise writeback can overwrite zeros
with stale data from block device page cache.
Signed-off-by: Jan Kara <jack@suse.cz>
The result was being ignored and 0 was always returned.
Return the actual result instead.
Signed-off-by: Eric Engestrom <eric.engestrom@imgtec.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Print the name of an undiscoverable attribute group and not the
pointer's address.
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This is trivial to do:
- add flags argument to foo_rename()
- check if flags is zero
- assign foo_rename() to .rename2 instead of .rename
This doesn't mean it's impossible to support RENAME_NOREPLACE for these
filesystems, but it is not trivial, like for local filesystems.
RENAME_NOREPLACE must guarantee atomicity (i.e. it shouldn't be possible
for a file to be created on one host while it is overwritten by rename on
another host).
Filesystems converted:
9p, afs, ceph, coda, ecryptfs, kernfs, lustre, ncpfs, nfs, ocfs2, orangefs.
After this, we can get rid of the duplicate interfaces for rename.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: David Howells <dhowells@redhat.com> [AFS]
Acked-by: Mike Marshall <hubcap@omnibond.com>
Cc: Eric Van Hensbergen <ericvh@gmail.com>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jan Harkes <jaharkes@cs.cmu.edu>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: Oleg Drokin <oleg.drokin@intel.com>
Cc: Trond Myklebust <trond.myklebust@primarydata.com>
Cc: Mark Fasheh <mfasheh@suse.com>