We have two set of identical struct members for the I and D sides
and mostly identical bunches of code to parse the device-tree to
populate them. Instead make a ppc_cache_info structure with one
copy for I and one for D
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In a number of places we called "cache line size" what is actually
the cache block size, which in the powerpc architecture, means the
effective size to use with cache management instructions (it can
be different from the actual cache line size).
We fix the naming across the board and properly retrieve both
pieces of information when available in the device-tree.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We don't patch instructions based on the cache lines or block
sizes these days.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The variables are defined twice in setup_32.c and setup_64.c, do it
once in setup-common.c instead
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Pull powerpc fixes from Michael Ellerman:
"The main change is we're reverting the initial stack protector support
we merged this cycle. It turns out to not work on toolchains built
with libc support, and fixing it will be need to wait for another
release.
And the rest are all fairly minor:
- Some pasemi machines were not booting due to a missing error check
in prom_find_boot_cpu()
- In EEH we were checking a pointer rather than the bool it pointed
to
- The clang build was broken by a BUILD_BUG_ON() we added.
- The radix (Power9 only) version of map_kernel_page() was broken if
our memory size was a multiple of 2MB, which it generally isn't
Thanks to: Darren Stevens, Gavin Shan, Reza Arbab"
* tag 'powerpc-4.10-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/mm: Use the correct pointer when setting a 2MB pte
powerpc: Fix build failure with clang due to BUILD_BUG_ON()
powerpc: Revert the initial stack protector support
powerpc/eeh: Fix wrong flag passed to eeh_unfreeze_pe()
powerpc: Add missing error check to prom_find_boot_cpu()
The modversion symbol CRCs are emitted as ELF symbols, which allows us
to easily populate the kcrctab sections by relying on the linker to
associate each kcrctab slot with the correct value.
This has a couple of downsides:
- Given that the CRCs are treated as memory addresses, we waste 4 bytes
for each CRC on 64 bit architectures,
- On architectures that support runtime relocation, a R_<arch>_RELATIVE
relocation entry is emitted for each CRC value, which identifies it
as a quantity that requires fixing up based on the actual runtime
load offset of the kernel. This results in corrupted CRCs unless we
explicitly undo the fixup (and this is currently being handled in the
core module code)
- Such runtime relocation entries take up 24 bytes of __init space
each, resulting in a x8 overhead in [uncompressed] kernel size for
CRCs.
Switching to explicit 32 bit values on 64 bit architectures fixes most
of these issues, given that 32 bit values are not treated as quantities
that require fixing up based on the actual runtime load offset. Note
that on some ELF64 architectures [such as PPC64], these 32-bit values
are still emitted as [absolute] runtime relocatable quantities, even if
the value resolves to a build time constant. Since relative relocations
are always resolved at build time, this patch enables MODULE_REL_CRCS on
powerpc when CONFIG_RELOCATABLE=y, which turns the absolute CRC
references into relative references into .rodata where the actual CRC
value is stored.
So redefine all CRC fields and variables as u32, and redefine the
__CRC_SYMBOL() macro for 64 bit builds to emit the CRC reference using
inline assembler (which is necessary since 64-bit C code cannot use
32-bit types to hold memory addresses, even if they are ultimately
resolved using values that do not exceed 0xffffffff). To avoid
potential problems with legacy 32-bit architectures using legacy
toolchains, the equivalent C definition of the kcrctab entry is retained
for 32-bit architectures.
Note that this mostly reverts commit d4703aefdb ("module: handle ppc64
relocating kcrctabs when CONFIG_RELOCATABLE=y")
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 38addce8b6 ("gcc-plugins: Add latent_entropy plugin") excludes
certain powerpc early boot code from the latent entropy plugin by adding
appropriate CFLAGS. It looks like this was supposed to cover
prom_init.o, but ended up saying init.o (which doesn't exist) instead.
Fix the typo.
Fixes: 38addce8b6 ("gcc-plugins: Add latent_entropy plugin")
Signed-off-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Extend the existing PRRN infrastructure to perform the actual affinity
updating for cpus and memory in addition to the device tree updating.
For cpus, dynamic affinity updating already appears to exist in the
kernel in the form of arch_update_cpu_topology(). For memory, we must
place a READD operation on the hotplug queue for any phandle included in
the PRRN event that is determined to be an LMB.
Signed-off-by: John Allen <jallen@linux.vnet.ibm.com>
Reviewed-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds code to branch around the parts that radix guests don't
need - clearing and loading the SLB with the guest SLB contents,
saving the guest SLB contents on exit, and restoring the host SLB
contents.
Since the host is now using radix, we need to save and restore the
host value for the PID register.
On hypervisor data/instruction storage interrupts, we don't do the
guest HPT lookup on radix, but just save the guest physical address
for the fault (from the ASDR register) in the vcpu struct.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
With host and guest both using radix translation, it is feasible
for the host to take interrupts that come from the guest with
relocation on, and that is in fact what the POWER9 hardware will
do when LPCR[AIL] = 3. All such interrupts use HSRR0/1 not SRR0/1
except for system call with LEV=1 (hcall).
Therefore this adds the KVM tests to the _HV variants of the
relocation-on interrupt handlers, and adds the KVM test to the
relocation-on system call entry point.
We also instantiate the relocation-on versions of the hypervisor
data storage and instruction interrupt handlers, since these can
occur with relocation on in radix guests.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
To use radix as a guest, we first need to tell the hypervisor via
the ibm,client-architecture call first that we support POWER9 and
architecture v3.00, and that we can do either radix or hash and
that we would like to choose later using an hcall (the
H_REGISTER_PROC_TBL hcall).
Then we need to check whether the hypervisor agreed to us using
radix. We need to do this very early on in the kernel boot process
before any of the MMU initialization is done. If the hypervisor
doesn't agree, we can't use radix and therefore clear the radix
MMU feature bit.
Later, when we have set up our process table, which points to the
radix tree for each process, we need to install that using the
H_REGISTER_PROC_TBL hcall.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
64-bit Book3S exception handlers must find the dynamic kernel base
to add to the target address when branching beyond __end_interrupts,
in order to support kernel running at non-0 physical address.
Support this in KVM by branching with CTR, similarly to regular
interrupt handlers. The guest CTR saved in HSTATE_SCRATCH1 and
restored after the branch.
Without this, the host kernel hangs and crashes randomly when it is
running at a non-0 address and a KVM guest is started.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Use the new non-PCI ISA bridge support to expose the POWER9
LPC bus as direct mapped via the ISA IO port range. This
enables direct access via drivers such as 8250
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The POWER9 chip supports an LPC bus that isn't hanging
off a PCI bus, so let's add support for that, mapping it
to the reserved space at ISA_IO_BASE
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We'll be adding non-PCI isa bridge support so let's not
have all the definition in pci-bridge.h
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The power9_idle_stop method currently takes only the requested stop
level as a parameter and picks up the rest of the PSSCR bits from a
hand-coded macro. This is not a very flexible design, especially when
the firmware has the capability to communicate the psscr value and the
mask associated with a particular stop state via device tree.
This patch modifies the power9_idle_stop API to take as parameters the
PSSCR value and the PSSCR mask corresponding to the stop state that
needs to be set. These PSSCR value and mask are respectively obtained
by parsing the "ibm,cpu-idle-state-psscr" and
"ibm,cpu-idle-state-psscr-mask" fields from the device tree.
In addition to this, the patch adds support for handling stop states
for which ESL and EC bits in the PSSCR are zero. As per the
architecture, a wakeup from these stop states resumes execution from
the subsequent instruction as opposed to waking up at the System
Vector.
The older firmware sets only the Requested Level (RL) field in the
psscr and psscr-mask exposed in the device tree. For older firmware
where psscr-mask=0xf, this patch will set the default sane values that
the set for for remaining PSSCR fields (i.e PSLL, MTL, ESL, EC, and
TR). For the new firmware, the patch will validate that the invariants
required by the ISA for the psscr values are maintained by the
firmware.
This skiboot patch that exports fully populated PSSCR values and the
mask for all the stop states can be found here:
https://lists.ozlabs.org/pipermail/skiboot/2016-September/004869.html
[Optimize the number of instructions before entering STOP with
ESL=EC=0, validate the PSSCR values provided by the firimware
maintains the invariants required as per the ISA suggested by Balbir
Singh]
Acked-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently all the low-power idle states are expected to wake up
at reset vector 0x100. Which is why the macro IDLE_STATE_ENTER_SEQ
that puts the CPU to an idle state and never returns.
On ISA v3.0, when the ESL and EC bits in the PSSCR are zero, the CPU
is expected to wake up at the next instruction of the idle
instruction.
This patch adds a new macro named IDLE_STATE_ENTER_SEQ_NORET for the
no-return variant and reuses the name IDLE_STATE_ENTER_SEQ
for a variant that allows resuming operation at the instruction next
to the idle-instruction.
Acked-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
There are chances that multiple CPUs can call crash_fadump() simultaneously
and would start duplicating same info to vmcoreinfo ELF note section. This
causes makedumpfile to fail during kdump capture. One example is,
triggering dumprestart from HMC which sends system reset to all the CPUs at
once.
makedumpfile --dump-dmesg /proc/vmcore
read_vmcoreinfo_basic_info: Invalid data in /tmp/vmcoreinfoyjgxlL: CRASHTIME=1475605971CRASHTIME=1475605971CRASHTIME=1475605971CRASHTIME=1475605971CRASHTIME=1475605971CRASHTIME=1475605971CRASHTIME=1475605971CRASHTIME=1475605971
makedumpfile Failed.
Running makedumpfile --dump-dmesg /proc/vmcore failed (1).
makedumpfile -d 31 -l /proc/vmcore
read_vmcoreinfo_basic_info: Invalid data in /tmp/vmcoreinfo1mmVdO: CRASHTIME=1475605971CRASHTIME=1475605971CRASHTIME=1475605971CRASHTIME=1475605971CRASHTIME=1475605971CRASHTIME=1475605971CRASHTIME=1475605971CRASHTIME=1475605971
makedumpfile Failed.
Running makedumpfile -d 31 -l /proc/vmcore failed (1).
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
A subsequent patch to make KVM handlers relocation-safe makes them
unusable from within alt section "else" cases (due to the way fixed
addresses are taken from within fixed section head code).
Stop open-coding the KVM handlers, and add them both as normal. A more
optimal fix may be to allow some level of alternate feature patching in
the exception macros themselves, but for now this will do.
The TRAMP_KVM handlers must be moved to the "virt" fixed section area
(name is arbitrary) in order to be closer to .text and avoid the dreaded
"relocation truncated to fit" error.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch has been reworked since RFC version. In the RFC, this patch
was preceded by a patch clearing MSR RI for all PPC32 at all time at
exception prologs. Now MSR RI clearing is done only when this 8xx perf
events functionality is compiled in, it is therefore limited to 8xx
and merged inside this patch.
Other main changes have been to take into account detailed review from
Peter Zijlstra. The instructions counter has been reworked to behave
as a free running counter like the three other counters.
The 8xx has no PMU, however some events can be emulated by other means.
This patch implements the following events (as reported by 'perf list'):
cpu-cycles OR cycles [Hardware event]
instructions [Hardware event]
dTLB-load-misses [Hardware cache event]
iTLB-load-misses [Hardware cache event]
'cycles' event is implemented using the timebase clock. Timebase clock
corresponds to CPU clock divided by 16, so number of cycles is
approximatly 16 times the number of TB ticks
On the 8xx, TLB misses are handled by software. It is therefore
easy to count all TLB misses each time the TLB miss exception is
called.
'instructions' is calculated by using instruction watchpoint counter.
This patch sets counter A to count instructions at address greater
than 0, hence we count all instructions executed while MSR RI bit is
set. The counter is set to the maximum which is 0xffff. Every 65535
instructions, debug instruction breakpoint exception fires. The
exception handler increments a counter in memory which then
represent the upper part of the instruction counter. We therefore
end up with a 48 bits counter. In order to avoid unnecessary overhead
while no perf event is active, this counter is started when the first
event referring to this counter is added, and the counter is stopped
when the last event referring to it is deleted. In order to properly
support breakpoint exceptions, MSR RI bit has to be unset in exception
epilogs in order to avoid breakpoint exceptions during critical
sections during changes to SRR0 and SRR1 would be problematic.
All counters are handled as free running counters.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Scott Wood <oss@buserror.net>
FIX_SRR1() is defined as blank. Last useful instance of FIX_SRR1()
was removed by commit 40ef8cbc6d ("powerpc: Get 64-bit configs to
compile with ARCH=powerpc") in 2005.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Scott Wood <oss@buserror.net>
This patch implements HW breakpoint on the 8xx. The 8xx has
capability to manage HW breakpoints, which is slightly different
than BOOK3S:
1/ The breakpoint match doesn't trigger a DSI exception but a
dedicated data breakpoint exception.
2/ The breakpoint happens after the instruction has completed,
no need to single step or emulate the instruction,
3/ Matched address is not set in DAR but in BAR,
4/ DABR register doesn't exist, instead we have registers
LCTRL1, LCTRL2 and CMPx registers,
5/ The match on one comparator is not on a double word but
on a single word.
The patch does:
1/ Prepare the dedicated registers in call to __set_dabr(). In order
to emulate the double word handling of BOOK3S, comparator E is set to
DABR address value and comparator F to address + 4. Then breakpoint 1
is set to match comparator E or F,
2/ Skip the singlestepping stage when compiled for CONFIG_PPC_8xx,
3/ Implement the exception. In that exception, the matched address
is taken from SPRN_BAR and manage as if it was from SPRN_DAR.
4/ I/D TLB error exception routines perform a tlbie on bad TLBs. That
tlbie triggers the breakpoint exception when performed on the
breakpoint address. For this reason, the routine returns if the match
is from one of those two tlbie.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Scott Wood <oss@buserror.net>
The RTAS device-tree node's refcount has been increased by one in
the function call of_find_node_by_name(), but it's missed to be
decreased by one in the error path. It leads to unbalanced refcount
on RTAS device-tree node.
This fixes above issue by decreasing RTAS device-tree node's refcount
in error path.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This uses of_property_read_u32() in rtas_initialize() so that we
needn't explicitly care the CPU's endian.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This removes the unnecessary nested if statements in function
rtas_initialize(), to simplify the code. No functional changes
introduced.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Unfortunately the stack protector support we merged recently only works
on some toolchains. If the toolchain is built without glibc support
everything works fine, but if glibc is built then it leads to a panic
at boot.
The solution is not rc5 material, so revert the support for now. This
reverts commits:
6533b7c16e ("powerpc: Initial stack protector (-fstack-protector) support")
902e06eb86 ("powerpc/32: Change the stack protector canary value per task")
Fixes: 6533b7c16e ("powerpc: Initial stack protector (-fstack-protector) support")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In __eeh_clear_pe_frozen_state(), we should pass the flag's value
instead of its address to eeh_unfreeze_pe(). The isolated flag is
cleared if no error returned from __eeh_clear_pe_frozen_state(). We
never observed the error from the function. So the isolated flag should
have been always cleared, no real issue is caused because of the misused
@flag.
This fixes the code by passing the value of @flag to eeh_unfreeze_pe().
Fixes: 5cfb20b96f ("powerpc/eeh: Emulate EEH recovery for VFIO devices")
Cc: stable@vger.kernel.org # v3.18+
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
prom_init.c calls 'instance-to-package' twice, but the return
is not checked during prom_find_boot_cpu(). The result is then
passed to prom_getprop(), which could be PROM_ERROR. Add a return check
to prevent this.
This was found on a pasemi system, where CFE doesn't have a working
'instance-to package' prom call.
Before Commit 5c0484e25e ('powerpc: Endian safe trampoline') the area
around addr 0 was mostly 0's and this doesn't cause a problem. Once the
macro 'FIXUP_ENDIAN' has been added to head_64.S, the low memory area
now has non-zero values, which cause the prom_getprop() call
to hang.
mpe: Also confirmed that under SLOF if 'instance-to-package' did fail
with PROM_ERROR we would crash in SLOF. So the bug is not specific to
CFE, it's just that other open firmwares don't trigger it because they
have a working 'instance-to-package'.
Fixes: 5c0484e25e ("powerpc: Endian safe trampoline")
Cc: stable@vger.kernel.org # v3.13+
Signed-off-by: Darren Stevens <darren@stevens-zone.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Ensure that if userspace supplies insufficient data to PTRACE_SETREGSET
to fill all the check pointed registers, the thread's old check pointed
registers are preserved.
Fixes: 9d3918f7c0 ("powerpc/ptrace: Enable support for NT_PPC_CVSX")
Fixes: 19cbcbf75a ("powerpc/ptrace: Enable support for NT_PPC_CFPR")
Cc: stable@vger.kernel.org # v4.8+
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Ensure that if userspace supplies insufficient data to PTRACE_SETREGSET
to fill all the registers, the thread's old registers are preserved.
Fixes: c6e6771b87 ("powerpc: Introduce VSX thread_struct and CONFIG_VSX")
Cc: stable@vger.kernel.org # v2.6.27+
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We give up recovery on permanent error, simply shutdown the affected
devices and remove them. If the devices can't be put into quiet state,
they spew more traffic that is likely to cause another unexpected EEH
error. This was observed on "p8dtu2u" machine:
0002:00:00.0 PCI bridge: IBM Device 03dc
0002:01:00.0 Ethernet controller: Intel Corporation \
Ethernet Controller X710/X557-AT 10GBASE-T (rev 02)
0002:01:00.1 Ethernet controller: Intel Corporation \
Ethernet Controller X710/X557-AT 10GBASE-T (rev 02)
0002:01:00.2 Ethernet controller: Intel Corporation \
Ethernet Controller X710/X557-AT 10GBASE-T (rev 02)
0002:01:00.3 Ethernet controller: Intel Corporation \
Ethernet Controller X710/X557-AT 10GBASE-T (rev 02)
On P8 PowerNV platform, the IO path is frozen when shutdowning the
devices, meaning the memory registers are inaccessible. It is why
the devices can't be put into quiet state before removing them.
This fixes the issue by enabling IO path prior to putting the devices
into quiet state.
Reported-by: Pridhiviraj Paidipeddi <ppaidipe@linux.vnet.ibm.com>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Acked-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
I am getting the following warning when I build kernel 4.9-git on my
PowerBook G4 with a 32-bit PPC processor:
AS arch/powerpc/kernel/misc_32.o
arch/powerpc/kernel/misc_32.S:299:7: warning: "CONFIG_FSL_BOOKE" is not defined [-Wundef]
This problem is evident after commit 989cea5c14 ("kbuild: prevent
lib-ksyms.o rebuilds"); however, this change in kbuild only exposes an
error that has been in the code since 2005 when this source file was
created. That was with commit 9994a33865 ("powerpc: Introduce
entry_{32,64}.S, misc_{32,64}.S, systbl.S").
The offending line does not make a lot of sense. This error does not
seem to cause any errors in the executable, thus I am not recommending
that it be applied to any stable versions.
Thanks to Nicholas Piggin for suggesting this solution.
Fixes: 9994a33865 ("powerpc: Introduce entry_{32,64}.S, misc_{32,64}.S, systbl.S")
Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no point in having an extra type for extra confusion. u64 is
unambiguous.
Conversion was done with the following coccinelle script:
@rem@
@@
-typedef u64 cycle_t;
@fix@
typedef cycle_t;
@@
-cycle_t
+u64
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>