Pull x86 MPX support from Thomas Gleixner:
"This enables support for x86 MPX.
MPX is a new debug feature for bound checking in user space. It
requires kernel support to handle the bound tables and decode the
bound violating instruction in the trap handler"
* 'x86-mpx-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
asm-generic: Remove asm-generic arch_bprm_mm_init()
mm: Make arch_unmap()/bprm_mm_init() available to all architectures
x86: Cleanly separate use of asm-generic/mm_hooks.h
x86 mpx: Change return type of get_reg_offset()
fs: Do not include mpx.h in exec.c
x86, mpx: Add documentation on Intel MPX
x86, mpx: Cleanup unused bound tables
x86, mpx: On-demand kernel allocation of bounds tables
x86, mpx: Decode MPX instruction to get bound violation information
x86, mpx: Add MPX-specific mmap interface
x86, mpx: Introduce VM_MPX to indicate that a VMA is MPX specific
x86, mpx: Add MPX to disabled features
ia64: Sync struct siginfo with general version
mips: Sync struct siginfo with general version
mpx: Extend siginfo structure to include bound violation information
x86, mpx: Rename cfg_reg_u and status_reg
x86: mpx: Give bndX registers actual names
x86: Remove arbitrary instruction size limit in instruction decoder
* pm-cpuidle:
cpuidle: add MAINTAINERS entry for ARM Exynos cpuidle driver
drivers: cpuidle: Remove cpuidle-arm64 duplicate error messages
drivers: cpuidle: Add idle-state-name description to ARM idle states
drivers: cpuidle: Add status property to ARM idle states
cpuidle: Invert CPUIDLE_FLAG_TIME_VALID logic
introduce new setsockopt() command:
setsockopt(sock, SOL_SOCKET, SO_ATTACH_BPF, &prog_fd, sizeof(prog_fd))
where prog_fd was received from syscall bpf(BPF_PROG_LOAD, attr, ...)
and attr->prog_type == BPF_PROG_TYPE_SOCKET_FILTER
setsockopt() calls bpf_prog_get() which increments refcnt of the program,
so it doesn't get unloaded while socket is using the program.
The same eBPF program can be attached to multiple sockets.
User task exit automatically closes socket which calls sk_filter_uncharge()
which decrements refcnt of eBPF program
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fix the issue with the ISA bit being lost in fixups that jump to labels
placed just before a section switch. Such a switch leads to the ISA bit
being lost, because GAS concludes there is no code that follows and
therefore the label refers to data. Use the `.insn' pseudo-op to
convince the tool this is not the case.
This lack of label annotation leads to microMIPS compilation errors
like:
mips-linux-gnu-ld: arch/mips/built-in.o: .fixup+0x3b8: Unsupported jump between ISA modes; consider recompiling with interlinking enabled.
mips-linux-gnu-ld: final link failed: Bad value
Signed-off-by: Maciej W. Rozycki <macro@codesourcery.com>
Signed-off-by: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/8483/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
In the microMIPS encoding some memory access instructions have their
immediate offset reduced to 12 bits only. That does not match the GCC
`R' constraint we use in some places to satisfy the requirement,
resulting in build failures like this:
{standard input}: Assembler messages:
{standard input}:720: Error: macro used $at after ".set noat"
{standard input}:720: Warning: macro instruction expanded into multiple instructions
Fix the problem by defining a macro, `GCC_OFF12_ASM', that expands to
the right constraint depending on whether microMIPS or standard MIPS
code is produced. Also apply the fix to where `m' is used as in the
worst case this change does nothing, e.g. where the pointer was already
in a register such as a function argument and no further offset was
requested, and in the best case it avoids an extraneous sequence of up
to two instructions to load the high 20 bits of the address in the LL/SC
loop. This reduces the risk of lock contention that is the higher the
more instructions there are in the critical section between LL and SC.
Strictly speaking we could just bulk-replace `R' with `ZC' as the latter
constraint adjusts automatically depending on the ISA selected.
However it was only introduced with GCC 4.9 and we keep supporing older
compilers for the standard MIPS configuration, hence the slightly more
complicated approach I chose.
The choice of a zero-argument function-like rather than an object-like
macro was made so that it does not look like a function call taking the
C expression used for the constraint as an argument. This is so as not
to confuse the reader or formatting checkers like `checkpatch.pl' and
follows previous practice.
Signed-off-by: Maciej W. Rozycki <macro@codesourcery.com>
Signed-off-by: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/8482/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
We should not need to read fuses during normal operation, also the current
code has issues with that (not safe for concurrent access). Since there
are no in-kernel users for these, just delete them. Drivers should
not need such OCTEON_HAS_FEATURE mechanism in any case, instead the
information should be passed via device tree.
Signed-off-by: Aaro Koskinen <aaro.koskinen@nsn.com>
Cc: David Daney <david.daney@cavium.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/7665/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
All boards based on AR5312/AR2315 SoC have a special structure located
at the end of flash. This structure contains board-specific data such as
Ethernet and Wireless MAC addresses. The flash is mapped to the memmory
at predefined location.
Signed-off-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Cc: Linux MIPS <linux-mips@linux-mips.org>
Patchwork: https://patchwork.linux-mips.org/patch/8243/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Before we had a pinctrl driver we used a custom OF api. This patch converts the
soc specific pinmux data to a new set of structs. We also add some new pinmux
setings.
Signed-off-by: John Crispin <blogic@openwrt.org>
Patchwork: http://patchwork.linux-mips.org/patch/8009/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
- Fix hanging ethernet issue of LS1B v2.0 by adding pbl field in plat data.
(It seems that the MAC controller of LS1B v2.0 can only accept pbl=1)
- Add GMAC1 support and setup MUX in terms of PHY mode.
- Add CPUFreq support.
- Add MUX Register Definitions.
- Add PWM Register Definitions.
- Update clock register bitfields according to the latest spec.
- Update clock related stuff.
Signed-off-by: Kelvin Cheung <keguang.zhang@gmail.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/8024/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Hybrid FPRs is a scheme where scalar FP registers are 64b wide, but
accesses to odd indexed single registers use bits 63:32 of the
preceeding even indexed 64b register. In this mode all FP code
except that built for the plain FP64 ABI can execute correctly. Most
notably a combination of FP64A & FP32 code can execute correctly,
allowing for existing FP32 binaries to be linked with new FP64A binaries
that can make use of 64 bit FP & MSA.
Hybrid FPRs are implemented by setting both the FR & FRE bits, trapping
& emulating single precision FP instructions (via Reserved Instruction
exceptions) whilst allowing others to execute natively. It therefore has
a penalty in terms of execution speed, and should only be used when no
fully native mode can be. As more binaries are recompiled to use either
the FPXX or FP64(A) ABIs, the need for hybrid FPRs should diminish.
However in the short to mid term it allows for a gradual transition
towards that world, rather than a complete ABI break which is not
feasible for some users & not desirable for many.
A task will be executed using the hybrid FPR scheme when its
TIF_HYBRID_FPREGS flag is set & TIF_32BIT_FPREGS is clear. A further
patch will set the flags as necessary, this patch simply adds the
infrastructure necessary for the hybrid FPR mode to work.
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/7683/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Machtypes of Loongson-3 machines become more and more, but there are
only small differences among different machtypes. Keeping a large table
of machtypes is very ugly and hard to extend. We found that the major
machtype differences are UARTs information (number of UARTs, UART IRQs,
UART clocks, etc.), platform devices (EC, temperature sensors, fan
controllers, etc.) and some workarounds (because of some CPU bugs or
mainboard bugs).
In this patch we improve the UEFI-like (LEFI) interface to make all
Loongson-3 machines use a same machtype "generic-loongson-machine".
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/8324/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
The width of HT-bus is only 40-bit, but Loongson-3 has 48-bit physical
address. This implies only node-0's memory is DMAable because high bits
(Node ID) will lost. Fortunately, by configuring address windows in
firmware, we can extract 2bit Node ID (bit 44~47, only bit 44~45 used
now) from Loongson-3's 48-bit address space and embed it into 40-bit
(bit 37~38). Every NUMA node can do DMA now (however, maximum memory of
each node is reduced to 2^37 = 128GB).
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/8321/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>