As reported by nixiaoming, with some minor clarifications:
1) memory leak in ramoops_register_dummy():
dummy_data = kzalloc(sizeof(*dummy_data), GFP_KERNEL);
but no kfree() if platform_device_register_data() fails.
2) memory leak in ramoops_init():
Missing platform_device_unregister(dummy) and kfree(dummy_data)
if platform_driver_register(&ramoops_driver) fails.
I've clarified the purpose of ramoops_register_dummy(), and added a
common cleanup routine for all three failure paths to call.
Reported-by: nixiaoming <nixiaoming@huawei.com>
Cc: stable@vger.kernel.org
Cc: Anton Vorontsov <anton@enomsg.org>
Cc: Colin Cross <ccross@android.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Geliang Tang <geliangtang@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Dan writes:
"filesystem-dax for 4.19-rc6
Fix a deadlock in the new for 4.19 dax_lock_mapping_entry() routine."
* tag 'libnvdimm-fixes2-4.19-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
dax: Fix deadlock in dax_lock_mapping_entry()
Introduce xarray value entries and tagged pointers to replace radix
tree exceptional entries. This is a slight change in encoding to allow
the use of an extra bit (we can now store BITS_PER_LONG - 1 bits in a
value entry). It is also a change in emphasis; exceptional entries are
intimidating and different. As the comment explains, you can choose
to store values or pointers in the xarray and they are both first-class
citizens.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
The iomap page fault mechanism currently dirties the associated page
after the full block range of the page has been allocated. This
leaves the page susceptible to delayed allocations without ever
being set dirty on sub-page block sized filesystems.
For example, consider a page fault on a page with one preexisting
real (non-delalloc) block allocated in the middle of the page. The
first iomap_apply() iteration performs delayed allocation on the
range up to the preexisting block, the next iteration finds the
preexisting block, and the last iteration attempts to perform
delayed allocation on the range after the prexisting block to the
end of the page. If the first allocation succeeds and the final
allocation fails with -ENOSPC, iomap_apply() returns the error and
iomap_page_mkwrite() fails to dirty the page having already
performed partial delayed allocation. This eventually results in the
page being invalidated without ever converting the delayed
allocation to real blocks.
This problem is reliably reproduced by generic/083 on XFS on ppc64
systems (64k page size, 4k block size). It results in leaked
delalloc blocks on inode reclaim, which triggers an assert failure
in xfs_fs_destroy_inode() and filesystem accounting inconsistency.
Move the set_page_dirty() call from iomap_page_mkwrite() to the
actor callback, similar to how the buffer head implementation works.
The actor callback is called iff ->iomap_begin() returns success, so
ensures the page is dirtied as soon as possible after an allocation.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
One of the first steps of log recovery is to check for the special
case of a zeroed log. If the first cycle in the log is zero or the
tail portion of the log is zeroed, the head is set to the first
instance of cycle 0. xlog_find_zeroed() includes a sanity check that
enforces that the first cycle in the log must be 1 if the last cycle
is 0. While this is true in most cases, the check is not totally
valid because it doesn't consider the case where the filesystem
crashed after a partial/out of order log buffer completion that
wraps around the end of the physical log.
For example, consider a filesystem that has completed most of the
first cycle of the log, reaches the end of the physical log and
splits the next single log buffer write into two in order to wrap
around the end of the log. If these I/Os are reordered, the second
(wrapped) I/O completes and the first happens to fail, the log is
left in a state where the last cycle of the log is 0 and the first
cycle is 2. This causes the xlog_find_zeroed() sanity check to fail
and prevents the filesystem from mounting. This situation has been
reproduced on particular systems via repeated runs of generic/475.
This is an expected state that log recovery already knows how to
deal with, however. Since the log is still partially zeroed, the
head is detected correctly and points to a valid tail. The
subsequent stale block detection clears blocks beyond the head up to
the tail (within a maximum range), with the express purpose of
clearing such out of order writes. As expected, this removes the out
of order cycle 2 blocks at the physical start of the log.
In other words, the only thing that prevents a clean mount and
recovery of the filesystem in this scenario is the specific (last ==
0 && first != 1) sanity check in xlog_find_zeroed(). Since the log
head/tail are now independently validated via cycle, log record and
CRC checks, this highly specific first cycle check is of dubious
value. Remove it and rely on the higher level validation to
determine whether log content is sane and recoverable.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Verify the inode di_forkoff, lifted from xfs_repair's
process_check_inode_forkoff().
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The iomap direct I/O code issues a single ->end_io call for the whole
I/O request, and if some of the extents cowered needed a COW operation
it will call xfs_reflink_end_cow over the whole range.
When we do AIO writes we drop the iolock after doing the initial setup,
but before the I/O completion. Between dropping the lock and completing
the I/O we can have a racing buffered write create new delalloc COW fork
extents in the region covered by the outstanding direct I/O write, and
thus see delalloc COW fork extents in xfs_reflink_end_cow. As
concurrent writes are fundamentally racy and no guarantees are given we
can simply skip those.
This can be easily reproduced with xfstests generic/208 in always_cow
mode.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xchk_inode_flags2() currently treats any di_flags2 values that the
running kernel doesn't recognize as corruption, and calls
xchk_ino_set_corrupt() if they are set. However, it's entirely possible
that these flags were set in some newer kernel and are quite valid,
but ignored in this kernel.
(Validators don't care one bit about unknown di_flags2.)
Call xchk_ino_set_warning instead, because this may or may not actually
indicate a problem.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This function is only used to punch out delayed allocations on I/O
failure, which means we need to have read the extents earlier.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When xfs_reflink_allocate_cow() allocates a transaction, it drops
the ILOCK to perform the operation. This Introduces a race condition
where another thread modifying the file can perform the COW
allocation operation underneath us. This result in the retry loop
finding an allocated block and jumping straight to the conversion
code. It does not, however, cancel the transaction it holds and so
this gets leaked. This results in a lockdep warning:
================================================
WARNING: lock held when returning to user space!
4.18.5 #1 Not tainted
------------------------------------------------
worker/6123 is leaving the kernel with locks still held!
1 lock held by worker/6123:
#0: 000000009eab4f1b (sb_internal#2){.+.+}, at: xfs_trans_alloc+0x17c/0x220
And eventually the filesystem deadlocks because it runs out of log
space that is reserved by the leaked transaction and never gets
released.
The logic flow in xfs_reflink_allocate_cow() is a convoluted mess of
gotos - it's no surprise that it has bug where the flow through
several goto jumps then fails to clean up context from a non-obvious
logic path. CLean up the logic flow and make sure every path does
the right thing.
Reported-by: Alexander Y. Fomichev <git.user@gmail.com>
Tested-by: Alexander Y. Fomichev <git.user@gmail.com>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=200981
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[hch: slight refactor]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We've had a few reports of lockdep tripping over memory reclaim
context vs filesystem freeze "deadlocks". They all have looked
to be false positives on analysis, but it seems that they are
being tripped because we take freeze references before we run
a GFP_KERNEL allocation for the struct xfs_trans.
We can avoid this false positive vector just by re-ordering the
operations in xfs_trans_alloc(). That is. we need allocate the
structure before we take the freeze reference and enter the GFP_NOFS
allocation context that follows the xfs_trans around. This prevents
lockdep from seeing the GFP_KERNEL allocation inside the transaction
context, and that prevents it from triggering the freeze level vs
alloc context vs reclaim warnings.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The xfs_buf_log_item structure has a reference counter with slightly
tricky semantics. In the common case, a buffer is logged and
committed in a transaction, committed to the on-disk log (added to
the AIL) and then finally written back and removed from the AIL. The
bli refcount covers two potentially overlapping timeframes:
1. the bli is held in an active transaction
2. the bli is pinned by the log
The caveat to this approach is that the reference counter does not
purely dictate the lifetime of the bli. IOW, when a dirty buffer is
physically logged and unpinned, the bli refcount may go to zero as
the log item is inserted into the AIL. Only once the buffer is
written back can the bli finally be freed.
The above semantics means that it is not enough for the various
refcount decrementing contexts to release the bli on decrement to
zero. xfs_trans_brelse(), transaction commit (->iop_unlock()) and
unpin (->iop_unpin()) must all drop the associated reference and
make additional checks to determine if the current context is
responsible for freeing the item.
For example, if a transaction holds but does not dirty a particular
bli, the commit may drop the refcount to zero. If the bli itself is
clean, it is also not AIL resident and must be freed at this time.
The same is true for xfs_trans_brelse(). If the transaction dirties
a bli and then aborts or an unpin results in an abort due to a log
I/O error, the last reference count holder is expected to explicitly
remove the item from the AIL and release it (since an abort means
filesystem shutdown and metadata writeback will never occur).
This leads to fairly complex checks being replicated in a few
different places. Since ->iop_unlock() and xfs_trans_brelse() are
nearly identical, refactor the logic into a common helper that
implements and documents the semantics in one place. This patch does
not change behavior.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_trans_brelse() is a bit of a historical mess, similar to
xfs_buf_item_unlock(). It is unnecessarily verbose, has snippets of
commented out code, inconsistency with regard to stale items, etc.
Clean up xfs_trans_brelse() to use similar logic and flow as
xfs_buf_item_unlock() with regard to bli reference count handling.
This patch makes no functional changes, but facilitates further
refactoring of the common bli reference count handling code.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfstests generic/388,475 occasionally reproduce assertion failures
in xfs_buf_item_unpin() when the final bli reference is dropped on
an invalidated buffer and the buffer is not locked as it is expected
to be. Invalidated buffers should remain locked on transaction
commit until the final unpin, at which point the buffer is removed
from the AIL and the bli is freed since stale buffers are not
written back.
The assert failures are associated with filesystem shutdown,
typically due to log I/O errors injected by the test. The
problematic situation can occur if the shutdown happens to cause a
race between an active transaction that has invalidated a particular
buffer and an I/O error on a log buffer that contains the bli
associated with the same (now stale) buffer.
Both transaction and log contexts acquire a bli reference. If the
transaction has already invalidated the buffer by the time the I/O
error occurs and ends up aborting due to shutdown, the transaction
and log hold the last two references to a stale bli. If the
transaction cancel occurs first, it treats the buffer as non-stale
due to the aborted state: the bli reference is dropped and the
buffer is released/unlocked. The log buffer I/O error handling
eventually calls into xfs_buf_item_unpin(), drops the final
reference to the bli and treats it as stale. The buffer wasn't left
locked by xfs_buf_item_unlock(), however, so the assert fails and
the buffer is double unlocked. The latter problem is mitigated by
the fact that the fs is shutdown and no further damage is possible.
->iop_unlock() of an invalidated buffer should behave consistently
with respect to the bli refcount, regardless of aborted state. If
the refcount remains elevated on commit, we know the bli is awaiting
an unpin (since it can't be in another transaction) and will be
handled appropriately on log buffer completion. If the final bli
reference of an invalidated buffer is dropped in ->iop_unlock(), we
can assume the transaction has aborted because invalidation implies
a dirty transaction. In the non-abort case, the log would have
acquired a bli reference in ->iop_pin() and prevented bli release at
->iop_unlock() time. In the abort case the item must be freed and
buffer unlocked because it wasn't pinned by the log.
Rework xfs_buf_item_unlock() to simplify the currently circuitous
and duplicate logic and leave invalidated buffers locked based on
bli refcount, regardless of aborted state. This ensures that a
pinned, stale buffer is always found locked when eventually
unpinned.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now that deferred operations are completely managed via
transactions, it's no longer necessary to cancel the dfops in error
paths that already cancel the associated transaction. There are a
few such calls lingering throughout the codebase.
Remove all remaining unnecessary calls to xfs_defer_cancel(). This
leaves xfs_defer_cancel() calls in two places. The first is the call
in the transaction cancel path itself, which facilitates this patch.
The second is made via the xfs_defer_finish() error path to provide
consistent error semantics with transaction commit. For example,
xfs_trans_commit() expects an xfs_defer_finish() failure to clean up
the dfops structure before it returns.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The VFS routine that calls ->get_link blindly copies whatever's returned
into the user's buffer. If we return a NULL pointer, the vfs will
crash on the null pointer. Therefore, return -EFSCORRUPTED instead of
blowing up the kernel.
[dgc: clean up with hch's suggestions]
Reported-by: wen.xu@gatech.edu
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This patch avoids BUG_ON when f2fs_get_meta_page_nofail got EIO during
xfstests/generic/475.
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
We noticed the performance bottleneck in FUSE running our Virtuozzo storage
over rdma. On some types of workload we observe 20% of times spent in
request_find() in profiler. This function is iterating over long requests
list, and it scales bad.
The patch introduces hash table to reduce the number of iterations, we do
in this function. Hash generating algorithm is taken from hash_add()
function, while 256 lines table is used to store pending requests. This
fixes problem and improves the performance.
Reported-by: Alexey Kuznetsov <kuznet@virtuozzo.com>
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
This field is not needed after the previous patch, since we can easily
convert request ID to interrupt request ID and vice versa.
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Using of two unconnected IDs req->in.h.unique and req->intr_unique does not
allow to link requests to a hash table. We need can't use none of them as a
key to calculate hash.
This patch changes the algorithm of allocation of IDs for a request. Plain
requests obtain even ID, while interrupt requests are encoded in the low
bit. So, in next patches we will be able to use the rest of ID bits to
calculate hash, and the hash will be the same for plain and interrupt
requests.
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Currently, we take fc->lock there only to check for fc->connected.
But this flag is changed only on connection abort, which is very
rare operation.
So allow checking fc->connected under just fc->bg_lock and use this lock
(as well as fc->lock) when resetting fc->connected.
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
To reduce contention of fc->lock, this patch introduces bg_lock for
protection of fields related to background queue. These are:
max_background, congestion_threshold, num_background, active_background,
bg_queue and blocked.
This allows next patch to make async reads not requiring fc->lock, so async
reads and writes will have better performance executed in parallel.
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Functions sequences like request_end()->flush_bg_queue() require that
max_background and congestion_threshold are constant during their
execution. Otherwise, checks like
if (fc->num_background == fc->max_background)
made in different time may behave not like expected.
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Since they are of unsigned int type, it's allowed to read them
unlocked during reporting to userspace. Let's underline this fact
with READ_ONCE() macroses.
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
This cleanup patch makes the function to use the primitive
instead of direct dereferencing.
Also, move fiq dereferencing out of cycle, since it's
always constant.
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
There are several FUSE filesystems that can implement server-side copy
or other efficient copy/duplication/clone methods. The copy_file_range()
syscall is the standard interface that users have access to while not
depending on external libraries that bypass FUSE.
Signed-off-by: Niels de Vos <ndevos@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Using waitqueue_active() is racy. Make sure we issue a wake_up()
unconditionally after storing into fc->blocked. After that it's okay to
optimize with waitqueue_active() since the first wake up provides the
necessary barrier for all waiters, not the just the woken one.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Fixes: 3c18ef8117 ("fuse: optimize wake_up")
Cc: <stable@vger.kernel.org> # v3.10
Jan writes:
"an ext2 patch fixing fsync(2) for DAX mounts."
* tag 'for_v4.19-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs:
ext2, dax: set ext2_dax_aops for dax files
When dax_lock_mapping_entry() has to sleep to obtain entry lock, it will
fail to unlock mapping->i_pages spinlock and thus immediately deadlock
against itself when retrying to grab the entry lock again. Fix the
problem by unlocking mapping->i_pages before retrying.
Fixes: c2a7d2a115 ("filesystem-dax: Introduce dax_lock_mapping_entry()")
Reported-by: Barret Rhoden <brho@google.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
This averts the need to re-generate flags in fanotify_show_fdinfo()
and sets the scene for addition of more upcoming flags without growing
new members to the fanotify_data struct.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Mark inode dirty explicitly in the end of recover_inode() to make sure
that all recoverable fields can be persisted later.
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
inode.i_gc_failures is used to indicate that skip count of migrating
on blocks of inode, we should guarantee it can be recovered in sudden
power-off case.
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Testcase to reproduce this bug:
1. mkfs.f2fs /dev/sdd
2. mount -t f2fs /dev/sdd /mnt/f2fs
3. touch /mnt/f2fs/file
4. sync
5. chattr +A /mnt/f2fs/file
6. xfs_io -f /mnt/f2fs/file -c "fsync"
7. godown /mnt/f2fs
8. umount /mnt/f2fs
9. mount -t f2fs /dev/sdd /mnt/f2fs
10. lsattr /mnt/f2fs/file
-----------------N- /mnt/f2fs/file
But actually, we expect the corrct result is:
-------A---------N- /mnt/f2fs/file
The reason is we didn't recover inode.i_flags field during mount,
fix it.
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
This is related to
ee70daaba8 ("xfs: update i_size after unwritten conversion in dio completion")
If we update i_size during dio_write, dio_read can read out stale data, which
breaks xfstests/465.
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Currently we show mount option "io_bits=%u" as "io_size=%uKB",
it will cause option parsing problem(unrecognized mount option)
in remount.
Signed-off-by: Chengguang Xu <cgxu519@gmx.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Fixes gcc '-Wunused-but-set-variable' warning:
fs/nfsd/vfs.c: In function 'nfsd_create':
fs/nfsd/vfs.c:1279:16: warning:
variable 'dirp' set but not used [-Wunused-but-set-variable]
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Upon receiving a request for async copy, create a new kthread. If we
get asynchronous request, make sure to copy the needed arguments/state
from the stack before starting the copy. Then start the thread and reply
back to the client indicating copy is asynchronous.
nfsd_copy_file_range() will copy in a loop over the total number of
bytes is needed to copy. In case a failure happens in the middle, we
ignore the error and return how much we copied so far. Once done
creating a workitem for the callback workqueue and send CB_OFFLOAD with
the results.
The lifetime of the copy stateid is bound to the vfs copy. This way we
don't need to keep the nfsd_net structure for the callback. We could
keep it around longer so that an OFFLOAD_STATUS that came late would
still get results, but clients should be able to deal without that.
We handle OFFLOAD_CANCEL by sending a signal to the copy thread and
calling kthread_stop.
A client should cancel any ongoing copies before calling DESTROY_CLIENT;
if not, we return a CLIENT_BUSY error.
If the client is destroyed for some other reason (lease expiration, or
server shutdown), we must clean up any ongoing copies ourselves.
Signed-off-by: Olga Kornievskaia <kolga@netapp.com>
[colin.king@canonical.com: fix leak in error case]
[bfields@fieldses.org: remove signalling, merge patches]
Signed-off-by: J. Bruce Fields <bfields@redhat.com>