The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: ETSI -> FCC
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: NO_CTL -> ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: NO_CTL -> ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
This change itself doesn't change the selected CTL of this country and is
only required to stay in sync with the QCA mappings.
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
This change itself doesn't change the selected CTL of this country and is
only required to stay in sync with the QCA mappings.
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
This change itself doesn't change the selected CTL of this country and is
only required to stay in sync with the QCA mappings.
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: ETSI -> FCC
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: NO_CTL -> ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: NO_CTL -> ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: NO_CTL -> FCC
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
This change itself doesn't change the selected CTL of this country and is
only required to stay in sync with the QCA mappings.
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
This change itself doesn't change the selected CTL of this country and is
only required to stay in sync with the QCA mappings.
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
This change itself doesn't change the selected CTL of this country and is
only required to stay in sync with the QCA mappings.
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: FCC -> ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: NO_CTL -> FCC
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
This change itself doesn't change the selected CTL of this country and is
only required to stay in sync with the QCA mappings.
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: NO_CTL -> ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't correctly
mapped to the actual CTL entries in EEPROM then it could happen that the
device violates the regulations. But it can also happen that the device is
then not able to be used with its full txpower on all rates.
The CTL mappings for this regdomain code were now changed to:
* 2.4GHz: ETSI
* 5GHz: NO_CTL -> ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't available and
it is still programmed in the EEPROM then it will cause an error and stop
the initialization with:
Invalid EEPROM contents
The current CTL mappings for this regdomain code are:
* 2.4GHz: ETSI
* 5GHz: FCC
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't available and
it is still programmed in the EEPROM then it will cause an error and stop
the initialization with:
Invalid EEPROM contents
The current CTL mappings for this regdomain code are:
* 2.4GHz: ETSI
* 5GHz: ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't available and
it is still programmed in the EEPROM then it will cause an error and stop
the initialization with:
Invalid EEPROM contents
The current CTL mappings for this regdomain code are:
* 2.4GHz: ETSI
* 5GHz: ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't available and
it is still programmed in the EEPROM then it will cause an error and stop
the initialization with:
Invalid EEPROM contents
The current CTL mappings for this regdomain code are:
* 2.4GHz: ETSI
* 5GHz: ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The regdomain code is used to select the correct the correct conformance
test limits (CTL) for a country. If the regdomain code isn't available and
it is still programmed in the EEPROM then it will cause an error and stop
the initialization with:
Invalid EEPROM contents
The current CTL mappings for this regdomain code are:
* 2.4GHz: FCC
* 5GHz: FCC
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The country code is used by the ath to detect the ISO 3166-1 alpha-2 name
and to select the correct conformance test limits (CTL) for a country. If
the country isn't available and it is still programmed in the EEPROM then
it will cause an error and stop the initialization with:
Invalid EEPROM contents
The current CTL mappings for this country are:
* 2.4GHz: ETSI
* 5GHz: FCC
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The country code is used by the ath to detect the ISO 3166-1 alpha-2 name
and to select the correct conformance test limits (CTL) for a country. If
the country isn't available and it is still programmed in the EEPROM then
it will cause an error and stop the initialization with:
Invalid EEPROM contents
The current CTL mappings for this country are:
* 2.4GHz: ETSI
* 5GHz: FCC
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The country code is used by the ath to detect the ISO 3166-1 alpha-2 name
and to select the correct conformance test limits (CTL) for a country. If
the country isn't available and it is still programmed in the EEPROM then
it will cause an error and stop the initialization with:
Invalid EEPROM contents
The current CTL mappings for this country are:
* 2.4GHz: ETSI
* 5GHz: ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The country code is used by the ath to detect the ISO 3166-1 alpha-2 name
and to select the correct conformance test limits (CTL) for a country. If
the country isn't available and it is still programmed in the EEPROM then
it will cause an error and stop the initialization with:
Invalid EEPROM contents
The current CTL mappings for this country are:
* 2.4GHz: ETSI
* 5GHz: FCC
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The country code is used by the ath to detect the ISO 3166-1 alpha-2 name
and to select the correct conformance test limits (CTL) for a country. If
the country isn't available and it is still programmed in the EEPROM then
it will cause an error and stop the initialization with:
Invalid EEPROM contents
The current CTL mappings for this country are:
* 2.4GHz: FCC
* 5GHz: FCC
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The country code is used by the ath to detect the ISO 3166-1 alpha-2 name
and to select the correct conformance test limits (CTL) for a country. If
the country isn't available and it is still programmed in the EEPROM then
it will cause an error and stop the initialization with:
Invalid EEPROM contents
The current CTL mappings for this country are:
* 2.4GHz: ETSI
* 5GHz: ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The country code is used by the ath to detect the ISO 3166-1 alpha-2 name
and to select the correct conformance test limits (CTL) for a country. If
the country isn't available and it is still programmed in the EEPROM then
it will cause an error and stop the initialization with:
Invalid EEPROM contents
The current CTL mappings for this country are:
* 2.4GHz: ETSI
* 5GHz: ETSI
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The country code is used by the ath to detect the ISO 3166-1 alpha-2 name
and to select the correct conformance test limits (CTL) for a country. If
the country isn't available and it is still programmed in the EEPROM then
it will cause an error and stop the initialization with:
Invalid EEPROM contents
The current CTL mappings for this country are:
* 2.4GHz: ETSI
* 5GHz: FCC
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The country code is used by the ath to detect the ISO 3166-1 alpha-2 name
and to select the correct conformance test limits (CTL) for a country. If
the country isn't available and it is still programmed in the EEPROM then
it will cause an error and stop the initialization with:
Invalid EEPROM contents
The current CTL mappings for this country are:
* 2.4GHz: FCC
* 5GHz: FCC
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The country code is used by the ath to detect the ISO 3166-1 alpha-2 name
and to select the correct conformance test limits (CTL) for a country. If
the country isn't available and it is still programmed in the EEPROM then
it will cause an error and stop the initialization with:
Invalid EEPROM contents
The current CTL mappings for this country are:
* 2.4GHz: ETSI
* 5GHz: FCC
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
Configure channel dwell time from duration of the scan request
received from mac80211 when the duration is non-zero. When the
scan request does not have duration value, use the default ones,
the current implementation.
Corresponding flag NL80211_EXT_FEATURE_SET_SCAN_DWELL is
advertized.
Supported Chipsets:
-QCA988X/QCA9887 PCI
-QCA99X0/QCA9984/QCA9888/QCA4019 PCI
-QCA6174/QCA9377 PCI/USB/SDIO
-WCN3990 SNOC
Tested on QCA9984 with firmware ver 10.4-3.6-0010
Signed-off-by: Pradeep Kumar Chitrapu <pradeepc@codeaurora.org>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
This patch adds firmware crash memory dump support for QCA9888 and QCA99X0.
Tested on:
QCA9888 firmware 10.4-3.5.3-00053
QCA99X0 firmware 10.4.1.00030-1
Signed-off-by: Anilkumar Kolli <akolli@codeaurora.org>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
PCIe dongle firmware signals a halt/trap through mailbox interrupt.
Trigger a memory dump upon receiving such signal could help to provide
useful information for issue debug.
Reviewed-by: Arend van Spriel <arend.vanspriel@broadcom.com>
Signed-off-by: Franky Lin <franky.lin@broadcom.com>
Signed-off-by: Arend van Spriel <arend.vanspriel@broadcom.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
In patch "brcmfmac: add support for sysfs initiated coredump", a new
scenario of brcmf_debug_create_memdump was added in which the user of
the function might not necessarily provide prefix data. Hence the
function should not assume the data is always valid and should perform a
check before copying.
Reviewed-by: Arend van Spriel <arend.vanspriel@broadcom.com>
Signed-off-by: Franky Lin <franky.lin@broadcom.com>
Signed-off-by: Arend van Spriel <arend.vanspriel@broadcom.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
Since commit 3c47d19ff4 ("drivers: base: add coredump driver ops")
it is possible to initiate a device coredump from user-space. This
patch adds support for it adding the .coredump() driver callback.
As there is no longer a need to initiate it through debugfs remove
that code.
Signed-off-by: Arend van Spriel <arend.vanspriel@broadcom.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
There are specific cases, such as SAE authentication exchange, that
might require long duration to complete. For such cases, add support
for indicating to the driver the required duration of the prepare_tx()
operation, so the driver would still be able to complete the frame
exchange.
Currently, indicate the duration only for SAE authentication exchange,
as SAE authentication can take up to 2000 msec (as defined in IEEE
P802.11-REVmd D1.0 p. 3504).
As the patch modified the prepare_tx() callback API, also modify
the relevant code in iwlwifi.
Signed-off-by: Ilan Peer <ilan.peer@intel.com>
Signed-off-by: Luca Coelho <luciano.coelho@intel.com>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Bring in net-next which had pulled in net, so I have the changes
from mac80211 and can apply a patch that would otherwise conflict.
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Observed crash in some scenarios when assertion has occurred,
this is because hw structure is freed and is tried to get
accessed in some functions where null check is already
present. So, avoided the crash by making the hw to NULL after
freeing.
Signed-off-by: Sanjay Konduri <sanjay.konduri@redpinesignals.com>
Signed-off-by: Sushant Kumar Mishra <sushant.mishra@redpinesignals.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
This allows reading all capabilities as reported by a firmware. They are
printed using native (raw) names, just like developers like it the most.
It's how firmware reports support for various features, e.g. supported
modes, supported standards, power saving details, max BSS-es.
Access to all that info is useful for trying new firmwares, comparing
them and debugging features AKA bugs.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Reviewed-by: Arend van Spriel <arend.vanspriel@broadcom.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
Correct snr/nr/rssi data index to avoid possible buffer underflow.
Signed-off-by: Xinming Hu <huxm@marvell.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
usleep_range can cause excessive latency on channel change if waiting
for the MAC to stop fails. It will be forced to stop by the code
following that loop anyway.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
Allows it to be shared between different drivers and locks to be
initialized earlier
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>