Currently unloading bochs_drm (after unbinding the vtconsole) results in
a warning about a leaked connector:
[drm:drm_mode_config_cleanup] *ERROR* connector Virtual-3 leaked!
While investigating a potential fix I noticed that a lot of open-coded
functionality is already implemented elsewhere, so start converting it:
bochs_fbdev_init -> drm_fb_helper_fbdev_setup: trivial (similar impl).
bochs_fbdev_fini -> drm_fb_helper_fbdev_teardown: requires unembedding
"struct drm_framebuffer" from "struct bochs_framebuffer".
Unembedding drm_framebuffer is made easy using drm_gem_fbdev_fb_create
which can replace bochs_fbdev_destroy and custom routines in bochs_mm.c.
For this to work, the GEM object is moved into "drm_framebuffer". After
that, "bochs_framebuffer" is no longer needed and therefore removed.
Remove the unused "size" and "initialized" fields from fb, the latter is
not necessary as drm_fb_helper_fbdev_teardown can be called even if
bochsfb_create fails. This theory was tested by returning early and
late (just before drm_gem_fbdev_fb_create). Both scenarios fail
gracefully although the latter seems to leak the object from
bochsfb_create_object (not a regression).
Guess on the reason for the encoder leak: drm_framebuffer_cleanup was
previously used, but did not destroy much. drm_fb_helper_fbdev_teardown
is now used and calls drm_framebuffer_remove which does a bit more work.
Tested with 'echo 0 > /sys/class/vtconsole/vtcon1/bind; rmmod bochs_drm'
and also with Xorg + fbdev (startx -> xterm). The latter triggered a
warning in ttm_bo_vm_open that existed before, see
https://lkml.kernel.org/r/1464000533-13140-4-git-send-email-mstaudt@suse.de
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Signed-off-by: Peter Wu <peter@lekensteyn.nl>
Link: http://patchwork.freedesktop.org/patch/msgid/20180906221810.20170-3-peter@lekensteyn.nl
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Drivers must set the quirk_addfb_prefer_host_byte_order quirk to make
the drm_mode_addfb() compat code work correctly on bigendian machines.
If they don't they interpret pixel_format values incorrectly for bug
compatibility, which in turn implies the ADDFB2 ioctl does not work
correctly then. So block it to make userspace fallback to ADDFB.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: http://patchwork.freedesktop.org/patch/msgid/20180907073213.20410-1-kraxel@redhat.com
The hardware supports dithering on TCON channel 0 which is used for LCD
panels.
Dithering is a method of approximating a color from a mixture of other
colors when the required color isn't available. It reduces color
banding artifacts that can be observed when displaying gradients
(e.g. grayscale gradients). This may occur when the image that needs
to be displayed is 24-bit but the LCD panel is a lower bit depth and
does not perform dithering on its own.
Signed-off-by: Jonathan Liu <net147@gmail.com>
[wens@csie.org: check display_info.bpc first; handle LVDS and MIPI DSI]
Signed-off-by: Chen-Yu Tsai <wens@csie.org>
Signed-off-by: Maxime Ripard <maxime.ripard@bootlin.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20180907041948.19913-4-wens@csie.org
sun4i_tcon0_mode_set_cpu() currently accepts struct mipi_dsi_device *
as its second parameter. This is derived from drm_encoder.
The DSI encoder is tied to the CPU interface mode of the TCON as a
special case. In theory, if hardware were available, we could also
support normal CPU interface modes. It is better to pass the generic
encoder instead of the specialized mipi_dsi_device, and handle the
differences inside the function.
Passing the encoder would also enable the function to pass it, or any
other data structures related to it, to other functions expecting it.
One such example would be dithering support that will be added in a
later patch, which looks at properties tied to the connector to
determine whether dithering should be enabled or not.
Signed-off-by: Chen-Yu Tsai <wens@csie.org>
Signed-off-by: Maxime Ripard <maxime.ripard@bootlin.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20180907041948.19913-2-wens@csie.org
omapdrm changes for v4.20
Big amount of changes from Laurent, reworking the driver towards the
model used by the other DRM drivers by reverting the direction of many
of the operations on the display pipeline. The aim of this work is to
allow omapdrm to use the common DRM panels and bridges. Not all of the
operations are dealt in these patches, so more work needs to be done.
The only change visible to the user should be the change in module
dependencies: e.g. earlier a panel module depended on an encoder module,
but now the encoder module depends on the panel module, which affects
the order in which to unload the modules.
Signed-off-by: Dave Airlie <airlied@redhat.com>
From: Tomi Valkeinen <tomi.valkeinen@ti.com>
Link: https://patchwork.freedesktop.org/patch/msgid/9bb1a01b-a632-ce0c-f249-7b5470967e3a@ti.com
drm-misc-next for 4.20:
UAPI Changes:
- Add userspace dma-buf device to turn memfd regions into dma-bufs (Gerd)
- Add per-plane blend mode property (Lowry)
- Change in drm_fourcc.h is documentation only (Brian)
Cross-subsystem Changes:
- None
Core Changes:
- Remove user logspam and useless lock in vma_offset_mgr destroy (Chris)
- Add get/verify_crc_source for improved crc source selection (Mahesh)
- Add __drm_atomic_helper_plane_reset to reduce copypasta (Alexandru)
Driver Changes:
- various: Replance ref/unref calls with drm_dev_get/put (Thomas)
- bridge: Add driver for TI SN65DSI86 chip (Sandeep)
- rockchip: Add PX30 support (Sandy)
- sun4i: Add support for R40 TCON (Jernej)
- vkms: Continued building out vkms, added gem support (Haneen)Driver Changes:
- various: fbdev: Wrap remove_conflicting_framebuffers with resource_len
accessors to remove a bunch of cargo-cult (Michał)
- rockchip: Add rgb output iface support + fixes (Sandy/Heiko)
- nouveau/amdgpu: Add cec-over-aux support (Hans)
- sun4i: Add support for Allwinner A64 (Jagan)
Cc: Gerd Hoffmann <kraxel@redhat.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Michał Mirosław <mirq-linux@rere.qmqm.pl>
Cc: Heiko Stuebner <heiko@sntech.de>
Cc: Sandy Huang <hjc@rock-chips.com>
Cc: Hans Verkuil <hans.verkuil@cisco.com>
Cc: Jagan Teki <jagan@amarulasolutions.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
From: Sean Paul <sean@poorly.run>
Link: https://patchwork.freedesktop.org/patch/msgid/20180905202210.GA95199@art_vandelay
If a HPD pulse signalling the need to retrain the link occurs between
the KMS driver releasing the output and the supervisor interrupt that
finishes the teardown, it was possible get a NULL-ptr deref.
Avoid this by marking the link as inactive earlier.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
This Falcon application doesn't appear to be present on some newer
systems, so let's not fail init if we can't find it.
TBD: is there a way to determine whether it *should* be there?
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
The NV_ERROR macro requires drm->client to be initialised, which it may not
be at this stage of the init process.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
It looks like that when we moved over to using
drm_connector_for_each_possible_encoder() in nouveau, that one rather
important part of this function got dropped by accident:
/* Right v here */
for (i = 0; nv_encoder = NULL, i < DRM_CONNECTOR_MAX_ENCODER; i++) {
int id = connector->encoder_ids[i];
if (id == 0)
break;
Since it's rather difficult to notice: the conditional in this loop is
actually:
nv_encoder = NULL, i < DRM_CONNECTOR_MAX_ENCODER
Meaning that all early breaks result in nv_encoder keeping it's value,
otherwise nv_encoder = NULL. Ugh.
Since this got dropped, nouveau_connector_ddc_detect() now returns an
encoder for every single connector, regardless of whether or not it's
detected:
[ 1780.056185] nouveau 0000:01:00.0: DRM: DDC responded, but no EDID for DP-2
So: fix this to ensure we only return an encoder if we actually found
one, and clean up the rest of the function while we're at it since it's
nearly impossible to read properly.
Changes since v1:
- Don't skip ddc probing for LVDS if we can't switch DDC through
vga-switcheroo, just do the DDC probing without calling
vga_switcheroo_lock_ddc() - skeggsb
Signed-off-by: Lyude Paul <lyude@redhat.com>
Cc: Ville Syrjälä <ville.syrjala@linux.intel.com>
Fixes: ddba766dd0 ("drm/nouveau: Use drm_connector_for_each_possible_encoder()")
Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Currently, there's nothing in nouveau that actually cancels this work
struct. So, cancel it on suspend/unload. Otherwise, if we're unlucky
enough hpd_work might try to keep running up until the system is
suspended.
Signed-off-by: Lyude Paul <lyude@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
On most systems with ACPI hotplugging support, it seems that we always
receive a hotplug event once we re-enable EC interrupts even if the GPU
hasn't even been resumed yet.
This can cause problems since even though we schedule hpd_work to handle
connector reprobing for us, hpd_work synchronizes on
pm_runtime_get_sync() to wait until the device is ready to perform
reprobing. Since runtime suspend/resume callbacks are disabled before
the PM core calls ->suspend(), any calls to pm_runtime_get_sync() during
this period will grab a runtime PM ref and return immediately with
-EACCES. Because we schedule hpd_work from our ACPI HPD handler, and
hpd_work synchronizes on pm_runtime_get_sync(), this causes us to launch
a connector reprobe immediately even if the GPU isn't actually resumed
just yet. This causes various warnings in dmesg and occasionally, also
prevents some displays connected to the dedicated GPU from coming back
up after suspend. Example:
usb 1-4: USB disconnect, device number 14
usb 1-4.1: USB disconnect, device number 15
WARNING: CPU: 0 PID: 838 at drivers/gpu/drm/nouveau/include/nvkm/subdev/i2c.h:170 nouveau_dp_detect+0x17e/0x370 [nouveau]
CPU: 0 PID: 838 Comm: kworker/0:6 Not tainted 4.17.14-201.Lyude.bz1477182.V3.fc28.x86_64 #1
Hardware name: LENOVO 20EQS64N00/20EQS64N00, BIOS N1EET77W (1.50 ) 03/28/2018
Workqueue: events nouveau_display_hpd_work [nouveau]
RIP: 0010:nouveau_dp_detect+0x17e/0x370 [nouveau]
RSP: 0018:ffffa15143933cf0 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffff8cb4f656c400 RCX: 0000000000000000
RDX: ffffa1514500e4e4 RSI: ffffa1514500e4e4 RDI: 0000000001009002
RBP: ffff8cb4f4a8a800 R08: ffffa15143933cfd R09: ffffa15143933cfc
R10: 0000000000000000 R11: 0000000000000000 R12: ffff8cb4fb57a000
R13: ffff8cb4fb57a000 R14: ffff8cb4f4a8f800 R15: ffff8cb4f656c418
FS: 0000000000000000(0000) GS:ffff8cb51f400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f78ec938000 CR3: 000000073720a003 CR4: 00000000003606f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
? _cond_resched+0x15/0x30
nouveau_connector_detect+0x2ce/0x520 [nouveau]
? _cond_resched+0x15/0x30
? ww_mutex_lock+0x12/0x40
drm_helper_probe_detect_ctx+0x8b/0xe0 [drm_kms_helper]
drm_helper_hpd_irq_event+0xa8/0x120 [drm_kms_helper]
nouveau_display_hpd_work+0x2a/0x60 [nouveau]
process_one_work+0x187/0x340
worker_thread+0x2e/0x380
? pwq_unbound_release_workfn+0xd0/0xd0
kthread+0x112/0x130
? kthread_create_worker_on_cpu+0x70/0x70
ret_from_fork+0x35/0x40
Code: 4c 8d 44 24 0d b9 00 05 00 00 48 89 ef ba 09 00 00 00 be 01 00 00 00 e8 e1 09 f8 ff 85 c0 0f 85 b2 01 00 00 80 7c 24 0c 03 74 02 <0f> 0b 48 89 ef e8 b8 07 f8 ff f6 05 51 1b c8 ff 02 0f 84 72 ff
---[ end trace 55d811b38fc8e71a ]---
So, to fix this we attempt to grab a runtime PM reference in the ACPI
handler itself asynchronously. If the GPU is already awake (it will have
normal hotplugging at this point) or runtime PM callbacks are currently
disabled on the device, we drop our reference without updating the
autosuspend delay. We only schedule connector reprobes when we
successfully managed to queue up a resume request with our asynchronous
PM ref.
This also has the added benefit of preventing redundant connector
reprobes from ACPI while the GPU is runtime resumed!
Signed-off-by: Lyude Paul <lyude@redhat.com>
Cc: stable@vger.kernel.org
Cc: Karol Herbst <kherbst@redhat.com>
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1477182#c41
Signed-off-by: Lyude Paul <lyude@redhat.com>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
When probing a new MST device, it's not safe to make any assumptions
about it's current state. While most well mannered MST hubs will just
disable the branching unit on hotplug disconnects, this isn't enough to
save us from various other scenarios that might have resulted in
something writing to the MST branching unit before we got control of it.
This could happen if a previous probe we tried failed, if we're booting
in kexec context and the hub is still in the state the last kernel put
it in, etc.
Luckily; there is no reason we can't just reset the branching unit
every time we enable a new topology. So, fix this by resetting it on
enabling new topologies to ensure that we always start off with a clean,
unmodified topology state on MST sinks.
This fixes occasional hard-lockups on my P50's laptop dock (e.g. AUX
times out all DPCD trasactions) observed after multiple docks, undocks,
and module reloads.
Signed-off-by: Lyude Paul <lyude@redhat.com>
Cc: stable@vger.kernel.org
Cc: Karol Herbst <karolherbst@gmail.com>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Currently, nouveau will re-write the DP_MSTM_CTRL register for an MST
hub every time it receives a long HPD pulse on DP. This isn't actually
necessary and additionally, has some unintended side effects.
With the P50 I've got here, rewriting DP_MSTM_CTRL constantly seems to
make it rather likely (1 out of 5 times usually) that bringing up MST
with it's ThinkPad dock will fail and result in sideband messages timing
out in the middle. Afterwards, successive probes don't manage to get the
dock to communicate properly over MST sideband properly.
Many times sideband message timeouts from MST hubs are indicative of
either the source or the sink dropping an ESI event, which can cause
DRM's perspective of the topology's current state to go out of sync with
reality. While it's tough to really know for sure what's happening to
the dock, using userspace tools to write to DP_MSTM_CTRL in the middle
of the MST link probing process does appear to make things flaky. It's
possible that when we write to DP_MSTM_CTRL, the function that gets
triggered to respond in the dock's firmware temporarily puts it in a
state where it might end up not reporting an ESI to the source, or ends
up dropping a sideband message we sent it.
So, to fix this we make it so that when probing an MST topology, we
respect it's current state. If the dock's already enabled, we simply
read DP_MSTM_CTRL and disable the topology if it's value is not what we
expected. Otherwise, we perform the normal MST probing dance. We avoid
taking any action except if the state of the MST topology actually
changes.
This fixes MST sideband message timeouts and detection failures on my
P50 with its ThinkPad dock.
Signed-off-by: Lyude Paul <lyude@redhat.com>
Cc: stable@vger.kernel.org
Cc: Karol Herbst <karolherbst@gmail.com>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Again, this doesn't do anything. drm_kms_helper_poll_enable() will have
already been called in nouveau_display_init()
Signed-off-by: Lyude Paul <lyude@redhat.com>
Reviewed-by: Karol Herbst <kherbst@redhat.com>
Acked-by: Daniel Vetter <daniel@ffwll.ch>
Cc: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
This won't do anything but potentially make us miss hotplugs. We already
call drm_kms_helper_poll_disable() in
nouveau_pmops_suspend()->nouveau_display_suspend()->nouveau_display_fini()
Signed-off-by: Lyude Paul <lyude@redhat.com>
Reviewed-by: Karol Herbst <kherbst@redhat.com>
Acked-by: Daniel Vetter <daniel@ffwll.ch>
Cc: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
This doesn't do anything, drm_kms_helper_poll_enable() gets called in
nouveau_pmops_resume()->nouveau_display_resume()->nouveau_display_init()
already.
Signed-off-by: Lyude Paul <lyude@redhat.com>
Reviewed-by: Karol Herbst <kherbst@redhat.com>
Acked-by: Daniel Vetter <daniel@ffwll.ch>
Cc: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
It's true we can't resume the device from poll workers in
nouveau_connector_detect(). We can however, prevent the autosuspend
timer from elapsing immediately if it hasn't already without risking any
sort of deadlock with the runtime suspend/resume operations. So do that
instead of entirely avoiding grabbing a power reference.
Signed-off-by: Lyude Paul <lyude@redhat.com>
Reviewed-by: Karol Herbst <kherbst@redhat.com>
Acked-by: Daniel Vetter <daniel@ffwll.ch>
Cc: stable@vger.kernel.org
Cc: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Currently, nouveau uses the generic drm_fb_helper_output_poll_changed()
function provided by DRM as it's output_poll_changed callback.
Unfortunately however, this function doesn't grab runtime PM references
early enough and even if it did-we can't block waiting for the device to
resume in output_poll_changed() since it's very likely that we'll need
to grab the fb_helper lock at some point during the runtime resume
process. This currently results in deadlocking like so:
[ 246.669625] INFO: task kworker/4:0:37 blocked for more than 120 seconds.
[ 246.673398] Not tainted 4.18.0-rc5Lyude-Test+ #2
[ 246.675271] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 246.676527] kworker/4:0 D 0 37 2 0x80000000
[ 246.677580] Workqueue: events output_poll_execute [drm_kms_helper]
[ 246.678704] Call Trace:
[ 246.679753] __schedule+0x322/0xaf0
[ 246.680916] schedule+0x33/0x90
[ 246.681924] schedule_preempt_disabled+0x15/0x20
[ 246.683023] __mutex_lock+0x569/0x9a0
[ 246.684035] ? kobject_uevent_env+0x117/0x7b0
[ 246.685132] ? drm_fb_helper_hotplug_event.part.28+0x20/0xb0 [drm_kms_helper]
[ 246.686179] mutex_lock_nested+0x1b/0x20
[ 246.687278] ? mutex_lock_nested+0x1b/0x20
[ 246.688307] drm_fb_helper_hotplug_event.part.28+0x20/0xb0 [drm_kms_helper]
[ 246.689420] drm_fb_helper_output_poll_changed+0x23/0x30 [drm_kms_helper]
[ 246.690462] drm_kms_helper_hotplug_event+0x2a/0x30 [drm_kms_helper]
[ 246.691570] output_poll_execute+0x198/0x1c0 [drm_kms_helper]
[ 246.692611] process_one_work+0x231/0x620
[ 246.693725] worker_thread+0x214/0x3a0
[ 246.694756] kthread+0x12b/0x150
[ 246.695856] ? wq_pool_ids_show+0x140/0x140
[ 246.696888] ? kthread_create_worker_on_cpu+0x70/0x70
[ 246.697998] ret_from_fork+0x3a/0x50
[ 246.699034] INFO: task kworker/0:1:60 blocked for more than 120 seconds.
[ 246.700153] Not tainted 4.18.0-rc5Lyude-Test+ #2
[ 246.701182] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 246.702278] kworker/0:1 D 0 60 2 0x80000000
[ 246.703293] Workqueue: pm pm_runtime_work
[ 246.704393] Call Trace:
[ 246.705403] __schedule+0x322/0xaf0
[ 246.706439] ? wait_for_completion+0x104/0x190
[ 246.707393] schedule+0x33/0x90
[ 246.708375] schedule_timeout+0x3a5/0x590
[ 246.709289] ? mark_held_locks+0x58/0x80
[ 246.710208] ? _raw_spin_unlock_irq+0x2c/0x40
[ 246.711222] ? wait_for_completion+0x104/0x190
[ 246.712134] ? trace_hardirqs_on_caller+0xf4/0x190
[ 246.713094] ? wait_for_completion+0x104/0x190
[ 246.713964] wait_for_completion+0x12c/0x190
[ 246.714895] ? wake_up_q+0x80/0x80
[ 246.715727] ? get_work_pool+0x90/0x90
[ 246.716649] flush_work+0x1c9/0x280
[ 246.717483] ? flush_workqueue_prep_pwqs+0x1b0/0x1b0
[ 246.718442] __cancel_work_timer+0x146/0x1d0
[ 246.719247] cancel_delayed_work_sync+0x13/0x20
[ 246.720043] drm_kms_helper_poll_disable+0x1f/0x30 [drm_kms_helper]
[ 246.721123] nouveau_pmops_runtime_suspend+0x3d/0xb0 [nouveau]
[ 246.721897] pci_pm_runtime_suspend+0x6b/0x190
[ 246.722825] ? pci_has_legacy_pm_support+0x70/0x70
[ 246.723737] __rpm_callback+0x7a/0x1d0
[ 246.724721] ? pci_has_legacy_pm_support+0x70/0x70
[ 246.725607] rpm_callback+0x24/0x80
[ 246.726553] ? pci_has_legacy_pm_support+0x70/0x70
[ 246.727376] rpm_suspend+0x142/0x6b0
[ 246.728185] pm_runtime_work+0x97/0xc0
[ 246.728938] process_one_work+0x231/0x620
[ 246.729796] worker_thread+0x44/0x3a0
[ 246.730614] kthread+0x12b/0x150
[ 246.731395] ? wq_pool_ids_show+0x140/0x140
[ 246.732202] ? kthread_create_worker_on_cpu+0x70/0x70
[ 246.732878] ret_from_fork+0x3a/0x50
[ 246.733768] INFO: task kworker/4:2:422 blocked for more than 120 seconds.
[ 246.734587] Not tainted 4.18.0-rc5Lyude-Test+ #2
[ 246.735393] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 246.736113] kworker/4:2 D 0 422 2 0x80000080
[ 246.736789] Workqueue: events_long drm_dp_mst_link_probe_work [drm_kms_helper]
[ 246.737665] Call Trace:
[ 246.738490] __schedule+0x322/0xaf0
[ 246.739250] schedule+0x33/0x90
[ 246.739908] rpm_resume+0x19c/0x850
[ 246.740750] ? finish_wait+0x90/0x90
[ 246.741541] __pm_runtime_resume+0x4e/0x90
[ 246.742370] nv50_disp_atomic_commit+0x31/0x210 [nouveau]
[ 246.743124] drm_atomic_commit+0x4a/0x50 [drm]
[ 246.743775] restore_fbdev_mode_atomic+0x1c8/0x240 [drm_kms_helper]
[ 246.744603] restore_fbdev_mode+0x31/0x140 [drm_kms_helper]
[ 246.745373] drm_fb_helper_restore_fbdev_mode_unlocked+0x54/0xb0 [drm_kms_helper]
[ 246.746220] drm_fb_helper_set_par+0x2d/0x50 [drm_kms_helper]
[ 246.746884] drm_fb_helper_hotplug_event.part.28+0x96/0xb0 [drm_kms_helper]
[ 246.747675] drm_fb_helper_output_poll_changed+0x23/0x30 [drm_kms_helper]
[ 246.748544] drm_kms_helper_hotplug_event+0x2a/0x30 [drm_kms_helper]
[ 246.749439] nv50_mstm_hotplug+0x15/0x20 [nouveau]
[ 246.750111] drm_dp_send_link_address+0x177/0x1c0 [drm_kms_helper]
[ 246.750764] drm_dp_check_and_send_link_address+0xa8/0xd0 [drm_kms_helper]
[ 246.751602] drm_dp_mst_link_probe_work+0x51/0x90 [drm_kms_helper]
[ 246.752314] process_one_work+0x231/0x620
[ 246.752979] worker_thread+0x44/0x3a0
[ 246.753838] kthread+0x12b/0x150
[ 246.754619] ? wq_pool_ids_show+0x140/0x140
[ 246.755386] ? kthread_create_worker_on_cpu+0x70/0x70
[ 246.756162] ret_from_fork+0x3a/0x50
[ 246.756847]
Showing all locks held in the system:
[ 246.758261] 3 locks held by kworker/4:0/37:
[ 246.759016] #0: 00000000f8df4d2d ((wq_completion)"events"){+.+.}, at: process_one_work+0x1b3/0x620
[ 246.759856] #1: 00000000e6065461 ((work_completion)(&(&dev->mode_config.output_poll_work)->work)){+.+.}, at: process_one_work+0x1b3/0x620
[ 246.760670] #2: 00000000cb66735f (&helper->lock){+.+.}, at: drm_fb_helper_hotplug_event.part.28+0x20/0xb0 [drm_kms_helper]
[ 246.761516] 2 locks held by kworker/0:1/60:
[ 246.762274] #0: 00000000fff6be0f ((wq_completion)"pm"){+.+.}, at: process_one_work+0x1b3/0x620
[ 246.762982] #1: 000000005ab44fb4 ((work_completion)(&dev->power.work)){+.+.}, at: process_one_work+0x1b3/0x620
[ 246.763890] 1 lock held by khungtaskd/64:
[ 246.764664] #0: 000000008cb8b5c3 (rcu_read_lock){....}, at: debug_show_all_locks+0x23/0x185
[ 246.765588] 5 locks held by kworker/4:2/422:
[ 246.766440] #0: 00000000232f0959 ((wq_completion)"events_long"){+.+.}, at: process_one_work+0x1b3/0x620
[ 246.767390] #1: 00000000bb59b134 ((work_completion)(&mgr->work)){+.+.}, at: process_one_work+0x1b3/0x620
[ 246.768154] #2: 00000000cb66735f (&helper->lock){+.+.}, at: drm_fb_helper_restore_fbdev_mode_unlocked+0x4c/0xb0 [drm_kms_helper]
[ 246.768966] #3: 000000004c8f0b6b (crtc_ww_class_acquire){+.+.}, at: restore_fbdev_mode_atomic+0x4b/0x240 [drm_kms_helper]
[ 246.769921] #4: 000000004c34a296 (crtc_ww_class_mutex){+.+.}, at: drm_modeset_backoff+0x8a/0x1b0 [drm]
[ 246.770839] 1 lock held by dmesg/1038:
[ 246.771739] 2 locks held by zsh/1172:
[ 246.772650] #0: 00000000836d0438 (&tty->ldisc_sem){++++}, at: ldsem_down_read+0x37/0x40
[ 246.773680] #1: 000000001f4f4d48 (&ldata->atomic_read_lock){+.+.}, at: n_tty_read+0xc1/0x870
[ 246.775522] =============================================
After trying dozens of different solutions, I found one very simple one
that should also have the benefit of preventing us from having to fight
locking for the rest of our lives. So, we work around these deadlocks by
deferring all fbcon hotplug events that happen after the runtime suspend
process starts until after the device is resumed again.
Changes since v7:
- Fixup commit message - Daniel Vetter
Changes since v6:
- Remove unused nouveau_fbcon_hotplugged_in_suspend() - Ilia
Changes since v5:
- Come up with the (hopefully final) solution for solving this dumb
problem, one that is a lot less likely to cause issues with locking in
the future. This should work around all deadlock conditions with fbcon
brought up thus far.
Changes since v4:
- Add nouveau_fbcon_hotplugged_in_suspend() to workaround deadlock
condition that Lukas described
- Just move all of this out of drm_fb_helper. It seems that other DRM
drivers have already figured out other workarounds for this. If other
drivers do end up needing this in the future, we can just move this
back into drm_fb_helper again.
Changes since v3:
- Actually check if fb_helper is NULL in both new helpers
- Actually check drm_fbdev_emulation in both new helpers
- Don't fire off a fb_helper hotplug unconditionally; only do it if
the following conditions are true (as otherwise, calling this in the
wrong spot will cause Bad Things to happen):
- fb_helper hotplug handling was actually inhibited previously
- fb_helper actually has a delayed hotplug pending
- fb_helper is actually bound
- fb_helper is actually initialized
- Add __must_check to drm_fb_helper_suspend_hotplug(). There's no
situation where a driver would actually want to use this without
checking the return value, so enforce that
- Rewrite and clarify the documentation for both helpers.
- Make sure to return true in the drm_fb_helper_suspend_hotplug() stub
that's provided in drm_fb_helper.h when CONFIG_DRM_FBDEV_EMULATION
isn't enabled
- Actually grab the toplevel fb_helper lock in
drm_fb_helper_resume_hotplug(), since it's possible other activity
(such as a hotplug) could be going on at the same time the driver
calls drm_fb_helper_resume_hotplug(). We need this to check whether or
not drm_fb_helper_hotplug_event() needs to be called anyway
Signed-off-by: Lyude Paul <lyude@redhat.com>
Reviewed-by: Karol Herbst <kherbst@redhat.com>
Acked-by: Daniel Vetter <daniel@ffwll.ch>
Cc: stable@vger.kernel.org
Cc: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Since actual hotplug notifications don't get disabled until
nouveau_display_fini() is called, all this will do is cause any hotplugs
that happen between this drm_kms_helper_poll_disable() call and the
actual hotplug disablement to potentially be dropped if ACPI isn't
around to help us.
Signed-off-by: Lyude Paul <lyude@redhat.com>
Acked-by: Karol Herbst <kherbst@redhat.com>
Acked-by: Daniel Vetter <daniel@ffwll.ch>
Cc: stable@vger.kernel.org
Cc: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Turns out this part is my fault for not noticing when reviewing
9a2eba337c ("drm/nouveau: Fix drm poll_helper handling"). Currently
we call drm_kms_helper_poll_enable() from nouveau_display_hpd_work().
This makes basically no sense however, because that means we're calling
drm_kms_helper_poll_enable() every time we schedule the hotplug
detection work. This is also against the advice mentioned in
drm_kms_helper_poll_enable()'s documentation:
Note that calls to enable and disable polling must be strictly ordered,
which is automatically the case when they're only call from
suspend/resume callbacks.
Of course, hotplugs can't really be ordered. They could even happen
immediately after we called drm_kms_helper_poll_disable() in
nouveau_display_fini(), which can lead to all sorts of issues.
Additionally; enabling polling /after/ we call
drm_helper_hpd_irq_event() could also mean that we'd miss a hotplug
event anyway, since drm_helper_hpd_irq_event() wouldn't bother trying to
probe connectors so long as polling is disabled.
So; simply move this back into nouveau_display_init() again. The race
condition that both of these patches attempted to work around has
already been fixed properly in
d61a5c1063 ("drm/nouveau: Fix deadlock on runtime suspend")
Fixes: 9a2eba337c ("drm/nouveau: Fix drm poll_helper handling")
Signed-off-by: Lyude Paul <lyude@redhat.com>
Acked-by: Karol Herbst <kherbst@redhat.com>
Acked-by: Daniel Vetter <daniel@ffwll.ch>
Cc: Lukas Wunner <lukas@wunner.de>
Cc: Peter Ujfalusi <peter.ujfalusi@ti.com>
Cc: stable@vger.kernel.org
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Userspace on big endian machhines typically expects the ADDFB ioctl
returns a big endian framebuffer. drm_mode_addfb() will call
drm_mode_addfb2() unconditionally with little endian DRM_FORMAT_*
values though, which is wrong. This patch fixes that.
Drivers (both kernel and xorg) have quirks in place to deal with the
broken drm_mode_addfb() behavior. Because of this we can't just change
drm_mode_addfb() behavior for everybody without breaking things. Add
the quirk_addfb_prefer_host_byte_order field to mode_config, so drivers
can opt-in.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: http://patchwork.freedesktop.org/patch/msgid/20180905060445.15008-5-kraxel@redhat.com
GVT-g emualte the opregion for guest with bdb version as '186' which
child_device_config length should be '33'.
v2: split into 2 patch. 1st for issue fix, 2nd for code clean up.(Zhenyu)
v3: add fixes tag.(Zhenyu)
Fixes: 4023f301d2 ("drm/i915/gvt: opregion virtualization for win")
CC: Xiaolin Zhang <xiaolin.zhang@intel.com>
Reviewed-by: Xiaolin Zhang <xiaolin.zhang@intel.com>
Signed-off-by: Weinan Li <weinan.z.li@intel.com>
Signed-off-by: Zhenyu Wang <zhenyuw@linux.intel.com>