Hangcheck is our back up in case the GPU or the driver gets stuck. It
detects when the GPU is not making any progress and issues a GPU reset.
However, if the driver is failing to make any progress, we can get
ourselves into a situation where we continually try resetting the GPU to
no avail. Employ a second timeout such that if we continue to see the
same seqno (the stalled engine has made no progress at all) over the
course of several hangchecks, declare the driver wedged and attempt to
start afresh.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20180602104853.17140-1-chris@chris-wilson.co.uk
Reviewed-by: Mika Kuoppala <mika.kuoppala@intel.com>
Not all callers want the GPU error to handled in the same way, so expose
a control parameter. In the first instance, some callers do not want the
heavyweight error capture so add a bit to request the state to be
captured and saved.
v2: Pass msg down to i915_reset/i915_reset_engine so that we include the
reason for the reset in the dev_notice(), superseding the earlier option
to not print that notice.
v3: Stash the reason inside the i915->gpu_error to handover to the direct
reset from the blocking waiter.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Jeff McGee <jeff.mcgee@intel.com>
Cc: Mika Kuoppala <mika.kuoppala@intel.com>
Cc: Michel Thierry <michel.thierry@intel.com>
Reviewed-by: Michel Thierry <michel.thierry@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20180320100449.1360-2-chris@chris-wilson.co.uk
Previously, we relied on only running the hangcheck while somebody was
waiting on the GPU, in order to minimise the amount of time hangcheck
had to run. (If nobody was watching the GPU, nobody would notice if the
GPU wasn't responding -- eventually somebody would care and so kick
hangcheck into action.) However, this falls apart from around commit
4680816be3 ("drm/i915: Wait first for submission, before waiting for
request completion"), as not all waiters declare themselves to hangcheck
and so we could switch off hangcheck and miss GPU hangs even when
waiting under the struct_mutex.
If we enable hangcheck from the first request submission, and let it run
until the GPU is idle again, we forgo all the complexity involved with
only enabling around waiters. We just have to remember to be careful that
we do not declare a GPU hang when idly waiting for the next request to
be come ready, as we will run hangcheck continuously even when the
engines are stalled waiting for external events. This should be true
already as we should only be tracking requests submitted to hardware for
execution as an indicator that the engine is busy.
Fixes: 4680816be3 ("drm/i915: Wait first for submission, before waiting for request completion"
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=104840
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20180129144104.3921-1-chris@chris-wilson.co.uk
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Since removing the module parameter to force selection of ringbuffer
emission for gen8, the code is defunct. Remove it.
To put the difference into perspective, a couple of microbenchmarks
(bdw i7-5557u, 20170324):
ring execlists
exec continuous nops on all rings: 1.491us 2.223us
exec sequential nops on each ring: 12.508us 53.682us
single nop + sync: 9.272us 30.291us
vblank_mode=0 glxgears: ~11000fps ~9000fps
Since the earlier submission, gen8 ringbuffer submission has fallen
further and further behind in features. So while ringbuffer may hold the
throughput crown, in terms of interactive latency, execlists is much
better. Alas, we have no convenient metrics for such, other than
demonstrating things we can do with execlists but can not using
legacy ringbuffer submission.
We have made a few improvements to lowlevel execlists throughput,
and ringbuffer currently panics on boot! (bdw i7-5557u, 20171026):
ring execlists
exec continuous nops on all rings: n/a 1.921us
exec sequential nops on each ring: n/a 44.621us
single nop + sync: n/a 21.953us
vblank_mode=0 glxgears: n/a ~18500fps
References: https://bugs.freedesktop.org/show_bug.cgi?id=87725
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Once-upon-a-time-Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20171120205504.21892-2-chris@chris-wilson.co.uk
Hangcheck state accumulation has gained more steps
along the years, like head movement and more recently the
subunit inactivity check. As the subunit sampling is only
done if the previous state check showed inactivity, we
have added more stages (and time) to reach a hang verdict.
Asymmetric engine states led to different actual weight of
'one hangcheck unit' and it was demonstrated in some
hangs that due to difference in stages, simpler engines
were accused falsely of a hang as their scoring was much
more quicker to accumulate above the hang treshold.
To completely decouple the hangcheck guilty score
from the hangcheck period, convert hangcheck score to a
rough period of inactivity measurement. As these are
tracked as jiffies, they are meaningful also across
reset boundaries. This makes finding a guilty engine
more accurate across multi engine activity scenarios,
especially across asymmetric engines.
We lose the ability to detect cross batch malicious attempts
to hinder the progress. Plan is to move this functionality
to be part of context banning which is more natural fit,
later in the series.
v2: use time_before macros (Chris)
reinstate the pardoning of moving engine after hc (Chris)
v3: avoid global state for per engine stall detection (Chris)
v4: take timeline last retirement into account (Chris)
v5: do debug print on pardoning, split out retirement timestamp (Chris)
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Mika Kuoppala <mika.kuoppala@intel.com>
In order to simplify hangcheck state keeping, split hangcheck
per engine loop in three phases: state load, action, state save.
Add few more hangcheck actions to separate between seqno, head
and subunit movements. This helps to gather all the hangcheck
actions under a single switch umbrella.
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Mika Kuoppala <mika.kuoppala@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Mika Kuoppala <mika.kuoppala@intel.com>